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Abstract

The relation between the nucleon-nucleon interaction and exchange currents
needed for current conservation are derived for the Bethe-Salpeter formalism,
and for the approach in which the spectator particle is restricted to its mass
shell. For both approaches, it is shown how to achieve current conservation
for a completely general isospin dependent, energy dependent interaction with
arbitrary phenomenological electromagnetic form factors for the nucleon and
mesons, and with strong form factors at the meson-nucleon vertices. Contrary
to what has often been stated in the literature, the development shows that
current conservation places no restrictions on the use of different
electromagnetic form factors for mesons and nucleons, and that
phenomenological meson-nucleon form factors can be introduced in a way whiéhA
is consistent with current conservation. The longitudinal part of the
exchange current is uniquely determined by current conservation, and for the
common case of an interaction that only depends on the invariant momentum
transfer variable an explicit expression for this longitudinal exchange
current is given. The transverse part, which contains all electromagnetic
form factors, is unconstrained by current conservation.



1. Introduction

It is well known that non-nucleonic degrees of freedom may reveal
themselves in the form of interaction current contributions to nuclear elec-
tromagnetic observables even at low energies’. When such interaction currents
contain longitudinal components they may be determined by the nuclear
interaction through current conservation. Exchange currents that are
associated in this way with the interaction, and which have to be included in
consistent calculations of bound state matrix elements, are usually referred
to as model independent exchange currents. Existing empirical indications are
that such model independent exchange currents are the ones of main importance
for the electromagnetic properties of the few-nucleon systems®.

The model independent exchange currents are either of relativistic origin
and associated with intermediate antinucleon states""s, due to the energy
dependence of the interaction, or finally due to the isospin dependence of the

interaction®'?

- It is the aim of this paper to elaborate this distinction by
deriving the proper form of the two-body interaction currents that have to be
included in relativistic calculations of matrix elements of the nuclear
electromagnetic current operator.

The key to the development is the generalized Ward-Takahashi (W-T)
identity for the divergence of the current of an off-shell particle®. One
principal result of this paper is that the electromagnetic interactions of any
two-body system described by a relativistic two-body equation (such as the
Bethe-Salpeter equation or an equation in which one particle is restricted to
its mass shell) will always conserve current provided the following three
conditions are met: (1) the electromagnetic currents for the interacting off-
shell nucleons and mesons satisfy the appropriate W-T identity, (2) the
interacting incoming and outgoing two body system satisfy the same two body
relativistic equation (with the same interaction kernel) and (3) the exchange
(or interaction) current is built up from the relativistic kernel by coupling
the virtual photon to all possible places in the kernel. Conditions (1) and
(2) are possible to satisfy provided calculations are donme consistently and
with care, but condition (3) becomes cumbersome if the two body interaction
includes higher order kernels such as crossed box diagranms.



A second principal result of this paper is that, contrary to results
obtained by some previous investigatorso'lz, current conservation places no
constraint on the use of electromagnetic form factors for the hadrons. This
means that we are free to use different phenomenological form factors for the
nucleon and mesons (pion and rho). We have the freedom to choose these form
factors to describe on-shell data (when it exists) and may even allow the ¢°
dependence of these form factors to vary with the virtual mass of the
interacting nucleon or meson. This freedom can only be constrained by fits to
experimental data, or by microscopic calculations of the form factors based on
the underlying quark structure of the hadrons.

This result comes about because the W-T identities only comstrain the
longitudinal current and it is possible to construct currents in which all of
the electromagnetic form factors occur in transverse terms only. Since the
on-shell currents are purely transverse, this can be done in a way which is
consistent with the experimental results. For the case in which the
interaction kernel depends solely on the invariant four-momentum transfer
variable we give an explicit expression for the longitudinal exchange current
that is needed for current conservation.

A third principal result of this paper is that phenomenological form
factors can be introduced at the strong meson-nucleon vertices without
violating current conservation. (We will sometimes refer to these as the
*strong" form factors to distinguish them from electromagnetic form factors.)
To accomplish this, the strong form factors are reinterpreted as
phenomenological self energies (which means that they must depend only on the
off-shell mass of the hadron). This modifies the propagator and, through the
¥W-T identity, leads to modifications in the currents. If the currents are
modified as required, current conservation is unaffected. )

This paper falls into 7 sections. In S8ection 2 we discuss the two body
current for point particles in the framework of the Bethe-Salpeter equation’®
in the one pion exchange ladder approximation. We show how conditions 1-3
cooperate to insure current comservation in this simple case, and derive the
longitudinal exchange current for the case of an interaction that depends only
on momentum transfer. In Section 3 we extend the method for achieving current
conservation to a general interaction. In Section 4 we discuss current



conservation in the quasipotential frameyork developed by one of us't, 7Ip
Section & we illustrate the results for the cases of single pion and p-meson
exchange interactions with derivative couplings, and in Section 6 we show how
both electromagnetic and strong hadronic form factors and may be introduced
without violation of current conservation. Section 7 contains a concluding
discussion.

2. The Bethe-Salpeter Theory in the Ladder Approximation

We turn now to an explicit comstruction of the current in the Bethe-
Salpeter (BS) Theory. We begin with a treatment of the ladder approximation,
and extend the discussion in the next section to the most general case.

In the ladder approximation the scattering amplitude M is assumed to
satisfy the following equation

X(p,p";P) = V(p,p";P)

4
+i [ G Ve,6P) 8, QP S, (2Pk) U(k,p7P) (2.1)

where the notation is illustrated in Fig. 1; p,p°, and k are relative 4-
momenta, P is the total 4 momentum (which is constant) and V is the
irreducible kernel. S is the free "nucleon" propagator, defined as

8,7(p) =poy, - U (2.2)
M being the nucleon mass. In the ladder approximation, the irreducible kernel
V depends only on p - k in addition to isospin.

We may project states of definite total angular momentum, helicity, and
parity from (2.1) by introducing a suitablebﬁrojection operator. For our
purposes it is convenient to specialize the initial state so that both
particles are on shell, in which case in the center of mass of the pair,

P=(, D),

p =0, (2.3)



where E(p) = (M2 + pz)l/z. In this case the projection operator takes the

general form
{

P} = JdaRG) w,® G o, (5 0B . (2-4)

In this paper we will suppress all reference to the quantum numbers of the
initial state. Using the operator (2.4) we introduce a relativistic BS
scattering wave function according to

$(p,F) = P_ {(2")4 8 p-p7) + i Slé% P+p) S,Q% P-p) H(p,p';P?}- (2.5)

Substituting (2.5) into (2.1) gives us the equation we seek:

4
3, (3P+p) 8,¢ P-p) $(p.P) = 11(—3,%;- V,kP) $(k,P) . (2.6)

The equation for the bound state wave function is obtained in a somewhat
different way. The presence of a bound state implies a pole in the M matrix,
vhich for a spin sero bound state takes the form

I'(p,P) T'(p°,P)
- uhz_Pz

where R is regular at P? = MB’. Substituting (2.7) into (2.1), and
approaching the bound state pole gives the homogeneous equation

M(p,p";P) = + R(p,p";P) , (2.7)

4
I'(p,P) = ij(%ﬂ‘% V(p,k;P) 8, (3 Pek) 8, (3 P-k) [(k,P) . (2.8)

Defining the bound state wave function
%5 (p,P) = i 8, (3 P+p) S, (3 P-p) I (p,P) (2.9)

gives the same equation, (2.6), for 'B'
We now turn to the central question of specifying the current operator
which should be used with the relativistic states which satisfy (2.6). The



answer will depend on the specific form of V. In this section we will discuss
the ladder sum for the case in which V has the simple form

V(p,kP) = - g* 7or 955 A(p-k) , (2.10)

with the meson propagator
ATK) = k% - 40, (2.11)

This interaction, which corresponds to exchange of single pseudo-scalar pions,
will be sufficient to illustrate the approach. Some other examples will be
considered in section 5, and the completely general result will be given in
section 3.

The general form for the matrix element of the electromagnetic current

between two relativistic states described by the wave functions ¥, and Y, is,
in the BS formalism

4 4 .
s = ji(’;%,ﬂ ?,(".0°) F('D,p D) ¥, (p,0) , (2.12)

where the notation is given in Fig. 2. The general form for the current
operator is

#(D°,p D) = -i(21)4 s, (p,) &* (p,-p,')gl" (p,"»p,)
. 4q-1 N 2 .
1207 8,7 (p)) 8'(r,p,") 3,F(p,"0p,)
+ Jv" (p’D°,pD) . | (2.13)
Here the single nucleon current operator for point-like nucleons is
Were)=1fdnr2, (2.14)

and J# is an interaction or exchange current, the structure of which depends

on the form of V. If V is given by (2.10), which corresponds to the ladder



sum, the exchange current is
IF epp) = 3 e p,p D)

i

= -g 7'r} 1,°1,° i, (p,"-P,»p,-P,") Alp,"-p)) A(p,-p,7) ,  (2.15)

where, for point-like pions,
i Pk k) = —i(ko+k)P LB (2.16)

In (2.16), i and j are the isospin indices of the outgoing and incoming pions
respectively. The three terms in (2.13) are illustrated diagrammatically in
Fig. 3.

The form of the operator (2.13) follows naturally if one imagines the
photon coupling to all possible places in the ladder sum, and uses the BS
equation to collect all contributions into the three distinct classes which
occur. This intuitive argument also shows that (2.13) should conserve
current. The remainder of this section will be devoted to a proof of this
result.

The Ward-Takahashi (W-T) identities® are crucial to the proof, and will
also be the key to generalizing the results to include nucleon and pion
structure, which will be carried out in Section 6. In our notation, these are

W ®p) =876, - 8,010+ 1Y,
U ip PEE) = -TE) - 87 E)] S (2.17)
The proof depends only on the validity of (2.17) and the BS equation (2.6).

Begin by using the nucleon W-T identity on the first two terms of the
current operator (2.13) to obtain



4
q I = -i [k {f, (p+3 0.0°) 8,7 (,) 15,7 (p,) - 5,7 (p,)]

x3 [1+7,%] ¥, (p,D) (2.18)
+ §,(-3 0,D) 8,7 (p) [s;‘(p,')-s;‘(p,)]-ﬁm;]fi(p,n)} :
Using the BS equation (2.6) this reduces to

p oy - 1 [dd' . p S s
9 Ui = 3 j(2t)s P.(p.D7) [V(p",p+gq ; D°)[1 + 7.°]

- [+ 7% V(o1 q,p; D)
. | . ]
VP'p3 a; D)1 + 7,7 -

1+rh V(p’% q,p; D)] fi(p,D)} . (2.19)

Note that (2.19) would be gero if the potential were to depend only on
momentum transfer and were independent of isospin. For the ladder sum, the

potential does depend only on momentum transfer, and hence current

conservation would be proved for isoscalar exchange, in which case the

exchanged meson would be neutral and there would be no meson exchange term in:

the current operator. In our case the isospin dependence of the pion spoils

the cancellation, giving

inzzi' 1ia] = 21L3i%35]8 ! (2.20)

and hence (2.18) reduces to

4 4 .
qp (Jf+’> = ""igz I..__E‘:2’jsp i‘f (po,Dv) [:’;.lxzz]’ 115 725 [A(p"‘p“-l2 q) (2‘21)

-A(p"-p+ D] ¥, (p,D) .



The divergence of the meson exchange term is precisely what is necessary
to cancel (2.21). Using the pion W-T identity on this term gives

.2 [ d*pd*p" . n- .
<3 f> = vig? I—(;)l;— 9. ("D [1,x7,1% 1,%7,° [A(p,-p,") (2.22)
- A(p," - p)] ¥, (p, D),
which cancels (2.21).
Equation (2.22) suggests an alternative form for the exchange current

(2.15) which explicitly displays its role in conserving current. Writing the
interaction (2.10) in the general form

V=v( -k z,°%, » (2.23)
it can be readily shown that (2.15) can be written
(k* + k)H
K2 k%)

Jy('D,pD) = i(g,xr,)® ( v(&)-v@)] + JF (2.24)
where k° = pl’ - P, and k = P, - p" are the momenta of the outgoing and
incoming pions, respectively (see Fig. 3(c)), and ng is a purely transverse
contribution which in this case is gero.

We will show in sections 5 and 6 below that the form (2.24) holds for the
longitudinal part of the exchange current, even in the presence of contact
terms generated by derivative couplings, strong hadronic form factors at the
meson-nucleon vertices, and electromagnetic form factors for the exchanged
meson. In these more general cases, the additional transverse terms, ng,
which cannot be determined by current conservation, are not sero. It is
interesting to note that (2.24) reduces to exactly the same form as the non-
relativistic continuity equation*'” in a reference frame in which q = 0.

3. The Bethe-Salpeter Equation for the General Case

We now consider the general case where V is a sum of irreducible kernels,
shown up to B6th order in Fig. 4. We will show that the correct operator in



this case has the form of (2.13), where the interaction current Jv” is
constructed from the irreducible kernels which make up V by inserting the
virtual photon by minimal coupling at all possible places inside the diagrams.

Note that our result for the second order case (the ladder sum) satisfies this
rule. The diagrams generated in 4th order by the crossed box are shown in
Fig. 5. In general, each irreducible (2n)th order diagram involving the
exchange of n mesons will generate 3n-2 diagrams with couplings to nucleons
and mesons. In addition, there will be 2n diagrams with contact terms if
these are generated by the elementary meson-nucleon-nucleon interaction, as is
the case for pions with pseudovector (787”) coupling and p mesons with tensor
coupling (see section 5). For the moment we will assume that no contact terms
are present - they may be added easily once the general proof has been
outlined.

In developing the argument, it is convenient to first focus on the three
diagrams which have photon couplings to the three lines entering any
particular interior vertex, as shown schematically in Fig. 6 for one of the
6th order diagranms. ¥riting only the propagators and couplings for the lines
included in the oval shown on each graph, we have

OF> =18 (p, 7+ { 3Ll @ v p) 805, 1,5
+ 1,1, S+ P (p,%a,p)) (3.1)
- i7r? (e, -pr) 301 (p;-p1+q.p;~p)} S(p,) Alp,"-p)I, ,

where I1 and Iz represent the rest of the factors in each diagram, which are
the same for all three. Applying the W-T identities to these three terms will
generate 6 contributions. Keeping only those terms in which one of the
internal propagators (those in the curly braces in (3.1)) is annihilated,

gives

q

By w . 5 ) 1 sy i 11, 3
, Ty = I, Sl(p1 +q) 1, 2(1+7} )Ti +7,7 % (1+Ti )

1

-irt s S(p,) A(p,"-p,) I,
=0. (3.2)



Hence the contributions from the three terms which annihilate internal
propagators cancel. Furthermore, the three terms which annihilate propagators
external to the braces, which we have not yet considered, can be grouped with
terms from other diagrams to make new triplets of internal terms for
surrounding, neighboring vertices, and when considered together these terms
also cancel in the way described above. This argument shows that all terms
cancel, except for the exceptional cases of vertices which are at one of the
corners of the diagram. To complete the internal cancellation for these
exceptional vertices, precisely 4 terms are needed, which include V with one
of the external momenta shifted by q (or -q), as shown in Fig. 7. If we add
these four terms to all of the others we obtain a perfect cancellation, which
can be written

L4 1 L4
9 Jv" - ‘%(lﬂ'l') Y (p -—;q,p; D) - -2(1+‘r:) V(p -«%— q,p; D)
+V (7 ,pga D) o) + Vo R i D) duer ) 0. (a3

Finally, using this relation together with the result obtained from the single
nucleon currents, (2.18), proves that the operator (2.13), as defined at the
beginning of this section, satisfies current conservation in the general case.

It is now clear how to generalize this result to apply to all mesons and
other forms of meson-nucleon couplings, including those which generate contact
terns. As long as the elementary tree diagrams for meson electro-production
from nucleons conserve current, as illustrated in Fig. 8, the W-T identities
(2.17) are satisfied (including those for other mesons), and the BS equation
(2.6) applies to both the initial and final state wave function, the BS matrix
elements (2.12) and (2.13) will satisfy current conservation.

4. Current Conservation with the Spectator Nucleon on Shell
In practical calculations of matrix elements of the nuclear e.m. current

operator it is often convenient to use a relativistic formalism which has a

smooth non-relativistic limit. For this purpose one can enploy some three-



dimensional reduction of the BS equation that has the Schroedinger equation as
the non-relativistic limit. The most direct quasipotential framework, at
least from the point of the relativistic formulation, is the method developed
by one of us'*, in which the spectator particle in the relativistic impulse
approximation is taken to be on its mass shell.

It will not be necessary in this section to start with the ladder
approximation; because the spectator formalism can be 80 easily tied to
Feynman diagrams, we will rely on the general results obtained in section 3 to
discuss the general case immediately.

The equation for the scattering amplitude when one particle (#2) is
restricted to its mass shell is

’ ; ] '; ’ ‘1

N(p,p";P) = V(p,p";P) +I
where the mass shell condition means that, in the center of mass of the pair,

p,=3W-E@p) , (4.2)

and similarly for po' and k°, and the mass shell condition requires us to
limit ourselves to the positive energy subspace of particle 2, so that the
matrix elements

U(p,p";P) = 5,(p,) M(p,p";P) u,(p,") ,

V(e,p"3P) = §,(p,) V(p,p"P) u,(p,") , (4.3)
are sufficient for our purposes (two component spin indices of particle 2 will

normally be suppressed). The nucleon propagators are as defined in section 2.
The scattering wave function is defined by

¢$(p,P) =P {Eﬁﬂ (21)°® 6°(p-p*) + S,(-,IZP +p) M(p,p";P)},  (4.4)



where the projection operator P;p is similar to that defined in Eq. (2.4)

P, & =fan. 67 @) 08 (4.5)
Here the sum over the spin s of the initial particle 2 is shown explicitly for
clarity, but u, is not needed in the definition of P;p (as it was for Pop)
because the u, matrix element has been taken throughout (Eq. (4.3)).
Substituting (4.4) into (4.1) gives the equation for ¢

X Vo,k5P) ¢(k,P) . (4.6)

s 'dp ,P =I
: GP+p) ¢(p,P) @' Em

Note that this is manifestly covariant.
Similarly, the bound state wave function can be defined by

$5(P.P) =S, (3P + p) (3P -p) T C

S(P+p)TC 3,7GP-p) , (4.7)

where I' was introduced in section 2, and the introduction of C permits us to
construct I' from the usual bilinear covariants!®., The bound state wave
function (4.7) also satisfies the equation (4.6).

The general form for the relativistic current can now be written in this
formalism as

&*p dp v
2n°  E(p,) E(p,")

whe;e thf kinematic variables are as defined in Fig. 2, except that pz2 =
p'z = M%, and

I =I #,(°.0) ¥@D',p D) 4, (6,0 , (4.8)

F D) = 5,(,") #D",p D) u,p,) , (4.9)



and

E(s,)
Fep D) = @0 Sop) 1A ) ()

- izﬂ(*’z"?z' - S,(p,"-@) V(p'p;D)  (b)

- V(p'piD) 8,(p,+9) i F(p,+q, p,) (c)
+ Jv" (p’D’,pD) . (d) (4.10)

where the 2iﬂ and J;” were defined in section 2. The four diagrams which make
up (4.10) are shown in Fig. 9. Diagrams (b) and (c) arise when the virtual
photon is coupled to particle 2. Since it is impossible for both the initjial
and final nucleon to be on shell, two diagrams must be included corresponding
to the two terms which arise when the integration contour over the relative
energy is closed around the positive energy poles of particle 2. The way in
which these terms originate is shown schematically in Figure 10.

There are special cases where it can be shown that the two terms (b), and
(c) in (4.10) do not arise, or are not necessary for current conservation.
For example, if one particle is chargeless and does not couple to the photon
(even for ¢ # 0), we may choose this for the on-shell particle, and terms (b)
and (c) will not contribute. For identical particles, there may also be
methods of getting along without these terms. In this case, it would seenm
that it should be possible to eliminate these terms in favor of counting the
first term (4.10a) twice. The issue is of practical importance, since each of
these terms has a singularity (which, however, cancels in the sum), and they
spoil some of the simplicity of the spectator nucleon approach. A general
discussion of the simplest way to define the current operator in the spectator
nucleon approach will be taken up elsewhere. What we will show here is that
the two terms (b) and (c) are sufficient to insure current conservation in the
general case.

Before presenting the algebraic proof, it is useful to see in general how
current conservation works in this formalism. First, note that the relation



(3.3) still holds because this is unaffected by whether or not any of the
external particles are on shell. Second, note that when a particle is on-
shell, application of the operator S™1(p) which arises from the W-T identity
gives gero. This means that when q, is contracted into terms like those of
Fig. 9(b) and (c), only contributions from the off-shell propagation of
particle 2 will survive, and these terms are cancelled by two of the four
terms which arise from Eq. (3.3) (Pig. 9(a)). The result is that only terms
coming from propagators connected directly to particle 1 survive; the
elimination of these terms will finally require the use of the wave equation.
Algebraically, the last three terms of (4.10) give

" dap dlpc u’ _ L )
q" <J >(b)-(d) =I (2’)8 E(Pz) E(Pz') ’f(p 'D ) uz(pz )

{' 8,7 (,) - 8,7 (p,"-9)] 8,(p,"-0) 3 [1 + 7,%] V(p",p;D)
V@30 + 7% 8, () [, (peq) - 8,7 (p,)]

g J ¥ } u,(p,) ¢, (p,D)

_ Id' P M2
20°  E(p,) E(p,")

$,(p",0°) T, (p,")

x{+3 [1+7,% V(",p;D) - V(p",p;D7 )31 + rf]}u,(p,) ¢, (p,D)

=de d" uz

(e°,0°) {+ L1+ 72 Yo' ,p;1)
@0* By Eey 0 { SRR

- V(p',p;D')%[l + ‘rl']}ﬂ(p,D) ’ (4.11)



where the result (3.3) was used to evaluate q Jv” in the general case; note
that the [1 + 1;’] terms cancel. Finally, the first term in (4.10) simplifies
using the wave equation (4.6)

d’p A - -1 -1 1 s
a <J">w =I @ I $,(p",D°) [S1 (p,*+@) - 8, (Pl)]‘z [1+7.7] ¢,(,D)
2

=

d'p dap' uz -— . P g . . 1 s
I @n°  Ep) By t® P VeLeDd) 301+t
3 2

‘% (1 +7° Vio,p;D) $.(,0) . (4.12)

This term, when added to (4.11), gives gero, proving that current is
conserved.

Ve remind the reader that the algebraic proof of conservation first
presented holds for an arbitrary interaction, providing Eq. (3.3) holds for
J&F. Yhile we proved this for irreducible kernels in the BS formalism, the
irreducible kernel in the one-particle-on-shell formalism has extra terms.
vhich have been classified and discussed extensively elsewhere!®. It is
straightforward to see that these extra terns also satisfy (3.3); they differ
only in having some of the internal particles on shell, and the use of the W-T
identities is not affected by this restriction (any extra terms generated are
gero). Hence the proof of current conservation also holds for a general
irreducible kernel in this quasipotential method. It is not clear to us
whether the proof can be given as easily for other quasipotential

approaches?’.

5. Exchange Currents with Contact Terms

The general form for the exchange current operator in the ladder
approximation (2.24) applies even when the interaction involves derivative
couplings, and when there is hadronic structure (form factors). Whenever
there are derivative couplings in the meson-nucleon interactions, there will
be additional purely transverse terms J:v in the exchange current operator



which depend on the interaction Lagrangian and which are not gero. While
these cannot be determined by the continuity equation, it is nevertheless
quite straightforward to construct them from the contact (or seagull) current
operators obtained from minimal substitution of the e.m. field operator in the
derivative terms in the Lagrangian. We shall illustrate this by considering
single pion exchange with pseudovector coupling, which satisfies the condition
of chiral invariance, and single p-meson exchange with tensor coupling.
Modifications required by hadronic structure will be discussed in the next
section. '
The pseudovector NN coupling Lagrangian is

L=-35 #1778, ¢19 , (5.1)

where ¢, § are the nucleon fields and ¢ the isovector pion field. By coupling
the e.m. field minimally through the derivative in this Lagrangian one obtains
the point 7NN coupling2

V=i i o0 v, (5.22)

where Av is the e.m. field vector. This point coupling Lagrangian will
generate a contact term of the form

. i
by cone” = omeH AP (5.2b)

The total exchange current operator will, in this case, have the form
(2.24) with the interaction having the form

v@ = [f)? (07", [(101°], 8 (5.3)

with the additional transverse current operator (in the notation of Fig. 3(c))



2 Kﬂqu :
e = i@ x5 (& {s"” “Xog { (& 1D,(,10, Ak)

°q
+ (ko1 17, (1,71, A(k)}

As a final example we consider the p-meson exchange interaction, taking

(5.4)

the pNN coupling to be

P AU Tl B L (5.5)

where g is the vector and x the tensor coupling constant and Py is the
isovector vector meson field. The corresponding p-meson exchange interaction
is in the notation (2.23) '

v ) =- g, 8,0 {7,°7, - :1; 7,k 1,°k

P (5.6)
3
. K . PV " _ Kk _ pa
+ i - (o, T k, "0 Ty k) o 01" k, O2up kp}
Here the propagator is defined as
A;"(k) =P (k) & o () (5.7a)
with
A;l(k) =k* - mp’ , (5.7b)
v
PP (k) = g - ——k”k, (5.7¢)
m
/]
with m being the mass of the p-meson. Note that the term proportional to m;z

in the interaction vanishes for on shell nucleons.
The electromagnetic couplings that are necessary for the gauge invariant
construction of the p-meson exchange current operator are obtained by minimal



substitution of the e.m. field A in the derivative tensor coupling term in
(5.5) and in the free p-meson Lagrangian

- _1 oAV _ 1 24,
Here the p-meson field tensor is defined as
FEY = 8k - bV . (5.9)

Minimal substitution in the PN coupling (5.5) yields the contact PINN coupling

.. Bpk v, 1.3
L, = ie el Kl A, g7 2,°51 ¥, (5.10)

and, in the free p-meson Lagrangian (5.8), the 7p-coupling interaction

L, = e, e'® pl (Pt - gVpity | (5.11)

In the notation of Fig. 3(c) with K = k + k° this leads to the following point
7Pp vertex

PR k) = 4 1 I T 0P g
P P (5.12)

Pk 1 = 6% K - 1P - gh

where i, a are isospin index and 4-vector spin index of the outgoing p, and j,
p are the corresponding quantities for the incoming p- T_satisfies the W-T

identity ?
9, I‘:p"‘(k’,k) = %) - 2% (5.13)
where
2% (1) = [A;p(k)] oL n) - k%P (5.14)



¥With these definitions, it can be shown that the total p-meson exchange
current takes the form (2.24) with the interaction (5.6) and an additional

transverse term J” of the form

TP

B, =1 @ x1)" e [If T (2u) 1"] (5.15)

where
= - 8,(k) B,(k) {7‘1‘[.,’.1" - m;’(k-k') 7,°k]
oug et al o G - vk SR
+ (1 <> 2and k* <> k)
=i, ['K,-iq a:pqp - a"/‘] 1,
+ 18,00 4,&) 0?q, K [7" w? ko 72-1;]
- ,lﬂﬂ k'p [,,2.q . m;z(q.k').,z.k]
+ 18,0 alf‘l’qp m, (7,00 - (1¢-> 2 and k7 <> K)
I = 8,k [o’l“’ - of%q, %q] aap i/
(5.16)

- B,() B,(k) o K%, af" kgk, + (1 ¢-> 2 and k* <> k)

We leave it to the reader to verify that q Ig = 0.

Finally, we note that it is not difficult to relax the restrictions on the
magnetic and quadrupole moments of the p implied by (5.12). If two purely
transverse terms are added to (5.12):

;‘4’ Pk’ ,k) = r"p" (k" k)
- (*-1) [sa"qp-q )
‘o [P K- L koD @+ ) (5.17)




it can be shown'® that p* and Q° are related to the magnetic moment, pp, and
quadrupole moment Qp of the p*

[ ]

K= m,p,
q.

%m; q, (5.18)

(Note that 4* =1 and Q* = 0 is implied if these terms are absent.) Since
these are purely transverse, they contribute only to the transverse part of
the current.

The relaxation of the conditions #° =1 and Q* = 0 is associated with
internal structure of the p-meson, and consistent treatment of this structure
requires the discussion in the next section.

6. Current Conservation and Exchange Currents in the Presence of Hadronic
Structure

Our discussion so far has been limited to the case where the meson-nucleon
and photon-hadron vertices are all pointlike. In this section we will
describe how these results can be generaliged to the case where
electromagnetic form factors are inserted at the photon-hadron vertices, and
where strong form factors are used at the meson-nucleon vertices. Qur
approach will be very general, and we will show that (1) phenomenological
strong form factors can be inserted at the meson-hadron vertices without
spoiling the general results of the previous sections, provided modifications
dictated by the W-T identities in the off-shell current operators are made and
(2) empirical electromagnetic form factors appropriate for each particle may
be used in the current operators. In particular, the latter result means that
the form factors used in pion exchange currents can be different from those
for the nucleon without violating current conservation. This is important in
practical calculations of MEC effects.

The key to our approach is illustrated in Fig. 11. Here the meson (pion
in this example) exchange potential is regularized by a phenomenological form
factor f'(k’), where k is the four-momentum carried by the meson, and f’(pz) =



1. In our treatment, we will regard this form factor as a phenomenological
self energy correction, as illustrated in Fig. 11(b), so that the meson
propagators used in the previous sections of the paper are modified

£2(x%)
b =

= (K - 4* + m%))? (6.1)

where II is introduced for convenience only, and

n?) =[f2(:2) -1] k2 - 4% . (6.2)
&

The normaligation of f' ensures that

3
ne* = W n(k’)’ W =0 (6.3)

so that A is suitable renormaliged.

The current operators for the meson will then be modified in two ways.
First, we will introduce phenomenological electromagnetic form factor(s), and
second, we will require the W-T identity to hold with the new propagators A
given in Eq. (6.1). Using the Pion as an example of the general approach, we
introduce structure into the meson electromagnetic vertex

P x) = -d rBek k) €' (6.4a)

and define a reduced vertex function rn by

rfk,k) = £ TH (k°,K) (6.4b)
where f, = f’(k’) and f; = f'(k"). It is the reduced vertex function which
satisfies the W-T identity with the modified propagator (6.1) as illustrated
in Fig. 12. For the pion, the most general form such a vertex can take is



o (k" ,k) = A(q’,k",k’)[x" "—“—;"i]

q
(6.5)
+ B(q®,k%,k%) k¥
where, to avoid kinematic singularities, we require that at q? =0
A(0,k2x* =0 (6.6a)
and to reproduce the empirical pion form factor,
A% + B 4247 = F (%) . (6.6b)

B can be uniquely determined from the W-T identity (2.17), and a simple
calculation gives

-3 a
] k? -k

which is finite at k°? = k? and satisfies

B(?,s’) =1 (6.8)

Hence, from (6.6b)

A, B %) = F () - 1 (6.9)

which is consistent with (8.8a). Except for this condition A is arbitrary and
the most general form of A can be written

A2 = [ - 1) 9(d k7,0 (8.10)



where 7 is any function free of kinematic singularities and symmetric in k3
and k°? which satisfies

7,887 = 1 (6.11a)

The fact that the transverse part of the current operator cannot be
uniquely determined is not a surprise, but it has been customary in MEC
calculations to make the simplest assumptions about the form of the current
operators. The importance of MEC, and the possibility that the underlying
quark structure of mesons and nucleons could well lead to modifications of the
current operators when the mesons are off-shell, suggests that this
arbitrariness should be taken into account in future studies, and that either
data or quark calculations are needed to fix the off-shell function 7.

In order to parameterize 7 realistically, we note that it is the
combination of A + B which is seen in electron scattering (since the q term
is gero when contracted into the conserved electron current) and since g does
not depend on q? it must be cancelled if the total current operator is to go
to sero at large qz. This requires that 7 approach B at large q?

7(a*,k"%,k%) + B(k*32,17) . (6.11b)

qz'bﬂ

A simple form which satisfied both of these conditions (6.11) is

1- F,(q’)] 1-F(q"
—_— 1 +1- (6.12)

(a*,k"%,k%) = B(k'2,1%) [ _
T 1-F () 1-F ()

where F° approaches gero as q? approaches infinity and is normalized to uniﬁy
at q? = 0, but is otherwise arbitrary. With this choice, Fﬁl becomes



k—z - kz 2

=1, -1
e (@ k2K = {F,(q’) - F (q) + Fo(qa)‘[ A -4 Q‘—)-] (K" - —Li“'q )

+ 07 (k) - 87 (K)) _qu‘ (6.13)
q

Note that this form gives F'(qz) when both mesons are on-shell, and that, if

dkz

i@ %) = (R (&%) + F_() [d—“@- -1] K* + & tern (6.14)

However, with the strong form factors

da (i) A-lzk -1<0 (6.15)
dk
if k* ¢ p* (which is the normal case in nuclei), and hence F_ subtracts from
F’, making the effective pion form factor decrease more rapidly with Q*. This
is what would be expected if the pion were to become larger in the nuclear
medium. Note that in this model, the size of this effect depends on how far
the pions are off mass shell.
Using (6.13) we can cast our new pion MEC into the form (2.24) with v(k)
defined by Eq. (2.10), (2.23) and (6.1) and with the transverse term given by

et e et (0 52)
x{ [Fe(@ - ¥, @]8m) a)

RGO (8.16)

Note that the pion form factors occur only in the purely transverse part of

the exchange current, and hence are in no way constrained by the requirements
of current conservation.



Structure can also be included in the case of pseudovector coupling. Here
& new complication arises - how should structure be included in the TaNN
contact term? One way, which is probably not unique, is to generalige (5.2b)
and introduce a reduced contact term

.4
31k

Xcont

(k) = eti2 A4 £, It (@ (6.17)

where k is the 4-momentum of the incoming pion, q is the 4-momentum of the
incoming virtual photon, and

Fre@ = g 77" + [F.@d1]y, (o - ’;;’- ¢ 1° (6.18)

When used with a conserved current, the qﬁ term in the transverse part
vanishes, and if 7. =1 as q? + ®, the entire term goes to zero as Fc(q?), the
arbitrary form factor of the contact term. The first term will play the same
role as it did in the case without structure which was treated in section 5;
the second term will contribute an additional transverse term to (6.16).

Next we turn to the p-meson exchange current. Here the same techniques
can be used, and the additonal degrees of freedom associated with the spin one
nature of the p offer more choices for construction of the current operators,
suggesting that the p exchange current will be less effectively constrained by.
current conservation.

If a single strong form factor is introduced at the PNN vertex, f (kz),
leading to a phenomenological self energy, the longitudinal part of the 1Pp
vertex will be modified through the W-T identity. Defining the reduced 1°p
vertex

ap’l‘ ‘ = ‘ ap’l‘ ’
b = 100 1 (&, k) (6.19)



we find
o0 = % K B (e 1)
- 8% & ) o
- k%P 4+ ke h Oy (k" k) k"’,‘—q ~ (6.20)

where

I(k?) - 1 (k%

By(k,k) =1 +

k'z - kz
, 1
Ch0c k) = 4 f—l; . -f-zl) (6.21)

Up to arbitrary purely transverse terms, this result seems to be unique if
terms with kinematic singularities are excluded.

Transverse terms which contain electromagnetic form factors can now be
added. One form, which satisfies all of the restrictions discussed in the
beginniﬁg of this section, is

e H 00 = TE0R 1) R (@ - 1y, 6 [x/‘ - qu ]

) [Fz(qa) } 1] R ["ag" P v gl i, %P - k’“k'p)]
q
- F @) 671 [6% - o ]
- (F (") -1) 7. %P + 13 (%/:?; - i: )
| q

2 B(@) [0 ¥ - Jea) (0% + %)

P

(6.22)



where 79  and 7, 8re arbitrary functions which are unity on-shell and which
approach as q? +

T
T. * Cp - (6.23)

If these conditions are satisfied, F;g + 0 as q’ + ®, and when both p’'s are
on-shell, it reduces to

A P G N

R ACYRN (Gt TR e I
2F,"
- (") (00 K (6.24)
p
which is the correct form provided F,(0) =F,(0) =1 and F,(0) = Q" + 4" -1.
The reduced p contact term, defined as for the pion in Eq. (6.17), can be
taken to be

(@) = o { o+ [F (e - 1] (a"l‘ - o —q:—:”> (6.25)

where v and y are the p and 7 vector indices, respectively.

We leave it to the reader to confirm (2.24) for this p exchange current
and to obtain the explicit form for the transverse current.

We conclude this section by discussing the off-shell nucleon current
briefly. Clearly the method developed above can be applied to this case also.

The current operator for a single nucleon with internal structure is usually
written in the form

By
o) =B 1+ i%gq R, (6.26)



The isospin structure of the two form factors F1 and F2 is

Ba=3 B, @+, @7]. (6.27)

The current operator (6.26) does not satisfy the W-T identity (2.17). A
simple generaligation of (6.26) which does satisfy the identity would be

RO

q

Fe ) =3 (F2@ -1+ P -1] 7| |-

i * - a'“” a, E, - (6.28)

With this generalization the terms that involve the form factors drop out from
the current divergence (2.17) and hence the continuity equation conditions
derived for the exchange current in sections 2 and 3 still apply.
Furthermore, on shell (and even off shell when used with the conserved

electron current so that the qF term vanishes) this reduces to the usual form
(6.28).
7. Summary and Discussion

There are three principal results of this paper.

(1) A general method for comstructing matrix elements of the
electromagnetic current of a relativistic two body system, which ensures that

the current is conserved, is given. This method requires that

(2) all relativistic one body current operators satisfy the apropriate
Wark-Takahashi identity,



(b) the initial and final interacting two body system satisfy the same
relativistic equation with the same interactjon kernel, which is assumed
to be a know sum of relativistic Feynman diagrams, and

(c) the current operator includes, in addition to the one body current
operators, interaction currents built up from the interaction kernels by
coupling the virtual photon to all possible nucleon and meson lines inside
the kernel.

We have demonstrated that this procedure works for the Bethe-Salpeter
formalism, where our principle results are Eqns. (2.12), (2.13), and 3.3),

and for the formalism where the spectator is on-shell, Eqns. (4.8) and (4.10).

(2) The method described above Places no constraint on the introduction

of phenomenological electromagnetic form factors for the hadrons. 1In
particular, different form factors can be used for the nucleon, pion, and p-
meson, and arbitrary magnetic and quadrupole form factors can be used in p-
meson exchange currents. The result, displayed in Eqns. (2.24), (6.16), and
(6.22) comes from the fact that one body currents can be comstructed in which
all electromagnetic form factors occur in purely transverse terms, which are
unconstrained by current conservation.

(3) The general method also permits the introduction of strong hadronic
form factors at all meson-NN vertices. Such form factors require modification
of the current operators through constraints imposed by the W-T identities,
but our discussion shows that this can be done in all cases of interest.

The overall conclusion is that it is possible to carry out consistent
relativistic calculations of electromagnetic interactions of two nucleon
systems which conserve current and which include necessary phenomenological
form factors due to the internal hadronic structure. We have found a way to
separate the problem of internal hadronic structure from the problem of the
dynamics of relativistic meson theory. The hadronic structure can be



calculated from the underlying quark degrees of freedom, and the resulting
form factors and coupling constants inserted in a relativistic meson theory
which conserves current. We make no claim that this procedure will give
correct answers, only that it can be carried out consistently. This result is
of importance to the program planned for CEBAF.

The role of W-T identities in obtaining conserved currents for
relativistic two body systems has been previously pointed out by Bentzlg, who
obtains two body ward identities for the two body system directly from field
theory. This derivation, which is complementary to our diagramatic approach,
leads to relations similar to (2.19) and (3.3). (These are Egns. (2.19b) and
(2.29) in Ref. 19.) Bentz also discusses PCAC, but does not discuss the
introduction of hadronic structure. The presence of ambuguities in the
definition of off shell currents has been previously emphasiged by deForestzﬁ,
who also pointed out that, if one is not careful, kinematic singularities can
arise from any q” terms added to current operators to preserve current
conservation. In our work we have been careful to eliminate these kinematic
singularities.

It should be possible, by taking the non-relativistic limit, to use the
results of this paper to resolve the outstanding issue as to whether Gx or F1
is the correct form factor to use in Pion exchange calculations. We have not
done this, but we note that our results show that different form factors are
pernitted for the pion and nucleon, and 7rNN contact term, so that the usual
non-relativistic pion exchange current, which is a sum of these different
Pieces, is probably not correctly described by a single form factor.
Furthermore, the freedom to adjust the off-shell form factors, as discussed in
section 6, shows that a unique answer within the framework of relativistic
meson theory (where hadronic structure is treated phenomenologically) is not
possible. We are inclined to think that the question of F1 vs. Gn is
transcended by the ambiguities and inconsistencies inherent in non-
relativistic calculations which treat the NN dynamics and meson interaction
currents as completely independent quantities. What is needed is a fully
relativistic calculation of both the NN interaction and the two nucleon
electromagnetic current which uses the same strong meson-NN form factors and
hadron electromagnetic form factors consistently throughout. Such a program
is currently being developed.
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Figure 7
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Figure 10

Figure Captions

Diagrammatic representation of the BS equation (2.1) for the
scattering amplitude, showing the notation used for the various
four-momenta.

Diagrammatic representation of the matrix element (2.12) of the
two body current in the BS formalism between initial (i) and
final (f) relativistic two body states.

Diagrammatic representation of the three terms in Eqn. (2.13)
for the BS equation in the ladder approximation.

The irreducible kernmel for the BS equation up to 6th order, for
the case when all ladders and crossed ladders are summed.

The interaction current generated by the crossed box diagram in
the BS theory. The virtual photon is coupled to all particles
inside the diagram (as enclosed by the oval) but is not coupled
to the external nucleons.

Illustration of the three terms given in Eqn. (3.1) which arise
from the coupling of the virtual photon to all particles
entering (or leaving) a single vertex (indicated with a small
circle in Fig. (a)) in the interior of of a higher order diagram
(6th order in this case).

Diagrammatic representation of the last four terms in Eqn.
3.3). In each diagranm, q enters at the location of the black
ot, and the momenta are labeled so that before (for the top

row) or after (for the bottom row) the 4 momenta of each nucleon

have the cannonical values introduced in Fig. 2.

The tree diagrams for electroproduction of mesons, including a
possible contact term. The small x’s on the external lines
indicate that the particles are on their mass-shell. If these
diagrams conserve current, then the interaction current as
constructed in the text will satisfy Eq. (3.3), and the full two
body current (2.13) will also conserve current.

Diagrammatic representation of the four terms in Eq. (4.10).
The small x’s mean that the particle is on the mass-shell; the
internal integrations are therefore over three-momenta only and
propagations of mass-shell particles are replaced by two
component spin sums over matrix elements constructed from mass-
shell positive energy spinnors, as in (4.3).

The figure shows the origin of the two terms (b) and (c) in Egn.
(4.10) and illustrated in Fig. 9(b) and 9(c).



Figure 11 Two equivalent ways of viewing the stro g form factors at the
meson-NN vertices. (2) Form factor (k") at each vertex with
bare pPropagators, and (b) foing %Pteractions with a
phenomenoclogical self energy II(k%) = £%(k ).

Figure 12 (2) The normal current operator with form factors at the meson-
N vertices. (b) Reduced current operator with
phenomenoclogical self energies and point meson-NN vertices. The
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