AT

NEW FEATURES IN THE DESIGN CODE TLIE =

Johannes van Feijts
Contimaous Electron Beam Accelerator Facility
12000 Jefferson Avenue, Newport News, VA 23606

ABSTRACT

We present features recently installed in the arbitrary-order accelerator de-
sign code TLIE. The code uses the MAD input language, and implements pro-
grammable extensions modelled after the C language that make it a powerful tool
in a wide range of applications: from basic beamline design to high precision -
high order design and even control room applications.

The basic quantities important in accelerator design are easily accessible from
inside the control language. Entities like parameters in elements (strength, cur-
rent), transfer mapa (either in Taylor series or in Lie algebraic form), lines, and
beams (either as sets of particles or as distributions) are among the type of vari-
ables available. These variables can be set, used as arguments in subroutines, or
just typed out, The code is easily extensible with new datatypes.

INTRODUCTION

Here we give a short introduction to the physics and algorithms used in the
program. We use the Hamiltonian formalism and canonical variables introdueed
in the map code field in the program MarYLIE 3.0'. The Hamiltonian describes
in & compact way the dynamics of the particles in the full 6 dimensional phase
space.

R AR i Vs GPRL 7 . T e .
H=] 1 3 + Pl - F; el P -(F el i (1)
(7 is the magnetic rigidity "Hp’ of particles on the design orbit. It is given by the
relation -
g-B,)

q
and has units of tesla meters. Also, § and 4 are the standard relativistic factors
for the design orbit. They are related to po (the design momentum) and pf =

— H | gesign orbis by the equations
Po = fyme ,
= —ymd® .

Az, Ay, and A, are the vector potentials; for example, the vector potential for a
normal quadrupole with a gradient of b tesla/meter is

(3)

i —%cf _M (4)

*Work supported by Department of Energy contract #DE-AC05-84ERA40150

Mew physics 1s added by substituting more complex vector potentials, We provide
vector potentiala for all the simple elements and for realistic multipole magnets. In
somme of our multi-particle-effect applications the vector potential actually depends
on the transported beam. However, the algorithmas described below do not change
no matber how complicated the vector potential becomes. The transfer maps for
the ‘time A’ flow are generated in a variety of ways from the Hamiltonian:

o Transfer map generation for the case where the Hamiltonian K does not
depend on the independent variable 1s most readily done by direct exponen-
tiation of the formal solution

1

2

where |,] is the Poisson bracket operator. This algorithm will eventually
converge due to the n! term in the denominator of the expansion of the
exponential operator.

T(2) = e *M{z) = = — A[H, 2] + = AN[H,[H, 2]} +--- , (5)

¢ Transfer map generation for the case where H does depend on the indepen-
dent variable is implemented as:

Tiysa(s) = [[H(z 0, T2 (6)

This algorithm is implemented in a particularly efficient way, which is the
main reason we are able to generate high-order transfer maps for realistic
systems in a time period practical for use in an optimization process {minutes
for order 10). In practice we use a forward integration and calculate the
inverse map [= T-!

A
Bywna(s) = [(H(z,) T(z)]dA (1)

The resulting Taylor series are converted into Lie algebraic form. This is
necessary for the “concatenation” process and gives us a compact representation
of the aberration coefficients. By default we split the Lie algebraic map up in
homogeneous parts with the following standard ‘Dragt-Finn® ordering

F(s) = ef(z) = et ez})

where f; describes the misalignment part, fy the second order part, etc. The
linear part M of the transfer map is carried as a symplectic matrix.

A number of other orderings of the Lie algebraic exponents are available and
used in the program. The algorithms to translate between these different repre-
sentations are most readily implemented to arbitrary order using Taylor series as
intermediate steps. For instance to concatenate two maps we use the algorithm:

ele®() = e G{2)) = Hiz) = (1) , (%)

where all steps in the process are uniquely determined as long as the matrx part
of the maps are symplectic.

EXTENSIONS TO THE PHYSICS

We have added the capability to calculate transfer maps for cylindrical current
sheet magnets, the current sheets may be stacked so as to produce overlapping
multipole fields. Together with the fast integration algorithm this allows us to
model realistic systems including fringe fields to high precision in a practical time
period.

The vector potential off axis, for a given multipole symmetry, is determined
from the appropriate magnetic field gradients and their longitudinal derivatives
on axis. In the following we will write expressions only for the normal multipales
(for m # 0). Skew multipoles correspond to cos(m#) terma in Eq.10. Given the
Fourier expansion of the scalar potential

Vir,0,2)= i U (r, 2)ain{m#), (10}

a vector potential giving the same field is
= cos(md) 8
Ay E m rﬂrU"[n:]

o 1)
A = Ei—fn ﬂr% (r,2).

Here we have chosen a gauge where Ag = 0. The scalar potential off-axis may
be written

where i
nlz) = li 212) (13)
represents the profile of the m™ multipole. This is a general solution to Maxwell
equations order by order, for arbitrary gn{z). The problem is thus reduced to
computing the generalized field gradients on axis for realistic magnet models.
Gubroutines to compute the required gradients are available for Halbach REC
quadrupoles and for general multipoles, with the current distribution on a cylin-
drical surface specified by a shape function®.

One particular powerful feature of the program is the ability to specify user
profiles for the field gradient as functions of the independent variable s in the
control language., These profiles can be arbitrarily constructed functions of s,
and the expressions are automatically differentiated to the crder needed in the
inkegration process, We give several examples below and show how a user profile 1s
given interactively to specily the octupole component of one multipole. Remember
that any number of different multipoles can be layered on top of each other to
represent arbitrarily complicated profiles.

£1{=)
Tz{s)
£2{x]

1/{14E" (bl + bZe(s/di+ bA+{sSd)"2))
101+ (aldd 23" (352)
Bo={tanhi{s/d)-tanh({s-10}/d})

multd: eultipale, £1(), L = 1.0, ®= = 4, radiug = 0,22

This feature for instance, allows users to install arbitrary fringe field profiles if he
g0 chooses,

EXTENSIONS TO THE MAD LANGUAGE

We extond the MAD language in a variety of ways. First we introduce logic
for loops, conditionals, subroutines, and functions returning real numbers, The
control language is interpretive and fully programmable. It is based on a C like
interpreter and written in the compiler generating language YACCH,

Secondly we allow for element parameters to be easily accessible in the lan-
guage; i.c., name[L] gives the length of a particular clement, name[K] gives the
quadrupole strength, etc. These parameters can be read and set interactively.

Mext we introduce a transfer map datatype; i.e., mapl = namediine. F creates
& new map variable from a given line element, in this case a Lie map variable. We
also have map? = namedline. T, which returns the Taylor map. Enbries in map
variables can be accessed as: mapl|x,x] for entries in the matrix part, mapl[x?],
mapl|x Pt?] for higher order entries in the Liemap variables, and map2[x,x"] etc.
for Taylor map variables. Since maps are checked for dependencies on element
parameters and brought up to date when they are used, it is easy to write a code
segment that studies the effect of changing a parameter on transfer map entries,

forf{quadi[k] = O; quadi[K] <= 3.0; guadi{K] += 0.1} {
type qendl[K], nemedline.Flz,z)-mapilz,z] namaline FLz PE-1]
}

where namedline is a line which is dependent on the strength of quadl.

Transfer maps are constructed by patching maps for single element bodies
together with coordinate rotations, fringe-fields, etc. We provide all the basic
clements in the program, but it 15 also possible to specify new constructions in-
teractively by using operations on maps. These Lie map expressions (Fexpr) can
be:

#® narmeF

Liz map variable

Liemap(identity) , creates an identity liemap
Fexpr 4+ Fexpr
s Fexpr - Fexpr

o Fexpr [Fexpr, ignoring gero berms in denominator

o | Fexpr)

Fexpr & Fexpr, result is the concatenated map.

invert{ Fexpr), returns the inverted Lie map.

filter{ Fexpr,expr), filters out entries less than expr
a protexpr), the map for longitudinal reference plane rotation
arot{expr), the map for transverse reference plane rotation
s monamial{Fexpr), the map in monomial factorized form
o reverse(Fexpr), returns a Lie map in reverse order
o [lend{Fexpr), put the /! term at the tail end of the map
o standard(Fexpr), to convert back to Dragt-Finn factorization;
e, to get the relative difference between two Lie maps we simple ask for

typa (F1-F2)/F2

We allow for the evaluation of subroutines along any given line, These sub-
routines expect several parameters as their arguments: the longitudinal distance,
coordinates and angles with respect to the floor, an element type, the transfer
map up to the particular peint in the line, and the name of the element as a
string variable. An example of this can be as simple as typing the names and
coordinates of a line

proc t'_rpllﬂl.-u{rul.:l. sl, real zl, real yi, real =i, real angz=, real angyz, real
angxy, real altype, lissap liel, string nama)
{

}

typa 81,nama,zl,21,¥71

Sinece the transfer map is available we can evaluate any changing variable along the
beam line. A useful procedure iz to calculate lattice functions and, for instance,
find the maximum value of a lattice function along a line:

proc findmazBeta(lisnap $8) {
bl = bataxFOER, bel, axi)
bY = betayF($0,byl,ayi)
if (X > maxX} { maxl = bX; maxsk = $1}
if (bY > max¥) { max¥ = bY¥; maxs¥ = 1}
]
layout{namedline) with findmaxBetal)

Here we see how Liemap variables can be used as arguments in functions. Ae-
guments can be accessed by name or by the order they appear in. The layoul
with procedure command can be used inside any procedure. Hence we can use
the oplimiser to, for instance, minimize the maximum lattice functions

func maxBoatallina 8L} {
maxk = max¥T = =1.0
maxal = maxa¥ = -1.0
layout{$1) with findmaxBatal)
if{maxY > mazX) return{=sx¥) ealse return{mazl)

}

CONTROL ROOM APPLICATIONS

By the addition of a few new parameters and keywords we turn the code into
a package useful for control room applications. We add the ability to set and read
currents of magnets, and read the horizontal and vertical position from beam
position monitors. A suitable control logic library,® and access to contrel room
computers has to be available to be able to make use of these features.

The full power of the language 15 avallable to propram experiments and data-
analysia. For instance, a particularly simple application, to measure an entry in
the transfer matrix between two points, is implemented as follows:

fer{currantl = 0; currenti <= 3.0; currentl += 0.1} {
kicki[I] = currentl; slaep(i)
type kicki[I], meniterilz], meniterily]

where the kicki and moniteri keywords are declared as type kick resp. monitor,
With suitable caution even the fitter and optimizer can be used for real-time
control. This eonnection between a design code and a control code allows for
measured data to be propagated using simulated transfer maps, which is useful
in tuning algorithms. The interpretive nature of the code allows for many more
applications to be implemented rapidly.

REFERENCES

1. A.J. Drage, MarvLie 3.0, A Program for Charged Particle Beam Transport
Based on Lie Algebraic Methods.

2. 1. B. J. van Zeijts and F. Neri, The Arbitrary Order Design Code Tlie,
presented at the Gosen High Order Optics Codes workshop, April 1952,

3. P. Walstrom, Filippo Neri and Tom Mottershead, High Order Optics of
Multipole Magnets, LINAC Meeting Albuquerque 1990,

4. B.W. Kernighan and R. Pike, The Uniz Programming Environment, (Prentice-
Hall 1984).

5. M. Bickley, Star Documentation, CEBAF, May 1892,

