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Abstract

Since the inherently low emittance required by the linac/ring B Factory implies high
disruption for the linac bunch, previous investigations of the beam-beam tune shift limit
may not apply. A strong-strong simulation scheme was developed based on a macro-
particle model to simulate beam-beam interaction in this situation self-consistently.
Included in the ring dynamics are linear betatron oscillations and synchrotron mo-
tion, as well as transverse and longitudinal damping and quantum excitation. As a
benchmarking test, the coherent quadrupole effect in a ring/ring collider was observed
by the simulation. The code was then used to study the stability of the storage ring
bunch in a linac/ring collider, and yielded strong synchro-betatron coupling due to the
deep envelope modulation of the linac bunch. It was, however, observed that when
initial conditions for the linac beam were properly chosen to match the focusing pro-
vided by the ring beam at IP, the beam-beam tune shift limit of the ring beam can be
comparable to that of a ring/ring collider.

1 Introduction

An asymmetric e*e” collider with 10 GeV center of mass energy can be used as a B Factory
to study the CP violation in the B-meson system. The luminosity required for this purpose
should have value of £ > 10% ¢m=2s~1, which is much higher than the currently obser ved
luminosity on existing machines. For the collision of transversely Gaussian distributed et
bunches, the luminosity is given by
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where Ny are the numbers of particles per bunch; £., the bunch collision frequency; and o,
and oz, the horizontal and vertical bunch sizes, respectively. The vertical beam-beam tune
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shift for the positron bunch, which characterizes the vertical focusing effect of the electron
bunch on the approaching positron particles, is defined by
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where v, and §;, are the Lorentz factor and the vertical beta function at IP for the positron
bunch, and ry, the classical electron radius. The other three heam-beam tune shift param-
eters can be obtained by the replacements z «» y and/or + < —. According to Eq. (1.1),
one needs to increase the collision frequency f. and the charge intensities for both et and e~
bunches in order to reach the goal of £ = 10%-3¢ cm~25-1, However, the intrinsic feature
of nonlinearity in the beam-heam interaction sets a limit on the achievable beam-beam tune
shitt, which is typically around 0.06 for ring/ring colliders, above which the beam will start
to blow up to a larger equilibrium bunch size in a few damping times. This beam-beam
eflect is primarily responsible for the limitation on the observed luminosity.

The idea of a linac/ring collider is proposed [1] such that the beam from the linac is not
recycled after each collision. Typically, in these scenarios, the electron beam is provided by
the linac and the harder-to-produce positron beam is accumulated in the storage ring. In the
following, therefore, the linac particles are electrons; the storage ring particles, positrons. As
a result, the charge intensity for the et bunch is no longer restricted by the beam-beam tune
shift limit for £,_. It is expected that this will enlarge the parameter space available for the
design of such a colliding scheme to accomplish the luminosity goal. An additional feature
of a linac/ring B Factory is that at the required high luminosity, the relatively low average-
beam-current capability of linacs compared to a storage ring implies low emittance. The
consequently high positron charge density together with the low v_ leads to high disruption
for the electrons. The disruption parameter, D,_, is defined as the ratio of the positron
bunch length to the electron vertical focal length
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For several given lists {2, 3] of design parameters, the parameter D,_ is of the order of
100, indicating that the electron particles oscillate through the positron bunch during each
collision. The beam-beam dynamics experienced by the positron bunch is therefore disparate
from that in a ring/ring collider, and the beam-beam tune shift limit for £y+ 1s not necessarily
equal to the familiar number 0.06. Thus, to be confident of linac/ring B Factory performance
estimates, one needs to study the stability of the positron beam in the storage ring when it
undergoes collisions with highly disrupted electron bunches.

The simulation for the beam-beam effect in a linac/ring B Factory should be strong-strong
since we are interested in the evolution of the strong (positron) beam in the process of its
interaction with the relatively weak (electron) bearn. In this study, a macro-particle model
is employed to simulate the beam-beam interaction. This mode] was previously used [4] to
display the high disruption effect on the electrons for a single collision of two round beams.
Here an extended model is used to accommodate the interaction of elliptical beamns. Care
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has been taken in choosing the sizes of the macro-particles and the number of macro-particles
necessary in each beam in order to obtain statistically reliable results. The dynamics of the
storage ring beam is studied by tracking the macro-particles in the ring over a number of
damping times, where each turn comprises the beam-beam interaction at the IR, the linear
betatron oscillation, and the synchrotron motion, as well as the radiation damping and the
quantum fluctuation effect.

In Sec. 2, we describe in detail the macro-patticle model for the beam-beam interaction.
Included in the appendix are also some analytical estimates of the effects of the sizes and
the numbers of macro-particles used in the simulation on the calculations of the beam-
beam forces and luminosities. As a benchmarking test, the simulation scheme was used
to manifest the coherent quadrupole effect in ring/ring colliders for round beams. The
reasonable agreement of our calculation with the existing results is shown in Sec. 3 [5, 6].
The beam-beam effect of a ring/ring collider using parameters given in the PEP B Factory
proposal is studied in Sec. 4 [7, 8, 9]. We then proceed in Sec. 5 to investigate the behavior
of the positron heam in a linac/ring B Factory. Strong synchro-betatron coupling in the
motion of positron particles has been observed, which is induced by the pinches of the highly
disrupted electron bunches during collisions. It is shown that the beam-beam limit for the
parameter £, can be made comparable to that of a ring/ring collider when the electron
bunches enter into the IR with properly matched [3] initial conditions. The effect of jitter
in the linac beam is discussed in Sec. 6.

2 Simulation

In this section, the macro-particle model [10] used for the strong-strong beam-beam interac-
tion is discussed. The overall layout of the program, including the simulation of the dynamics
undergone by the bunches in the storage ring, is also presented.

2.1 Beam-Beam Interaction Model

At the IR of an ete™ collider, the two relativistic beams exert Lorentz forces on each other
only in the transverse directions. The longitudinal motion of all the particles in a bunch is
then uniform during a collision process. This allows us to divide each bunch longitudinally
into many slices; the width of a slice corresponds to the longitudinal step size over which
the charged particles are advanced in the collisions. Here, the number of slices should be
sufficient to describe the heam-beam effect due to the longitudinal variation of the charge
distributions. In the simulation, each slice is populated with macro-particles. The macro-
particles in the two colliding beams experience mutual forces only when their corresponding
slices overlap. Since the number of macro-particles is limited by computer capacity, shot
noise often appears in the simulation results, and one needs to assign finite sizes to the
macros to suppress this effect. This finite size macro-particle model does not impose any
restriction on the charge distributions of the beams under study.

L
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In the code, the force on each macro-particle is computed by direct Columb sum,

Frl))y =3 fr) - »®), (2.4)

where F('rgl)) is the total force on the ith macro in beam 1 at a given time step, and
f(r,gl) — {2} is the force acting on the ith macro in beam 1 by the mth macro in heam 2
which lies in the same longitudinal interval as the former one. From the two-dimensional
electrostatics, it has been shown [11] that the luminosity for each pair of interacting macros
is related with their mutual force by

€
Lin ==V f(b), (2.5)

where b = 7'51) —7{? is the displacement of the centers of the two macro-particles. The total
luminosity can then be obtained by the sum over the luminosity for each interaction pair at

each time step, namely

The aspect ratios for colliding beams in different designs vary in a wide range of values.
For the general application of the simulation, the macro-particles are set to be Gaussian in
charge distribution, with aspect ratio comparable to the designed beam aspect ratio. This
will provide a better overlapping of macro-particles and hence reduce the spurious collisional
effects (see Appendix A). Here, the electric fields on a two-dimensional grid, generated by a
Gaussian macro-particle with given aspect ratio, are obtained from the well-known expression
in terms of the complex error functions [12] and stored in a table. The mutual force for each
interaction pair of macros is then readily calculated by interpolating data from the lookup
table. This is actually not the force between two charge distributions, but rather the forces
of one elliptic Gaussian macro-particle on a point charge, as if all the charge in the second
macro-particle is at the center of the macro. More discussion on the simulation scheme can
be found in Appendix A.

In certain situations, the sizes and the aspect ratio of the beam envelope evolve with time.
This is particularly true in the linac/ring collision processes, where the electron bunches
experience the pinching effect in each collision, and the positron bunches blow up in several
damping times. Therefore, the modeling of the force generated by each slice of a bunch
should be treated separately, with the sizes of the macros in each slice varied proportionally
as the rms sizes of the corresponding slice evolve in each step of a collision. This will assure
the proper description of the pinching effects. The ratio of the macro-particle size to the
corresponding slice size is chosen to be r = 0.5 (see also Appendix A).

The finite macro-particle size plays the role of screening out the high-frequency shot noise
effect in the force calculation. Nonetheless, due to the finite number of macro-particles in
each slice, it is inevitable to have residual fluctuations of the distribution of macro-particles
around the ideal physical distribution. In the case when the overall charge distribution for
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a bunch in the storage ring changes slowly compared to the revolution period, the macro-
particles in the bunch simulate different ensembles of the charge distribution in successive
collisions due to their betatron motion in the ring. The average of the luminosities for these
successive collisions then corresponds to the average over a certain number of ensembles
and thus better simulates the true physical quantity. Reliable results should be insensitive
to different random seeds, and their qualitative behavior should not change along with the
increase of the number of macros used in the simulation.

In Fig. 1, the centers of 29 macro-particles are displayed, which simulate a Gaussian
charge distribution with aspect ratio B = 3.93. The macro-particles have the same agpect
ratio as the bunch but half the size. The total forces generated by these macro-particles
are shown in Fig. 2 as the dotted curves, which are compared to the solid curves obtained
analytically for the forces generated by a continuous Gaussian charge distribution. One can
see that the high-frequency components of shot noise are suppressed by choosing finite sizes
for the macros. However, this is accomplished at the cost of equivalently larger bunch sizes
for the calculated forces, as described by Eq. (A.7). This effect explains the lower peak
values for the calculated forces compared to the analytical results. Residual deviations for
all the moments of distribution can also be seen in Fig. 2.

Comparison of simulation results using different number of macro-particles are shown in
Fig. 3 and Fig. 4. In Fig. 3 we use N,,_ = 360 macro-particles for the electron bunch and
Ny = 1000 macro-particles for the positron bunch. The electron bunch accelerated by a
linac collides at IR with the positron bunch in the storage ring. The two bunches initially
have the same transverse bunch sizes. After 3000 turns, the positron bunch blows up in the
vertical direction as a result of beam-beam interaction. The equilibrium beam profiles right
before the 3000th collision in the ¥ — Z plane are shown in Fig. 3(a), and the dependence
of the blowup factor on the number of revolutions of the positron bunch in the ring is shown
in Fig. 3(b). The same calculation was carried out for N,,_ = 1440 and Npg = 4000, Tt
turns out that the average equilibrium vertical bunch size in Fig. 3(b) agrees reasonably
with that in Fig. 4(b), even though the result in the former plot has more fluctuations than
that in the latter one—the expected consequence of a smaller number of macro-particles
being used for the simulation. Reducing the sizes of macro-particles will require the increase
of the number of macro-particles used for the simulation and thus also of the computer
time consumed. Such tests have been done, yielding results quantitatively depending on the
macro sizes according to Eq. (A.7). Such dependence is insensitive as long as Eq. (A.8) is
satisfied.

2.2 Layout of the Program

To create a good picture of the beam dynamics, we start with the electron and positron
bunches located at the pre-collision positions. The two bunches are then taken through each
other and undergo the beam-beam interaction as described previously. In the case of the
linac/ring colliding scheme, the electron bunches are dumped after each collision, and a new
set of macro-particles with random Gaussian distribution is generated for each collision to
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simulate the electron bunch newly accelerated from the linac. The beams in storage rings can
be either both the electron and positron beams in a ring/ring collider, or only the positron
beam in a linac/ring collider.

After each collision, the bunch in a storage ring is transported linearly from the post-
collision position to the RF cavity, where the effect of transverse damping and quantum
excitation is simulated once a turn [13]. Each macro-particle is then linearly transported
from the RF cavity to the pre-collision position. During each turn, the longitudinal position
for a macro-particle relative to the beam center is changed along with its energy [13], as a
result of the synchrotron oscillation together with the longitudinal damping and diffusion.

To obtain the initial distribution of the macro-particles for a bunch in a storage ring, we
start with setting all the macro-particles at the center point of the bunch. Being transported
through all the dynamics in the ring for several damping times in the absence of beam-
beam interaction, the macros eventually reach an equilibrium 3-D Gaussian distribution with
specified nominal bunch sizes. Since no longitudinal motion is associated with the macro-
particles {or the electron bunch in the linac/ring collider, we distribute an equal number
of macro-particles with transverse random Gaussian distribution to each slice in the bunch.
The charges assigned to the macros in different slices of the linac bunch are scaled to the
parabolic longitudinal charge distribution.

3 A Benchmarking Test

In Ref. [5], it is argued that the benchmarking of beam-beam simulation codes should use the
physical phenomena predicted by theories and in the appropriate parametric regimes that
have a clearly defined functional dependence. One of the proper candidates for this purpose
of benchmarking is the coherent quadrupole beam-beam effect in ring/ring colliders. This
phenomenon was predicted by Chao and Ruth [14] using a linearized Vlasov equation, and
was first observed by Krishnagopal and Siemann in beam-beam simulation for the collision
of round beams. It has the remarkable feature that at tunes just below the quarter-integer,
the beam distributions oscillate in an anti-correlated manner with period 2.

With the observation of the beam distribution oscillation with period 2 as the criterion
for our benchmark test, we use the parameters shown in Table 1 [5] for our simulation.

Here the two beams are round in the transverse plane and have no longitudjnal length.
The results of the functional dependence of the heamn blowup factors and the luminosity vs.
the number of revolutions are shown in Figs. 5(a) and 5(b). The anti-correlated oscillation
of beam sizes with period 2 is clearly demonstrated in Fig. 5(c). Figure 6 shows the
corresponding variation of the transverse beam distributions, where each beam oscillates
between the two modes of being dense and hollow in the core. These results agree well with
the previous results [5, 6, 15, 16] obtained using completely different simulation algorithms.

6



4 Results for the Ring/Ring Beam-Beam Effects

Another test of our code is the simulation of the beam-beam effect in the ring/ring B Factory.
For this study we use the parameters in the PEP B Factory proposal [7], as shown in Table
2. The nominal luminosity is £o = 3 x 10% cm~2s~!, and the four nominal beam-beam
tune shift parameters are all set to be ¢ = 0.03. Here each bunch, divided into five slices,
is represented by 300 macro-particles. The macro-particles themselves are Gaussian charge
distributions with sizes half of the nominal bunch sizes.

The beam-beam results in Ref. [7] are obtained at the working point (v, 1) = (0.9,0.5)
for both beams. However, at this working point, we observed a much bigger blowup for the
et beam than that shown in Ref. [7]. It is noticed that the parameters for the et heam are
close to the relation v, = v, — v,. Hence, for the following simulation, the fractional tunes
for both beams are selected at (v, v,) = (0.9, 0.6) to avoid the resonance.

In Fig. 7, we show the initial distribution of centers of the macros for the two colliding
beams. The numbers of the macros in each slice are shown in Fig. 8. The dynamics for both
beams is simulated over three damping times. The behavior of o, o is shown in Fig. 9(a),
and the behavior of the luminosity can be seen in Fig. 9(b). It turns out that as the result of
beam-beam interaction, the bunch sizes increase in the first damping time and consequently
cause the decrease of the luminosity. A set of equilibrium values can be reached for all the
bunch sizes in a period of several damping times, from which the dynamical beam-beam
tune shift parameters can be evaluated using Eq. (1.2).

The nominal beam-beam tune shift parameter &, can be changed by varying the charges in
the two beams simultaneously. In Fig. 10 we show the equilibrium bunch sizes, luminosity
and dynamical beam-beam tune shift parameters as functions of &. One finds that the
luminosity plot in Fig. 10(b) is quantitatively comparable with Fig. 4-88 in Ref. [7]. The
saturation of the dynamical {,4 to a value of {;m & 0.04 is shown in Fig. 10(c).

The significant phenomenon one observes is the blowup of the vertical size for the low-
energy beam, which qualitatively agrees with the results in Ref. [7]. This limiting effect on
the beam in the low-energy ring is unfavorable for further asymmetrization of the energies
in the two rings.

5 Results for the Linac/Ring Beam-Beam Effects

We now focus our attention to the simulation of the beam-beam effect in the linac/ring B
Factory. There have been several parameter lists proposed for the design of this colliding
scheme (1, 2, 3]. The one shown in Table 3 is used here for our simulation. Notice that
the proposed nominal luminosity is £o = 1 x 10°* cm~2s7!, and the nominal beam-beam
parameters are £,y 0 = 0.056 and D,_o = 273.7, indicating strong beam-beam interaction.
Our goal is to study the beam-beam tune shift limit for the linac/ring collider, and to observe
the dominant dynamics responsible for the beam-beam limitation. The simulation related
parameters are listed in Table 4.



The profiles of the two beams in the Y — Z plane before and after the first collision are
shown in Fig. 11. For the e™ beam, the numbers of macro-particles are evenly distributed
among the slices, with the longitudinal parabolic charge distribution characterized by the
difference in the charges carried by macros in different slices. This is shown in Fig. 12(a). The
longitudinal Gaussian charge distribution for the e¥ beam is simulated by the longitudinal
Gaussian distribution of macros carrying the same amount of positive charges, as shown in
Fig. 12(b). In the simulation, the et beam is circulated in the storage ring, experiencing
beam-beam collision at IP once a turn with a new electron bunch, and also undergoes the
ring dynamics including the linear betatron oscillations, synchrotron oscillations, as well as
the damping and diffusion in all three dimensions. The evolution of the positron vertical
bunch size and the luminosity of beam-beam collision in about three damping times of the
vertical motion is shown in Fig. 13, which demonstrates that the luminosity reaches an
equilibrium value lower than the nominal one as the result of beam blowup.

To understand the cause of the beam blowup in the linac/ring beam-beam simulation,
the trace of certain e™ macros and also the variation of rms for each e~ slice through the e*
bunches during the first collision are plotted in Fig. 14. The formation of pinches when the
e” macros oscillate through the e™ bunch is clearly seen as the effect of the high disruption
of the e~ bunches (here D,, = 273.7). It is expected that the consequent deep modulation
of the e envelope in the collision processes will have a significant impact on the stability of
the positron bunches by inducing (1) strong nonlinearity at the pinch points and (2) strong
synchro-betatron coupling. This is believed to be the major mechanism for the observed
beam blowup in Fig. 13(a).

To reduce the effect of pinches, a matching scheme was developed by S. Heifets [3]. By
“matching” it is meant that the transverse bunch sizes for the e~ and et bunches are set to
be equal at IP, i.e., 0f_ = o5, and 07_; = o}, . This is achieved by determining the
initial condition for the e~ bunch through tracking the matched e~ bunch at IP back to the
beginning of the interaction region (IR). The pre-collision phase space distribution of the e~
macros thus properly chosen allows the spreading out of the focusing points and produces
a much smoother envelope distribution for the e~ bunches, as shown in Fig. 15. Similar to
Iig. 13, the long term behavior of the positron bunch size and the luminosity can also be
obtained in the case of matching.

We then proceed to study the beam-beam effect for both matching and nonmatching
cases by varying £,4 o while fixing D,_o. This is done by varying the total charge of the e
beam N_ while fixing the total charge of the e* heam N,. The dependence of the equilibrium
values of the beam blowup factor and luminosity with respect to different £y+.0 18 shown in
Fig. 16. As shown in Fig. 16(a), for the non-matching case, the heam starts to blow up
around {y4 0 = 0.02, whereas the blowup takes place around ¢,4 o = 0.05 if matching applies.
Also the extent of heam blowup as ;1o increases for the non-matching case is much larger
than the matching situation. In Fig. 16(b), the luminosities deviate from the nominal (no
beam-beam interaction) behavior as the result of beam blowup (here the luminosity and the
beam sizes do not straightforwardly satisfy Eq. (1.1) because of the focusing phenomena
involved for the e~ macros). It is shown that, for £, ¢ above the value of 0.06, the luminosity
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in the matching case increases slowly with values larger than the saturated value in the non-
matching cases. The above comparison of the beam-beam effect with and without matching
manifests the effect of envelope modulation of the e~ bunches.

The results in Figs. 13 and 16 were obtained for the fractional betatron tune (Qets @yt )
being (0.64,0.54). As the further investigation of the beam-beam effect in linac/ring sce-
narios, we studied the dependence of the equilibrium beam blowup factor o, /7,40 on the
choice of (Qz+, Qy+) for the storage ring beam. Since the simulation is strong-strong and time
consuming, the blowup is computed on sporadic points in the tune plane reasonably chosen
in interesting areas instead of sweeping the grids in the tune plane. The following are the
descriptions of the general behavior observed. First, for the low-disruption cases (D,_ g < 1),
one can see clearly the transverse resonance structure and the synchrotron sidebands in the
tune plane. This is similar to the beam-beam interaction in the ring/ring collider, when
the collisions of the two beams take place without the oscillation of the electrons or pinch-
ing of the electron beam. Secondly, when matching is applied to the high-disruption case
(Dy-0 = 273.3), the transverse resonance structure can be observed as a strong localized
enhancement of the low-level beam blowup in the tune plane. This indicates that when
matching applies, apart from the residual modulation of the e~ envelope, the heam-beam
limit is approximately caused by the same nonlinearity effect as in the ring/ring situation.
Lastly, for the high-disruption case without matching, the general phenomenon one found is
that when the modulation of o, becomes deeper as D,_ ¢ increases, the equilibrium bunch
size oy varies from the unperturbed value in most of the tune plane to the situation of
overall blowup. This agrees with the results obtained by Gerasimov [17] using a weak-strong
simulation with envelope-modulated electron bunches. It is also found that when the syn-
chrotron motion of the e* beam is turned off in the simulation, the equilibrium heam blowup
factor is much smaller compared to that obtained in the presence of the synchrotron mo-
tion. This implies that the overall beam blowup in the tune plane is mainly caused by the
synchro-betatron coupling induced by the envelope modulation of the e~ beam.

It is important to ensure the numerical stability of the simulation results with respect to
the simulation parameters. As shown in Figs. 3 and 4, the same equilibrium beam blowup
value is obtained for different numbers of macros for the simulation. We also found that
the results agree for different numbers of slices for the two beams (5 for the e~ bunch and
25 for the et bunch as opposed to our previous parameters—9 for e~ bunch and 45 for the
et bunch). With all these checks, we conclude that the stability of the positron bunch is
strongly affected by the pinching of the e~ bunch in the non-matching case; on the other
hand, the beam-beam tune shift limit for the et bunch can be made comparable with that
in the ring/ring beam-beam interaction provided that proper initial condition is set for the
e~ bunches. In practice, the hourglass effect for the e~ beam due to the strong focusing at
IR often gives rise to a natural matching condition.
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6 Effect of Jitters

Since the number of macros is limited in the simulation, a fluctuation of the transverse offset
for each slice in the two beams is inevitable. These offsets are random and of the order
az]f;e/ y/ Nelice  where le,i;e are the rms sizes of a given slice simulated by N number of
macro-particles. Without any treatment of these offsets in the simulation, the positron bunch
shows a kink instability in the absence of synchrotron oscillations. It has been observed [18]
that as the highly disrupted electron particles oscillate through the positron bunch, the effects
of the offsets in the previous positron slices are passed to the later slices by the electrons.
After many turns, the offsets in the positron slices are cumulatively enhanced in a coherent
manner by this dipole interaction. Further simulation shows that the coherence in the dipole
motion tends to be suppressed by synchrotron motion of the positron particles. The results of
the beam-beam effect in a linac/ring collider presented in the previous section are obtained
by removing the offset effects in the force calculation of the simulation, corresponding to
ideal head-on collisions.

In reality, however, the e~ bunches from the linac could fluctuate in intensity, transverse
position, longitudinal position (timing), and possibly shape. It is important to investigate
the impact of these possible jitters of the linac beam on the stability of the storage ring beam.
A complete description of the problem includes the coherent motion of the two beams, the
effect of external colored noise on the nonlinear dynamical system, and the multi-dimensional
couplings as well as the effect of damping and quantum diffusion.

In Ref. [19], the first-order effects of white noise jitters are estimated analytically by
using a one-dimensional linear model. It shows that the required jitter tolerances are at the
margin of the precision of measurements. Weak-strong simulations without damping [20]
basically confirmed the above analytical prediction. As suggested in Ref. [20], the weak-
strong simulation reveals the initial emittance growth of the et beam. In a long term, the
blowup of the e* beam will reduce the disruption of the e~ beam, and thus the effects of the
pinches.

Here we studied the effect of the intensity jitter in order to reach an understanding con-
sistent with previous predictions. First, a weak-strong simulation was carried out using an
analytic beam-beam force formula for round beams, with the round positron beam repre-
sented by 500 particles. For the calculation, the damping times used were 7, = Ty = 2.4 ms,
and the jitter of the electron current was 10%. The beam-beam tune shift parameters were
set at {10 = &40 = 0.035, and the beams were assumed to have no longitudinal lengths.
The fractional betatron tunes were chosen to avoid the linear weak-strong instability [21].
The destructive effect of intensity jitter, when the force is linear, is shown in Fig. 17(a). Fig-
ure 17(b) shows that the presence of damping can slow down the rate of heam blowup, but
the beam is still far from stability. This is because the magnitude of the intensity jitter here
is above the stability threshold predicted in Ref. [19] based on the linear model. However,
when the nonlinear beam-beam force is used at IP, as shown in Fig. 18(a), the intensity jitter
is much less destructive than that in a linear case. Furthermore, when transverse damping
is applied to the nonlinear beam-beam interaction, the stability of the e* beam is restored,

10



as shown in Fig. 18(b) (the same result was obtained by C. D. Johnson [22]). The result
in Fig. 18(a) is consistent with the results in Ref. [20], where the amplitude growth of
positron particles is studied in a weak-strong simulation with synchrotron motion included.
However, the effect of synchro-betatron coupling is small when studying particles with small
synchrotron amplitudes [22].

We next studied the effect of jitters using our strong-strong beam-beam simulation, using
the machine parameters in Table 3 and simulation parameters in Table 4. In the absence of
the synchrotron motion, the same feature of the effect of damping in a nonlinear potential
as shown in Fig. 18 is observed. We thus conclude that the internal jitter caused by the
shot noise in the simulation plays a negligible role in the study of the effect of the external
intensity jitter. With the inclusion of the synchrotron motion, however, the et beamn blows
up even when the linac beam has no intensity jitters, as shown in Fig. 19(a). This is the
result of the synchro-betatron coupling induced by the deep envelope modulation of the e~
beam. It is shown in Fig. 19(b) that the presence of jitter gives only 10% increase in the
beam blowup compared to the case in Fig. 19(a). Moreover, when damping is applied, the
effect of jitter can hardly seen when we compare the result in Fig. 19(c) with that in Fig.
13(a). The latter is obtained in the absence of jitter.

In the above study, we used random white noise for the intensity jitter. In actual exper-
iment, the power spectrum for the jitters of the linac beam depends on the characteristics
of the photo cathode gun. For example, in a few-millisecond circulation time for the e+
beam, 60 Hz noise acts as a constant offset; the et beam would be more responsive to noise
with frequencies in the kilohertz range. To study the effect of jitters of the linac beam for
a specific design, it is important to know the power spectrum of the jitter and to take the
complete dynamics for the et beam into account.

7 Summary

In this study, a strong-strong beam-beam simulation is developed based on a macro-particle
model. The motion of the macro-particles is 3-D, and the effects of damping and quantum
diffusion in the storage ring are also included. The dependence of the computation results
on the simulation parameters, such as the size and the number of the macros chosen, is also
estimated. As a benchmarking test, this simulation reveals the same coherent quadrupole
effect in the ring/ring collider as observed by others.

This simulation scheme is first applied to study the beam-beam effect in a ring/ring
B Factory, using the parameters in the PEP B Factory proposal. The beam-beam results
thus obtained agree qualitatively with the published results. Quantitative comparison of the
results requires further knowledge of the details of the simulations involved. We then use
our simulation to study the beam-beam effect in a linac/ring B Factory. For D, o =273.7,
the et beam starts to blow up in the vertical direction at €y+,0 = 0.02. On the other hand,
if the pre-collision state of the e~ bunches is properly chosen to smooth out the pinches, the
beam-beam tune shift limit for the e* beam is found to be around 0.05, which is comparable
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with that value in a ring/ring B Factory.

The effect of intensity jitter in the linac beam on the stability of the storage ring beam is
also tested using our strong-strong simulation. With the inclusion of all the possible dynamics
in the simulation, the extremely unstable situation for the positron bunch predicted by the
weak-strong simulation without damping and an analytic model based on the linear beam-
beam interaction is not observed.
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Appendix A

To estimate the effect of the finiteness of (1) the sizes of macro-particles and (2) the number
of macros in each bunch on the results of the beam-beam interaction using the macro-particle
model, we take the familiar Gaussian bunch distribution as an example.

First we study the effect of finite size of the macro-particles. Consider a system of macro-
particles. Let p.(@,t) denote the distribution function for the center of the macro-particles.
And let S(=x) denote the charge distribution in each single macro-particle, which corresponds
to its finite size. The overall charge distribution function of the system, p(z, 1), is then [23]

ple,t) = ]d:c’S(w —x"Yp ', 1). (A.1)
The Fourier transform of the above equation gives

ﬁ(kvt) = '(k)ﬁC(k:t)a (A.2)

where

S(k) = /de(m)e"ikw, (A.3)

and p.(k,t) and j(k, t) are transformed from p, (e, t) and p(®,t) in a similar way, respectively.

Assume a slice of a charged beam is represented by N,, macro-particles. The centers
of the macro-particles are subject to a continuous 2-D Gaussian distribution with the rms
bunch sizes ¢,p and 0,5, namely,

2 2
N, v a2 Kelp Koy
pc(m,y) = —m_e C 20931 or ﬁc(k:m ky) = Nme_ T yg B' (A4)
27TO'xBO'yB
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Let each macro-particle be a 2-D Gaussian charge distribution carrying a charge g,,, with
rms Sizes Op,, and oy,

2 k4

1 ([??'t _ﬁ_ﬁr' & ) __k?“g _k‘i Tim =
b(.l?,‘y) = ¢ “Tam gm or b(i..‘i,, Ary) = ¢t 2 T . (A))

'Zﬂ-o-:l"rri Ty

As the result of Eq. {A.2), the system of macro-particles yields an overall Gaussian distri-
bution, which satisfies

kpotle wjeshy?

f}('l‘w‘aw A-'g) = fVm(Imf'“ 2 B . (Aﬁ)

Here o¢ and ¢ are the effective rms bunch sizes
rB yi3 )

el __ [ 2 2 ] el _ [ 2 2 -
T, = \/ 7B + Trm and O.yB — JyB + o-ym' (A{)

We thus conclude that a system of continuously Gaussian distributed macro-particles,
with the inner charge distribution for each macro-particle being also Gaussian, is equivalent
to a Gaussian distribution of point particles with the rms sizes given by Eq. (A.7). As a
consequence, the force generated by a distribution of charged macro-particles deviates from
that generated by the same distribution of point charges. As shown in Fig. 2, this deviation
is most obvious at the standard deviation of the distribution. This is called the edge effect.
Also the luminosity for two overlapping slices in two colliding beams, which are simulated
by macro-particles, satisfies Eq. (1.1) with the bunch sizes replaced by the effective bunch
sizes given by Eq. (A.7). If the sizes for the macro-particles are properly chosen to satisty

(0em/oz)’ <1 and (o)) < 1, (A.8)

the effects of finite size of macro-particle on the bias of the calculated results are negligible.
Next we discuss the effect of the finiteness of the number of macro-particles. For a system
of a finite number of macro-particles, p.(«, 1), the distribution function for the center of the
macro-particles, will contain high-frequency components instead of behaving smoothly as in
Eq. (A.4). Since each macro-particle is a Gaussian distribution given by Eq. (A.5), we have
Sk, ky) < 1for ky 3 104, and ky > 1/0,,. As a result, the high-frequency component
in the overall charge distribution p(z,y) is suppressed according to Eq.(A.2). This is the
screening effect of the finite size of the macro-particles. We define Ny as
No= BB (A.9)

Tazen Ty,

which is the number of macro-particles required to cover the bunch without overlapping.
It can be shown that under the conditions of Eq. (A.8), the relative fluctuation of the
luminosity £ for the interaction of the bunch with other charge distributions is small when
the number of macro-particles in the bunch satisfies N, /Ny > 2, namely [24],

(ALHILY < | when N, /Ny > 2. (A.10)
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Here the ratio N,,/Ng characterizes the degree of overlapping of the macro-particles.

Given the number of macro-particles in each bunch, the collisional effect due to the
discreteness of the distribution can be suppressed by assigning finite sizes to the macro-
particles. However, it is inevitable to have a residual low frequency fluctuation in the overall
charge distribution due to the finiteness of the number of macro-particles. In our simulations,
since the number of macro-particles is limited strongly by the computer time, we choose
the sizes of the macro-particles relatively large (for most of our computations, we choose
Oem /0 = 0.5 or Orm/0xp = 0.5; smaller macro-particle sizes were used occasionally for
error estimation) in order to have a better screening from the collisional effect. As the rms
sizes of each slice in a bunch are updated for each step of advance in a collision, the sizes of
the macro-particles in the slice are varied accordingly.

It should be noted that the aspect ratio of the macro-particles B, = 0o /oym is fixed
through the lookup table for the beam-beam forces. On the other hand, for interactions
involving the pinch or blowup of the beams, the aspect ratio for each slice of a bunch Rg =
o8/ 0By, evolves with time. Special care should be taken to ensure that Eq. (A.8) is always
satisfied. In the simulation, the size of the macro-particles was chosen to be proportional
to the size of the corresponding slice in the bunch, with the proportionality parameter
r(r? « 1). When Rp < R, we set o,,, = rog,, which gives Omy = *(Rp/Rum)og,. In
contrast, when Rp > R, we set o, = rop,, which leads to o, = (R /RB)os;.

A reasonable extension of the above results to the simulation of the interaction for beams
with general charge distribution is that the size of the macro-particles should be small
compared to the characteristic length of the overall charge distribution, and the number of
macro-particles should be enough so that the macros overlap one another to cover the dense
region of the distribution.
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Table 3: Linac/Ring B Factory Parameter List

Linac(e™) Storage Ring(e™)
E_ =35 GeV FEL = 8.0 GeV
N_=10544 x 10° | Ny = 6.1 x 10"
fe=20.0 MHz ng =30
€z—0 = 9.75 nm €x4,0 = O.7D nm
€y—o0 = 0.37 nm tyt,0 = 0.057 nm
Broo=332mm | B, =333 mm
g—0 = 3.33 mm | gy, ;= 21.55 mm
Opo =437 um |0}, =437 pm
Oyep="111pum |0z ;=111 ym
o, = 2.64 mm O+ = 3.3 mm
Dy g =696 vs = 0.07
Dy_o=2737 Tz = 0.9 msec
Ty = 2.4 msec
75 = 6.9 msec
£xt.0 = 0.002
Eyp0 = 0.056

Lo=1.1 x10* cm?sec™!

Table 4: Parameters for Simulation

e” et
Number of Slices 9 45
Number of Macros 360 1000
Aspect Ratio of Macros 3.93
Sizes of Macros 0.5 x beam sizes
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Figure 2: Force calculated by macro-particle model (dotted curves) compared to analytical
results (solid curves) for the distribution in Fig. 1.
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(a) Beam Profiles in X-Z Plane Before the 1st Collision (b) Beam Profiles in ¥-Z Plane Before the 1st Collision
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Figure 7: Initial beam profiles for beam-beam interaction in ring/ring collider using param-
eters in Ref. |7]
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(a) Vertical Blowup Factor for e” Beam vs. Number of Turns
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(a) Beam Profiles in Y-Z Plane Before the 1st Collision (b) Beam Prufiles in ¥-Z Plane After the 1st Collision
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Figure 11: Beam profiles before and after the first collision with beam parameters shown in

Table 3.
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(a) Trace of 10th e Macro in Each Slice Without Matching
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Figure 16: Results of beam-beam effect for a linac/ring B Factory
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(a) Linear Force Without Synchrotron Motion {b) Linear Force Without Synchrotron Motion
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Figure 17: Vertical beam blowup for a round et beam simulated by 500 particles. Here the
analytic finear hbeam-beam transverse forces with £, 0 = &40 = 0.055 are used at [P for
weak-strong simulation. The beam is assumed to have no longitudinal length.
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Figure 18: Vertical beam blowup for a round et beam simulated by 500 particles. Here the
analytic nonlincar beam-beam transverse forces with €40 = &40 = 0.055 are used at [P
for weak-strong simulation. The beam is assumed to have no longitudinal length.
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Figure 19: Vertical beam blowup in the strong-strong simulation, with parameters in Table

3.



