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I. INTRODUCTION
An analysis of semileptonic decays of B mesons with the emission of a single soft

pion is presented in the framework of the heavy-quark limit using an effective Lagrangian

which implements chiral and heavy-quark symmetries. The analysis is performed at Semileptonic B — D decays with emission of a single pion may soon be

leading order of the chiral and inverse heavy mass expansions. In addition to the established at CLEO or ARGUS, as well as at the planned B-meson factory.
ground state heavy mesons some of their resonances are included. The estimates of These decays, denoted B4 in the rest of this article, complete the list of this
the various effective coupling constants and form factors needed in the analysis are category of decays which includes K¢q and Dyy. There are fundamental differences
obtained using a chiral quark model. As the main tesult, a clear indication is found among these three decays, which make their study very interesting. In particular,
that the 0+ and 1* resonances substantially affect the decay mode with 2 D* n the K¢a decays can be studied within chigal perturbation theory (xPT) over the whole
final state, and a less dramatic effect is also noticed in the D mode. An analysis of final-state phase space as the resulting pions are soft [1] Dyy decays [2] are much
the decay spectrum in the D _ o squared invariant mass is carried out, showing the harder to study because, with the exception of a small fraction of phase space,

main effects of including the resonances. The obtained rates show promising prospects
for studies of soft pior emission in semileptonic B-meson decays in a B-meson factory
where, modulo experimental cuts, about 10° such decays in the 7 meson maode and 10*
in the D" mode could be observed per year.

the final state involves light mesons with relatively large energies. This makes
the use of an effective theory not viable.

Byy decays offer new theoretical possibilities. As a whole, they are difficult
to predict because the kinematic domain of the daughter pion ranges from the
soft limit, to be properly defined later, to a high energy limit. However, it is
possible to restrict the study to the soft-pion limit, where one can make use of
the powerful constraings resulting from heavy quark spin-flavor symmetry and
chiral symmetry.

In this work we study the soft-pion domain in Beq decays, for which the effec-
tive chiral Lagrangian approach combined with the inverse heavy mass expansion

the soft-pion domain fepresents about 80% of the By rate in the D mode and
about 10% in the D* mode. Here the large fraction in the D-mode is mostly due
to the inclusion of the cascade decay B — ¢oD* _ t5Dr. Sinee, according to a



rough estimate, the total branching ratio for the Byy decay is about 1% (0.2 %)
in the D (D") mode, it seems that experimental access to the soft-pion domain
in the foreseable future, such as at a B meson factory, is clearly possible.

Perhaps the most compelling motivation for studying B4 decays is the overall
current status of the semileptonic decays of B mesons. The measured inclusive
semileptonic branching ratio is 11.1 4 0.3%, while the sum of measured exclusive
semileptonic branching fractions is significantly less than this. In particular, the
elastic modes B — Dev and B — D*ev account for only about 60 % of the total
semileptonic branching fraction [4] (b — u modes are expected to be suppressed
by [Vaul?/|Vael? & 0.01). Understanding the so-called inelastic modes, such as
those we discuss here, is therefore crucial to resolving the apparent discrepancies
among the measurements.

Another interesting aspect of Bys-decays is that they may give an indication
of resonance effects (especially D meson resonances). At present, the only well
established resonances are the two P-wave objects I, and Dy, with J¥ = 1t 2+,
respectively. States that may contribute significantly to Bey decays, and hence
which may be observed in such decays, include the remaining lowest-lying P-wave
states (with J” = 0+, 1¥), two of the lowest lying D-wave states (J* = 1-, 27),
and the first radially excited S-wave states (JF = (-, 17). It turns out that the
well established D; and D, states [5] do not play a role in the present analysis,
while only the S-wave radially excited D mesons offer any opportunity for direct
discovery using the By decays, as they are the only ones with a small enough
width to show up as a resonance feature in the decay speetrum.

From the theoretical standpoint, the soft-pion limit is particularly interesting,
as chiral symmetry and spin-flavor symmetry determine to a large extent the
different decay amplitudes, in terms of a few low-energy constants and universal
form factors. These form factors are associated with the matrix elements of the
charged b — ¢ electroweak current between the relevant heavy meson states,
and the low-energy constants determine the amplitudes of the strong interaction
transitions mediated by the soft pion.

Another area of interest in By decays is their contribution to p, the slope of
the Isgur-Wise function which, in turn, impacts on the extraction of V| from
data. Bjorken, Dunietz and Taron [6] have obtained a sum rule that relates
the slope of the Isgur-Wise function for the elastic decays B — Dév to the
form factors that describe the inelastic semileptonic decays. The decays that we
consider here provide the leading resonant and non-resonant contribution to this
quantity.

These decays have been analyzed in the framework we explore by a number
of authors. B — Dmev has been treated by Lee, Lu and Wise [7], and by Cheng

el al [8], while Lee [9] and Cheng et al. [8] have examined B — D*mev. In these
analyses, only the ground state mesons, the D, D*, B and B”" were included,
which amounts to keeping only those contributions wich are leading at the zero
recoll point v - v' = 1, v and v’ being the four velocities of the B and D mesons,
respectively. In addition, we note that only Cheng et al. went on to estimate
branching fractions and evaluate the differential decay spectra.

In this work we include resonances which contribute at leading order in the
chiral expansion, and neglect those which correspond to radially excited states
(except the two resonances 0~ and 1~ which we have to keep as shown later).
Since resonance contributions vanish at zero recoil in the infinite heavy quark
mass limit, their effects can only be observed away from that point, and as we
will demonstrate, they alter substantially the decay rates.

'The predictions that arise in our analysis rely heavily on our ability to obtain
good estimates of the aforementioned low-energy constants and universal form
factors. In this work we use the chiral quark model [10] convoluted with wave
functions obtained in a simple model of heavy mesons to give such estimates. Tt
is our hope that this procedure leads to reasonable results.

The experimental status of Byy decays is hazy. ARGUS has analyzed the
process B — D**f~p as background to the semileptonic decays B — D¢v and
B — D"fv. The resonances included in their analysis were the four P-wave states
alluded to above, as well as the two radially-excited S-wave states. They report
6311546 possible candidates [11]. This result is based on studying the invariant
mass distribution of the D* 1 combinations that result from the decay of the D**.
The corresponding branching ratios are BR(B® — D'*{~5) = (27+0.5 +0.5)%,
when their results are fitted to the model of Isgur, Scora, Grinstein and Wise
(ISGW) [12], and BR(B® — D¢ v) = (2.3+ 0.6 + 0.4)% when fitted to the
model of Ball, Hussain, Korner and Thompson (BHKT) {13]. This result implies
that the resonant contribution to By decays is significant. In the case of the
decay B — Dwév, the D" provides the dominant contribution, largely because
of its proximity to the D threshold. As far as we know, no other experimental
group has published numbers for semileptonic decay rates of B mesons to excited
D mesons.

This article is organized as follows. In section II we review the effective
theory resulting from spin-flavor and chiral symmetries. Section III presents
the calculation of the effective coupling constants and form factors appearing
in the effective theory, while we present the analysis of the decay amplitudes
and differential widths in section IV. Section V is devoted to the results and
discussions. A number of calculational details are relegated to three appendices.



I1. EFFECTIVE THEGRY

In this section we briefly review the effectjve theory which incorporates simul-
taneously spin-flavor and chiral symmetry [3] and describes the interactions be-
tween soft pions and heavy mesons. Within the framework of the heavy quark ef-
fective theory (HQET) (14], a hadron of total spin J consists of a light component
{the brown muck) with spin 7, and the spin-1/2 heavy quark, with J = j 4 1/2.
For a given j, there are therefore two mesons, and these are degenerate members
of a spin-flavor multiplet, at leading order in HQET. In the rest of this article, we
denote the multiplets by the J¥ of the two states. For example, for ¥ = /2=,
we have the multiplet f0-,1-).

For reasons that we will outline later, the only multiplets of interest in this
work are (0—,17), 0+, 11), (17,27), and (0-, 17Y. Here, (0-, 17) denotes the
first radially excited version of the ground state (07, 17) multiplet. In order to
formulate the effectjve theory, it is very convenient to introduce superfields assoct-
ated with each multiplet [15]. These superfields provide a natural way of realizing
the spin-flavor symmetry. At leading order in the mverse heavy mass expansion
one associates one such superfield with each possible four velocity ty. This is
because in the large-mass limit of the heavy quark, a velocity superselection rule
sets in [16].

The superfield assigned to the ground-state heavy meson multiplet (0, 1=}
with velocity v, is

1+ ¢ A
H_z—z_” (=1 P4y, (1)

where P and Vi (v*Vr = 0) are the fields assoclated with the pseudoscalar and
vector partners, respectively. These fields contain annihilation operators only,
and are obtained from the relativistic fields as

Plz)= VM emiMes i) gy
Vi(z) = VM =M ve gl gy (2)

H

where the label (+) refers to the positive frequency modes of the relativistic field,
and M is the meson mass.
The spin-symrmetry transformation law is

H_ —exp (—i?-?v)?i_,

s =it g, ) 129, (3)

where e, k =1,2,3 are space-like vectors orthogonal to the four-velocity. #_ =
TUHT_'Y() transforms contravariantiy to 7 _ .

In a similar mannmer, it is straightforward to define the superfields associated
with the excited states [17]. In our case, the states of interest are the (0%, 1),
(17,27) and (0, 17) multiplets, which are described by the superfields

1+
My = ) (—Hor + vuvs Hiap)

2
1 1
=47 §H{5 9 = 1 (r* +ot) + 157 HyD )
2 3

M. = —= (v ) +HY), (4)

respectively. All the tensors are transverse to the four-velocity, traceless and sym-
metric. The transformations of these superfields under Spin symmetry operations
are implemented in exactly the same manner as in the case of H_ .

The chiral transformation law of the superfields is easily determined by fol-
lowing the well known Coleman- Wess-Zumino procedure to implement non-linear
realizations of non-Abelian symmetries. All multiplets are isodoublets (we do not
include the s-quark in our analysis), so that the transformation law under an ar-
bitrary chiral rotation belonging to SU/(2); R SU(2)g is

H — h(L,R, u)H, (5)

where H is any spin Symmetry multiplet, and (L, R, u) is an SU(2) matrix which
results from solving the system of equations
Lu=wh(L, R,u),
Rul = wth(L, R, ). (6)

Here, L (R)is an SU; (2) (SUR(2)) transformation and u is given in terms of the
Goldstone modes (pions) as

u(z) = exp (—Q—%H(a-)),

l{z)=7-7, F,=93MeV. (7
The transformation ( 3) is like a gauge transformation, the z-dependence entering
via the Goldstone boson field. In order to build an effective Lagrangian which is
chirally invariant, a covariant derivative is thus required, and is



Vu=0,—-1il,,
i i ,
r,=Trl= 5 (ubuu’ + uTd,u) = 8F, {I, 8,1+ .... (8)
Another fundamental element in the construction of the effective Lagrangian
is the psendovector,

i 1 -
Wy = ) (uayuT - _ufaﬂu) = é‘F_Oa#H t- @)

which transforms homogeneously under chiral transformations.

Since the rest mass of the different heavy mesons is removed according to
equations analogous to eqn. (2), V,, acting on the respective superfields is propor-
tional to the residual momentum carried by the superfield, which in the present
analysis is of the order of the pion momenturn. This implies that ¥V, counts as a
quantity of O(p) in the chiral expansion. Obviously, w,, is of the same order.

Throughout this work we consider only the leading terms in the inverse heavy
mass expansion and in the chiral expansion, and neglect the effects of chiral
symmetry breaking due to the light quark masses (they enter only via the pion
mass when the final-state phase space is considered). As we point out later,
we have to include the effects of hyperfine splitting in the ground-state mesons,
even though this splitting represents a departure from the spin-flavor symmetry.
These modifications are only kinematic.

To leading order in xPT the amplitudes for the By, decays are proportional
to a single power of the pion momentum. This places a restriction on the angular
momentum quantum numbers of the excited states that can be considered in this
analysis. The excited states that contribute to the By, decay amplitudes at this
order can be identified by examining their decays, via soft-piocn-emission, to the
ground state heavy mesons. Consider an excited state with spin J = j £+ 1/2,
where j is the spin of the light component of the meson (the brown muck). Let
us define the integer k = j — 1/2. The soft-pion decay amplitude of such a state
to the ground state supermultiplet is of @ (p") if the parity of the excited meson
is (—1)*, or of O (p**1) if the parity is (—1)*+1. In the case where k = 0 and the
parity of the resonance is positive, as is the case of the (0%, 17) multiplet, the
amplitude is proportional to p-v and is of order p as well. Using these ‘rules’, one
finds that only the states with the quantum numbers mentioned above contribute
at leading order in yPT.

The effective theory is given by an effective Lagrangian which explicitly dis-
plays spin-flavor and chiral symmetry. The O(p) strong interaction part is

H“ 1
Ly = LGP+ L0 + 27 4 L7 + L7 4 o,

2

i} F 1

£ = - T (8,U"U") — SBF e (MU + UN) + 0",
M- i 7 = ¥ b 2

£} = =2 v, (H_ v ’H_) + g Trp (Ho w*H_7,55) + Op?),

Eif" = —%UPTID (7'_[+ 61‘ 'H+) =+ ...
LY = —iv,Trp (722 v Hoo) 4
- —%vmn (Ao ¥ H )+ (10)

U(z) = v*(x) and Trp is the trace over Dirac indices. The interaction terms
involving w, have not been displayed in the Lagrangians of the resonant states,
as they are not needed in this work. The only interaction terms in f,‘x'“ we need
are those which give transitions between the resonances and the ground state
mesons via a single soft pion emission. These are characterized by three low
energy constants a;, a2 and ag, and are

JC‘\“t = lI\I‘[) (ﬂ+ WPH—’:"#-IS) + an Tl’D (‘}z_“ w#’h{_.fs)
+ a3 Trp (HL w*H_v,75) - (11)

The vertices resulting from £, needed in this work are displayed in Appendix A.

The range of validity of the soft-pion limit is estimated from the invariant
product of the pion momentum and the four velocity. As long as this product
is smaller than some scale A,, which is of the order of 0.5 GeV, the application
of the soft-pion limit should be appropriate. In this limit, this product has to
remain smaller than the mass splittings between the neglected resonances and
the ground state mesons, thus giving an estimate of the value of Ay . Since two
velocities appear, namely the velocities of the parent B meson and the daughter
D meson, the soft-pion limit requires that the invariant products of the pion
momentum with both velocities must be smaller than A,

Another set of essential ingredients are the matrix elements of the electroweak
charged current ¢y,(1 — v5)b. Since this current is an isosinglet, it does not have
direct couplings to pions at leading chiral order, and its matrix elements are easy
to parametrize in the effective theory. Denoting the superfields corresponding
to D and B mesons and their resonances respectively by P and B, the matrix
elements of the charged current are obtained from the effective current operators

(8)  Jul(07,17) = (07,17)) = £(v) Trp (D (v)7(1 — 75)B_(v)) ,
(b)  Ju((0%,1%) = (07.17)) = p1(v) [Trp (B (' 111 = 75)B(2))

|



+ Tip (D (" )7u(1 = 15)B4(2))] .
(c) Tu((17.27) = (07,17)) = pa(w) [v,Tep (D4 (¢ yyu(l — v5)B- (v))
+ v, Trp (Do (v )vu(1 — 75) B4 ()] ,
(d) Ju((07,17) = (07,17)) = €V(w) Trp (I_)L(v’)'yy(l — 1518 (v)
+ Do (v )71 = 75)B (v)) - (12)

Here, v (v} is the four-velocity of the B (D)) meson, and v = v - v'. £(v) is the
Isgur-Wise form factor, which is normalized to be unity at zero recoil (v = 1) if
one ignores QCI) corrections and higher orders in the inverse heavy mass expan-
sion. The other form factors, namely E(l)(u), p1(r) and pa(v), which determine
the transition between the resonances and ground state mesons via the charged
current, are not constrained by symmetry at zero recoil. The currents however do
vanish at zero recoil due to kinematic factors. In fact, if a resonance is character-
ized by a given value of the previously defined parameter k, the current of interest
is suppressed by a kinematic factor of the form (v — v'),, (v — v/)uy... (v — v"),, .
Note that no suppression of this form appears for the current of eqn. (12(d)).
However, heavy quark symmetry and orthogonality together imply that £¢(1}(v)
has to vanish at zero recoil, at least as (v — 1). The expressions for the currents
of eqn. {12) are given in Appendix B.

We note that by choosing to work to leading order in p, we have also placed
an implicit restriction on the powers of ¥ — 1 that appear. Since the largest value
of k to be considered is unity, we find that the amplitudes for the By decays are
proportional to at most a single power of v — v/, and the differential decay width
will contain terms with at most two powers of v — 1.

We conclude this section by making a final comment on the states we include
in our analysis. As outlined above, working to order p has severely restricted
the states we can include, at least as far as their angular momentum quantum
numbers go. However, there is no restriction on their ‘radial’ quantum numbers.
Our self-imposed restriction of excluding any radially excited states (with the
exception of the radially excited (0, 17) multiplet) is motivated by two related
factors. These radially excited states are expected to be quite a bit more massive
than their non-radially-excited counterparts. Thus, we expect little contribution
from such states, provided we do not venture too far from the non-recoil point.
Furthermore, the propagators of such states are expected to lead to a further
suppression of any contribution, as in the strict soft pion limit these states will
be far off their mass shell.

III. LOW ENERGY CONSTANTS AND FORM FACTORS

The soft-pion limit of the Byy decays is determined in terms of four low energy
constants: g, o1, & and ag; four universal form factors: £(v), £1)(v), py(r) and
p2(¥); and mass differences between the resonances and the ground state mesons:
dmy = Mo+ — My-, émy = My — My, and émy = My~ — M-, and the total
decay widths of the resonances. In writing this form, we are treating the states
m each excited multiplet as degenerate with each other. However, in dealing
with the contribution from the ground-state doublet (0~,17), it is imperative
that we include the mass difference émy = M;- — M;-, as this plays a profound
role on the outcome of our analysis. We begin by formulating a simple model
of the heavy mesons, and using the wave functions obtained from this model to
calculate the guantities we need.

To estimate the masses and obtain wave functions, we use a version of the
Godfrey-Isgur model [18]. In this version, one of the gquark masses is set to
infinity. In addition, we do not expand the wave function of a state in a harmonic-
oscillator basis, but instead choose it to be that of a single harmonic-oscillator
state with the appropriate quantum numbers. The oscillator parameter of each
wave function is obtained in one of two ways. In the first method, we perform a
variational calculation, and the values obtained in this way are listed in table 1.
Also listed in this table are the mass differences between the excited states and
the ground states. We discuss the second method of obtaining the value of the
gaussian parameter below.

The low energy constants appropriate for soft-pion emission are estimated in
a chiral quark model. In this model, pions couple only to the light constituent
quarks of a heavy hadron, via the Lagrangian

L = igy*V g — gqq + g4 (0)gv,vswhy,
qu': Ouq+ T ,q, _ (13)

where T, and w, were defined previously, i, is the constituent quark mass, and
the constituent quark field ¢ transforms under chiral rotations as ¢ — h{L, R, u)q.
The axial coupling of the quark, g%(0), is assumed to be unity. Arguments
favoring this value for the axial coupling constant have been given in [19]. A non-
relativistic expansion of the interaction term of this Lagrangian is performed, and
the resulting non-relativistic interaction term is convoluted with wave functions
obtained from the model described previously. The low energy constants obtained
in this way are also listed in table I. More details of this model will be presented
elsewhere.

o



One of the results of this analysis is that some of the low energy constants
vanish in the limit when the pion energy in the vertex is taken to zero. For the
cases where this chiral suppression occurs, we define the low energy constants
as corresponding to the energy of the pion in the decay of an on-shell heavy
resonance to an on-shell heavy ground-state. We expect that this procedure will
furnish only rough estimates of these couplings.

We also use the chiral quark model to estimate the total and partial widths of
the excited states relevant to our analysis. Phase space limits all decays to pions
or 1’s, both of which can be described in terms of chiral dynamics. It turns out
that decays to #’s play only a small role, and then only for the (17,27 multiplet
(F(l—,2—)—(0—,1—)n ~ 4 MGV)

We can compare the results we obtain for the partial and total widths of these
states with the calculation of Godfrey and Kokoski [20], for instance. Unfortu-
nately, we have only a single pair of states in common with that calculation,
namely the (0%, 1%) multiplet. The large total widths we obtain for these states
are consistent with the widths obtained in [20).

The low energy constants g, o3, as and a3 are related to the partial widths
for the resonance decays into ground state mesons via single pion emission by

2

fl— = S:FOE Pi,
For = yv = siajg MD]:{Daml Expr,
Lp- =Ty = sﬁg Mphj-pémgp?“
Towr = Tyor = 8:}‘?02 MDAiD.smspi' (14)

It is interesting to note that the value g = 0.5 obtained here is a direct result of
the assumption that g% (0) = 1 and is independent of the wave function used.

The total widths of these states are similar to the partial widths obtained
in this fashion, with one exception. The total width of the (17,27) resonances
is dominated by their decay into the (1+,2%) resonances, with a resulting total
width of 405 MeV,

The form factors £, €1 p; and p, are also obtained using these wave func-
tions. They are extracted from the overlap of the wave function of the ground
state with the boosted wave function of the appropriate excited state. The boost
we use is a Galilean boost, which means that we are neglecting relativistic effects,
as well as effects that arise from Wigner rotations. The explicit forms we obtain
for these form factors are

10

TABLE I. Quark-model parameters and low-energy constants used in this work, sets
I and II.

[Multiplet | 8 (GeV)[ M — M, ;—, (GeV)] T (MeV)] coupling constant|
(0=,17) 0.57 0 0 0.50
(0=, 17Y 0.57 0.56 191 0.69
(et 1%) 0.56 0.39 1040 -1.43
(1=,2" 0.51 0.71 405 -0.14
[Multiplet [ 8 (GeV)[ M — M- 1-, (GeV)[ T (MeV)]  coupling constant
(0—,17) 0.5 0 i 0.50
(07,17} 0.5 0.56 174 0.66
(0%, 1%) 0.5 0.39 756 -1.22
(17,27) 0.5 0.71 108 -0.215

A/ 288 \¥? A2 ,
n)= 73 (ﬁ2+ﬁ'2) P [2(ﬁ2+ﬂ’2) v _1)}’

)= 5 (%)2 (%)me’“’ [w—A+ﬁ“5 *-v] o9

In these expressions, # and 3 are the harmonic oscillator parameters of the
ground and excited states, respectively. A is defined by writing the mass of the
ground state as Mp- 1-) = mg + A. In the second of eqn. (15), we have set
8 = B’ to ensure orthogonality of the wave functions of the (0=, 17) and (0~, 1~
multiplets.

The parameters obtained by the methods outlined above will be refered to as
set I. We obtain a second set of values for # and ' (and for all of the quantities we
need, except the masses of the states) by first setting all the #’s to the same value,
and then choosing this value so that it reproduces the experimentally measured
slope of the Isgur-Wise function. The values of the parameters we obtain in this
way are also shown in table I, and we will refer to this set of parameters as set
1L

11



IV. B,y DECAY AMPLITUDES AND DIFFERENTIAL WIDTHS
A. B — Dxéir decay amplitude

The By decays we consider are B° _. Dlprt pgo DYepr® B-
DY¢pr=, and B~ — D570 whose amplitude magnitudes are in the ratios
VZ2:1:v2:1. In what follows we give the results for the z° in the final state.
‘The amplitude for this process has the general form

T=k; Q" k= ’cbg-i Mg Mp (16)

V2

g (v ey ,
2 = Al {—2(p.v n ém)g) + e [1 VT Chore s (145) =, v"]
0 (v') oy '
2Ap-v' — émp) + ie [z Y thoe + 9us (147) =, U"}} ' (1)

here dmp = mp. — mp and émp = mp. — mp are the (positive) hyperfine
splittings in the ground state multiplets, and

O (y) = ghv _ oy (18)

The resonant portion of ¥ s

pv + pv
2—pv—bmy)  2po — by )

eup(v) A o 18 .
m[!fnvagv v (U—l)

251 :
Qf = Fﬂﬂl(”) (v—v'), [
o
+ 3“_;0 p2(v)p, {

+ gu(v? - 1)~ v, [vu(g +v)— 3”;]]

evp(vf)

T [ + euapt® P (1) + g (v 1)

12

= 0 [0(2+ ) - 32, ”

a3 : **(vy Cw s ’
+ F_Of(l}(lf)pu {-2}3-‘0 — §Th3 fv*y8 €pafo + Jup (1 + 1) — Uy v,
o)y T .
2*——}).0, e [z vy’ tuape + Gup (1 +v) — Uy pLJ} . (19)

Here we denote b = 6m; — il'j /2, where T; is the total width of the resonance.

As explained earlier, contributions from other resonances than the ones con-
sidered are suppressed either by higher powers of the soft-pion momentum, as
1s the case with the (1+, 2%) multiplet, by higher powers of (1 — 1) in the small
recoil domain, or by the fact that they are much heavier than the ground state
mesons.

B. B — D*ré5 decay amplitude

The amplitude for this process has the general form
T =k, 0"cp.,, (20)

where €., is the polarization vector of the D*.
The non-resonant contributions to (#* are obtained from the diagrams shown
in figure 10 (a), which give

QNR_ 9 ’ Po
" QFﬂsm (v )“p-v’ +omp +ie
p 690(”) ; ;. e
tr ~(p-v + émp) + ic Gvov +v Jb = Guoty — GurVs +i€uas{v +v)
S ,5(v ) ' y
p.:;r g. ,-)f [" t€ppopt v + Gua(l +v) - v,.vLJ €yysp? v’ } ) (21)

The resonant contributions obtained from the diagrams in figure 10 (b) are
given by

& -
Qf, = Ir%m(v) [‘9»»('/ ~D+vim - rfwaﬂ”a‘”’ﬁJ

o [ ST
2(—p-v — 51 2p-v' — érny)
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23] epa(_v) o AN
~ g5 {p‘"2(—p-u-5mz) [ rolv v huly = U+ Suw,v,

~ 20ty (V = 1) + guovu (v — 1) + f€poan (v — v')*(1 + v)

+ Qie,,m,@v’o‘v’jv:‘ + ie,‘,,mav;v""vﬁ]

y @g‘ﬂ(v’) i ’ . a, i3
+ 3p 2(p_v; _ 6ﬁ12) + zf végpp(y_ 1) - ‘UJ'U‘;'UH + lf#&&ﬁupv Y
i o) _
3= by e s (= 1) 4 (v~ 1)

—~ U [v:,(2+u)—3v},]]}

&3 .(1) ' P
+ Fl]g (V) {(U +v )F‘ 2(}7'0" _ 61’?13)
6 (U) . IAY:
B g [0 e Bt sl '
@ 6(1”) . oo : w
+ m — 1€4pagV v+ Jup(l+v) — v,,v:‘ s p TV’ } . (22)

Here, Oﬁﬁ results from the numerator of the spin-2 propagator in the heavy mass
limit, and is

1 1
Ok (v) = 5646 + 1 046% - -;-eﬂ"e,,.,. (23)

As expected, all amplitudes vanish in the soft-pion limit. Moreover, resonance
contributions vanish at zero recoil, as predicted by the heavy mass limit.

C. B — D=ty decay rate

In the analysis of By decays it is convenient to use the momentum combina-
tions

P=pp+px, pp = Mpv', p.=p,

Q:PD - Pr;

L:pl—-i_pli:

N=p:—py. {24)
14

In terms of these variables, the mosi general form of Q,is
0, = %H €uves L’Q°P° + FP, +GQ, + RL, (25)

where H, F', G and R are form factors dependent on the three invariants v, p-v
and p-v’. These form factors are easily obtained from the explicit expressions
of the non-resonant and resonant parts of the amplitude given in eqns. (17)
and (19). The explicit expressions for the form factors are given in Appendix
C. The assumption that the leptonic current is conserved implies that the term
proportional to R does not contribute and can be ignored.

The squared modulus of the decay amplitude, after summing over the lepton
polarizations and neglecting higher order terms in the pion rmass squared is given
by

ST =« {|F2[MMB, Sps, S1) — 4(N-P)?]

spins
+ |G [4(L-Q)* + 45¢(Spr — 2M3) — 4(N-Q)7
a2 - 1 ] - ] —~ 5
+ 'Hl" [—l'l'ff) btz - 155(2}\45 - bDr)(ﬂ/fﬁ — 5 — SDW)-
—{L-Q)* 5:Spx + L-Q M}, Se(M} — S¢ — Spr)
+ 87 Spa(2Mp — Spa) — (€uvpa LENYPPQ7)?
+ 4 Re(FG™) [-2 M} S+ L-Q(ME — 5S¢ — Sps) = 2N-PN-Q]
+ Re(FH*)[AMJ S¢eN-P—2L-Q N-P(M% — St — Spx)
+ N-Q MME, Spx, Se)]
+ Re(GH*) [45:N-P(2M} — Spr) — 4(L-Q)’N.P —a M3 S, N-Q
+2L-Q N-QIME — St — Spa)]
+4Im(2F "G+ F*HN-P+ G HN-Q) €450 LN P*Q°} (26)
The invariants appearing in this expression are
P2 = SD‘rr:
L= -N?=§,,
P.Q =M} - M2
1
PL= 3 (M3 — 8¢ — Spx),
L-N =0. (27)

15



: ,5,,/,.’*/]

7

FIG. 1. Kinematic variables and angles.

and A is Kallen’s function. In order to obtain explicit expressions for the re-
maining invariants, namely @%, P-N, N-QQ and L-Q, it is convenient to use as
independent variables the quantities Sp,, Sy, and the angles 8, #; and ¢. From
eqn. (27), Spr and S, are the invariant mass squared of the 70 and fv pairs,
respectively. The angles 8., #¢ and ¢ are illustrated in figure 1. &, is the angle

—_—
between the pion momentum and the direction of P in the c.m. frame of the

7D pair, 8 is the angle between the lepton momentum and the direction of I,
in the c.m. frame of the €7 pair, and ¢ is the angle between the two decay planes
defined by the pairs (57, pp) and (¢, p,) in the rest frame of the B-meson. This
1s the set of variables initially introduced by Cabibbo and Maksymowicz [22] in
the analysis of K,y decays.

The remaining invariants, are

i

Q= e (M3~ M2) XV2(M3, Sp,, S0)
B~D=x

2

+ cosb. (M3 + Spx — i) ll/Q(Aff)-SDme)]
1
— o [(M} — M2)(ME .-

+ 3. (M3 — M2YME + Spx ~ Si)

2
+ cosé, AI/Z(ME;,SDW.SE) AIIZ(MIE);SDH')MN?)]
sin® #x M M2, Spx, M?),

D
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1 5
P.N= -2—(2053,5 Allﬁ(ﬁ‘-{é, SDﬂrsSE)a
1
- 2SD1r

+ cosr AY2(M, Spr, M?) A1/2(va§,SD,,Sg)] ,

L-Q [ME(ME ~ Spx — Si)

M2
N.Q= 25; cos By A\Y2(ME, Spax, Se)

+ cos O cos 8 AV (ME, Sp., M2)

1
4M2Spn
x (SeSpr + Mg — 5} — Sh. + MM3, Spr, 5¢))

- ,/SS‘ cos ¢ sin By sin 8, A\/2(M3, Sp., M2),
Dn

1[5 4 )
€avpo PPQVLPNG = _51/52 AYAME, Spe, M2Y AY2(M2 Spe, 51)
X sin ¢ sinfysin 8, . (28)

Since the form factors depend on only one of the angles, namely f,, in the
expression for the partial width of the By decay the integrations over the angles
¢ and 6y can be performed explicitly. Following standard steps, the differential
partial width of interest can be expressed as

d3I‘BM R 2n 1
dcosbr,dSp.dS: ~ 2Mp J(SDW’St)jD dé[}dcosﬂt
X 3 |TI(Spx.St,0x, 00, 6), (29)
Ipings

where

for charged pions

2,
R = { 1, for neutral pions ' (30)

and the Jacobian J(z,y) is

Jz.y) = AHME, 2,9 A2(ME, M2, x) AV%0,0,y). (3D

1
21 x5y M2

For our purposes the interesting differential partial rate is dl'p,,/dSp~ which
results from integrating eqn. (29) over 5; and ¢, with no kinematic cuts.
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D. B — D*nfp decay rate

The tensor €2,, can be expressed in terms of twelve form factors as

i

Qv = 5H1 Gupa PPQ7 + %Hg €0pe PPLY + %Ha €urpo QP LT
+ FlP,u(P - Q)v + FEQ;.L(P - Q)u + FSPva + F4QpLu + -Kg',uw

1 .
501 uino PPQPLI(P = Q), + %Gg €uspe PPQPLOL,

i i
+ 50{? €500 PP QP LY P, + 5Gf’ €vspr PPQPLTQ,,. (32)

-+

In writing this form, we have neglected terms that vanish upon contraction with
the conserved leptonic current j, and with the D* polarization vector €p-. The
explicit expressions for the form factors resulting from eqn. (32) are given in
Appendix C.

It is straightforward to calculate the modulus squared of the resulting decay
amplitude summed over the polarizations of the D*. Since the result is lengthy
we prefer not to display it here. The partial width is given by an expression
similar to that of eqn. (29) with the appropriate replacement of the squared
amplitude.

V. RESULTS, DISCUSSION AND CONCLUSIONS

H we throw caution to the wind and apply our calculation to ail of phase
space, we find that the decay rate for B — Dxéy ranges from 1.09 x 10~24 GeV
10 1.13x 107! GeV. The upper limit corresponds to including all the multiplets in
the calculation, while the lower limit arises from mncluding only the (0, 17) and
(0%, 1*) multiplets. These decay rates correspond to branching fractions of 2.1%,
somewhat larger than, but largely in agreement with the analysis of Cheng and
collaborators [8]. We see, therefore, that the inclusion of the higher multiplets
does not profoundly affect the total decay rate of B — Dnér. The effects on the
spectrum, and on the decay B — IJ*#w#v are somewhat more striking, however,

Performing the same integration for the decay B — D* méy, we find that the
total rate varies between 2.7 x 10~% GeV (BR = 5.0 x 10~%) and 1.7 x 10-15
GeV (BR = 0.3%). Thus, inclusion of the resonances makes a significant change
to this decay rate, increasing it by a factor of about 6. In both cases (B — D=xtv
and B — D*mfv), the change in the quark model parameters from set I to set
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FIG. 2. Fm 795—?: as a f.unctlon of Spy for B — D?rieu: The different curves
correspond to different combinations of resonances, as explained in the figure.

11 has little effect on the integrated decay rates, but makes significant differences
to the spectra obtained.
In a series of figures we show the differential By, decay rates into a charged

pion ?Tz‘i as a function of Sp., for values of Sp, between the threshold of

(M$) +m,)? and 10 GeV2. This covers a bit beyond the domain where the soft
pion limit may be safely applied; for A, ~ 0.5 GeV, the soft pion limit holds up
to Spx ~ 6.5 GeV2. In each of these figures, we show the spectra resulting from
both sets of parameters, with set I corresponding to figures N(a), and set II to
figures N{b). In addition, we normalize by dividing the differential decay width
by the total semileptonic decay width B — D#r, calculated in the same model. In
this way, we can lessen the impact of model dependences that enter through form
factors and coupling constants. We note, however, that using |V.s| = 0.043, we
obtain branching fractions of 1.8% (1.7%) (here, and in all that follows, the first
number is obtained using the parameters of set I, while the second number, in
parantheses, is obtained using the parameters of set 1I) for B — Dév and 4.6%
(4.6%) for B — D*fv, in surprisingly good agreement with experiment. We
have not compared our results with the differential decay rates for these decays,
however.

Figures 2 and 3 show the spectra for the decays B — D#xfr and B — Db,
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respectively. Each of these figures shows four curves, corresponding to the inclu-
sion of various combinations of multiplets in the analysis. QOne very interesting
feature in these spectra is the narrow structure dye to the (0°,17) D meson
multiplet. We will discuss this feature in some more detail later. Another no
table feature is the depletion in the differential and total widths of B - Dréy
that arises from the interference between the (0~,1-) and (0%, 1%) multiplets.
In the case of the decay B — D réy, the depletion caused by this interference
at values of Sp., < 8.5 GeV?2 s more than compensated by the enhancement
that oceurs throughout the rest of phase space. This latter enhancement should
however be taken with caution, as it lies beyond the range of applicability of our
approximation.

In figures 4 to 7 we examine the effects of the values of some of the parameters
on the spectra. Figures 4 and 5 show the effect of changing the coupling constant
and width of the states in the (0%, 1*) multiplet. The values we have obtained
in our model are a; = —1.43 (—=1.22) and T = 1.04 (0.756) GeV. This width
Mmay seem very large, but it is at least consistent with other model caleulations.
Nevertheless, we have Investigated the effect of using smaller widths, namely 500
MeV and 200 MeV. oy is changed to -0.99 and -0.63, respectively, in keeping
with these changes. We see that the effect on the spectrum of B — Dy is
quite striking, especially at the narrower of the two widths. The effect on the

20

013 ™)
==~ all saen, o <0 63, T, =200 MaVr

45 5.

Ly LE]

DT AT
S, (GeV)

FIG. 4. The effect on the decay B — Dr*ey, of changing the couplings and total

= allsams
T allmaes o =0 63, [, =300 Me v
- allmewy o =000 T,

widths of the states in the (0%, 1) multiplet,

000

—— ull stuy
=~ Al singes, o,=-0.63. T, =200 MeV
o7 all mides. o=099, T =500 MV

0015

" (Gev?

2 o0z0

1Ty o, dT/GS

— 0005

0000
40

50 8. 9.0 100

.0 mn 8.0
S0 (GeVh
FIG. 5. The effect on the decay B —

0.0

—— sl saer
o all e, o =-0.63, T,=200 MeV
Sl

staes, o =000, [ =500 MeV

0015

0.0

LE] 50 90 100

6. 70 80
8., (GeV))

D*rtey, of changing the couplings and total

widths of the siates in the (0%, 1%) multiplet.

2]



0.13 — all maws
— -~ allsates, 2, =0.57

T, dTHIS,, (GeV
1T, e, dTAS  (GeV 5
od
B

L 004

35 43 3. 5 9.5 33 45 55 85 95

5 6.5 17?5 55 21‘5
S, [GeV?) S, (GeVY)
F1G. 6. The effect on the decay B — Dxtey, of changing the couplings and total
widths of the states in the (0™,17) multiplet.

spectrum of B — D" rfv is similarly striking. The total width of the B — D*rfv
decay is strongly affected by these changes, changing from 1.7 (1.7) x 10~15 GeV
to 1.0 (1.2) x 107! GeV and 4.9 (5.9) x 1071° GeV as the total width of this
multiplet changes from 1.04 (0.756) GeV to 500 MeV to 200 MeV. In comparison,
the total width of B — Dméy is essentially unaffected by these changes.

In figures 6 and 7 we illustrate the effect of changing the total width of the
(07,17 maultiplet from 191 (174) MeV to 130 MeV, accompanied by a change
in a3 from 0.69 (0.66) to 0.57. We see that the narrower state would provide a
clearer signal for experimentalists. The possibility of observing this pair of states
in By decays will depend strongly on the value of the total width and on &3, as
well as on the effects that various experimental cuts will have on the specira we
illustrate. While we do not study the effects of cuts in this work, we can estimate
the number of events that one may see in the proposed B-factory.

The integrated width under the peak (from about 5.33 to 6.0 GeV?) is
2.7(3.9) x 10718 GeV, corresponding to a branching fraction of 5.2 (7.4) x 1071,
or about 5.2 (7.4) x 10* events, assuming production of 10® B mesons. Sub-
tracting the width that corresponds to a ‘smooth’ background leaves 220 {(7000)
events in the peak alone. A similar exercise in the case of the [)* nfy spectrum
yields a width of 7.4 (10.3) x 10717 GeV, corresponding to 14200 (19900) events.
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Removing the smooth background leaves 1800 (4300) events in the resonant peak.

While the dependence on the model parameters is clear, these estimates sug-
gest that a study of the spectra of B — Dxfv and B — D*7fv offer some
opportunity for discovery or confirmation of the resonances of the (0~,17) mul-
tiplet. Note that if we include the expected small mass difference between these
two states, the single peak in these figures will become two peaks that are very
close together (separated by about 0.32 GeV? if the mass splitting is about 60
MeV). The net effect would be a broadening of the structure that we have in our
spectra.

In conclusion, we have studied By4 decays in the soft-pion limit using chi-
ral perturbation theory and heavy quark symmetry. The resonances which give
leading contributions in this limit have been included, and shown to be impor-
tant in determining both the rate and the shape of the spectrum. The narrow
(67, 17) resonances show up as a peak in the Sp, spectrum, and will likely be
difficult to observe in B — Dwfr. The possibility for detection or confirmation in
B — D*rfv is more promising. The wider resonances of the (0%, 1+) multiplet
show some effect on the total rate, but are not likely to be identified from the
spectrum. Preliminary indications are that they may be identified at Aleph using
the topology of the Byy decays [21]. The effect of these broad resonances is much



more pronounced for B — D" nfr than for B — Dnfy, although the effects on
hoth spectra are quite clear.
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APPENDIX A: STRONG INTERACTION TRANSITION VERTICES
WITH A SINGLE PION

In this appendix, we give the explicit expressions for the vertices where one

pion emission takes place according to Cix‘,“. Similar results hold for B mesons.
The vertices are shown in figure 8. = b
; ; .
APPENDIX B: THE CHARGED CURRENTS P o
In this appendix the explicit expressions for the charged currents displayed in = »
eq. (12) are presented. They are . . P
Ju(07 = 07) = —£(v) D (V') (v + v'), B(v), b o
Ju(07 = 17) = £(v) DT (V') [i€uapv®v® + g4 (1 + v) — v, v, B(v),
Ju(17 = 07) =€) D) [icuappv® v + gup(1 + ) — v,| B*#(v), 7 -
Ju(17 = 17) = £(v) D1 (v') ~ o TEe
X [gvp(” + U')u = GppVy — g.uvv.:a + €0 (v + ”’)a] B*? (v},
Ju(07 — 0%) = —py (v) DL (") (v — v') . B(v), .
Ju(07 = 1%) = py(v) D (v') [i€unasv®e® + gu(v — 1) — v,v,] B(v), . - g
Ju(17 = 01) = py(v) Di(v') [—iquo,}@,c,v‘"v'Jta —gup(v— 1)+ v,‘v;] B*(v), o Dy, )
Ju(17 = 1%) = po(v) DY (v')
x [—gVP(U - Ul).u T Gupte — Gy U;: + €y ppa(—v + "-’f)a] B*(v), =] #
Ju0” =17) = %pg(v) DIL_’.(U’) L ;T— =-Vigwe
* [iepuapv® v (v — 1) + g, (v? — 1) — v ((2 4 v)v, — 3v,)] B(v),
Tul0™ = 27) = —pa(v) D31 P(o") =jr
x [~v,g,,(v = 1) + VYV, + i€uapv, v v B (v), ;)-,- ;T" =B,
TL™ = 1) = —pa(u) DI (+)
X [0+ V)uguo = 1) = 30, 0,08 + 20, guo (v = 1) = gutl, (v 1) A,
~ tac(V — V) (1 4 ) + Zie, pqpv®u, v’ €uoaptyv®u’?] B*(v), ;_M :7:'2 =Frevet
Ju(l7 = 27) = polv) D317(w') ‘
X [=ieuvsota(v = ')* + gus vyt — Guptith — goovu(v —v), ) B (v),  Flc. s Vertices obtained from the chiral Lagrangian for soft neutral pion emission.

Vertices for charged pion emission are a factor v/? of those shown in this figure.
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Ju07 =07 = =€) DMWY (o + o', B(v),

Jul07 = 17 = D) DM (v) [l napt v + g (1 + 1) ~ v} B(v),
Ju(17 = 07") = €M) DNV [ieungov™e” + guo(l + 1) — wuu} B*(2),
Ju(17 = 17") = i) D1 (v')

X [g,,p(v + ')y — Guete — Gurtp + i€pap (v + v’)“] B*(v). (B1)

The effective currents where a B-meson resonance decays into a ground state
D-meson are easily obtained simply taking the hermitian (minus the hermitian)
conjugate of the vector (axial-vector) portion of the currents displayed above
followed by the interchange of symbols B — D and v — o',

APPENDIX C: THE FORM FACTORS

In this appendix we give the form factors needed in eqns. (25) and (32). The
non-resonant and the resonant contributions are displayed separately.

1. B — Dntv

If we write
Qu = —th MpMp €,,,00" V'p5 + Ay pry + Az Mpu, + Aj Mpu,, (C1)
the form factors in equation (25) are
H = -h,
F=A,+ %(Al + As),
G= %(A;; — Ay),
R = A,. {C2)
From eqn. (17) we obtain the non-resonant contributions to the form factors as

hon — 9 &(v) ( 1 3 1
NE T 9F, MagMp \py v+ 6mp—ic  prv —bmp tic)

—~_ 9
Aingp = 35, vy (14 v) (

1 1
Pr-v+ 8mp — ic B Pt —émp + ic) '

28

2F[] AfB p,,-v+6mB—ie

_ 9 A prvtped
2Fy Mp \pz-v' —bémp + i/’

= g ) (ptned )

A3 NR = (Cg)

These results are the same as those obtained by Lee and collaborators [7], and
by Cheng and collaborators [8].
From eqn. (19) the resonant contributions are

oy pa(v) | 1 )
hg = ——2° —1 —
R = 6FoMpMp -1 (Pw U4 dmy pr-v' — by

a3 §M0) t _ 1
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FIG. 9. Non-resonant (a} and resonant (b) diagrams contributing to 8 — D#ép. The
dashed line represents the pion and the dotted line which emerges from the electroweak
charged current carries the momentum of the #7 pair. Horizontal solid lines correspond
to four velocity » and the oblique ones to v'.
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2. B— Dxér

The most general form for the tensor €2, in terms of the vectors vy, v, and

Pru 15 {terms which vanish upon contraction with ¢} (v') are not displayed)

Quu(v| 'UIJPF) = % Cpupa [hl MBAvapl'w + ks Mp Upp: + ha A’IDU’ppg]

+ fi JM'BU‘JP-.W + fa MD'U:,P:W + fa PruPsr + fa ME’U#UV
—+ f5 IVIBJ"V'IDU:‘UV + fﬁ Mgpx,uvu +k Tuv

F
+ g Cubpo v o7 (g1 prv + g2 Mgv,)

1
+ E Evbpo 7"6 U’pPg (93 A’-{va + g4 AJD'UL + s p‘:r,u) . (CS)

The form factors appearing in eqn. (32) are related to the ones in this expression
by

1
H, = 5 (h1 —hs *ha)s
1
H, = r) (h1 + ha),

1
Hy = 3 (=hy + h3),

F1=% (fl+f2+%f3+f4+%f5+%f6):
Fa= g (b= fs+Js—fo),
Fs=fat g (s + fo)

Fi= 5 (s = fo)

K=k,
Gf = —m (g1 + g2),
1
G’zq = —mgz,
Gy = —m (93 + -;— (g4 +gs)) ,
G'f = _m (91— g5)- {C6)
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From eqn. (21) the non-resonant contributions to the form factors are
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YR T TR Mp \pr v+ 6mp —ic  ppv 4 bmp ¥ic)’

fanr = Mo fing,
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2F Mg Mp Pr-U+ émp — i€

_ %) 1 1
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2Fy \pr-v+bémpg —ic Drt’ + ic

ginr =0,
ganr =10,
gsnr =0, )

) 1
§eNR = Foﬂrfp p,r-v’+z'e’
gsnr=0. (CT)

These results are the same as those obtained by other authors [7.8].
Finally, the resonant contributions are obtained from eqn. ( 22) and are

hep = d1ei(y) Prv  pret
'R T FoMpMp \—p,-v-ém1  p v - b,
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hop = 22 (1+v) p2(v) 1 B az €(v) X
3FyMp ~Prv—bdma  FoMp (pa-v + 8ma)
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FIG. 10. Non-resonant (a) and resonant (b) diagrams contributing to B — D*rxép.
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