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Abstract

Electromagnetic form factors of the transition ¥ + 7yire. — A; are calculated by QCD

sum rules technique with the description of the pion in terms of the set of wave func-
tions of increasing twist. Obtained results are compared with standard QCD sum rule
calculations.
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Recently it was suggested to study pion form factor at not very large momen-
tum transfers by light-cone QCD sum rules [1] which combine the description of
pion in terms of the set of wave functions of Increasing twist with the technique of
QCD sum rules [2]. This approach gives a possibility to calculate a contribution
of so-called Feynman mechanism to the pion form factor, in which large momen-
tum transfer selects the configuration, in which one parton carries almost all the
momentum of the hadron. In that paper (1] it was shown that at least up to the
momentum transfers of order 10 Gel/? this mechanism remains important and
it is possible to describe pion form factor in this region by Feynman mechanism

There exists a number of arguments in favour of that at large but finite
momentum transfer (Q2 ~ 1—10GeV?) Feynman mechanism s dominant. Using
QCD sum rule approach [2] it was found (6], [7] that pion form factor at Q2 ~
1~ 3GeV? is saturated by Feynman type contribution. However, this method

type contribution is dominate at least up to Q2 ~ 10¢eV2. At the same time
au atlempl to describe the data of pion form factor at Q* > 3Gey? by the
contribution of hard scattering only leads to conclusion that the low energy pion
wave function is very far from its asymptotic form [11} and there was proposed
a model for pion wave function which has a peculiar "humped” profile which
corresponds that the mosi probable pion configuration is the case when one of
the quark carry almost all pion momentum. Bui in {12] was pointed that the
wave function of such type corresponds to respectively soft gluon exchange even
at Q% ~ 10GeV2,

Here we discuss Feynman type mechanism for 7 — A, electromagnetic pion
form factors. The first calculation of this amplitude was made jn [10] by using
operator product expansion for three-points correlator in vacuum,

[

Let us consider the correlator:
Tulp g) = /e‘Prd"z < OiT{jﬁ(z),jﬁm'(O)}]rr(k) >, (1)

where jfj = J7p75u and ji™ = %ﬁ'y,u - %J-y,,d is the electromagnetic current, k
1s momentum of pion. This correlator was used in [1] to study pion form factor.
Leading twist operator gives the following contribution to Tuo:

T ( )-f/ldu—P—"(L l(pzﬁsr"’)y = 2(1—~u)p,p
we P g) = fr o (1—u)p?4ugZ \3 # uw
(1= 2u)(pugy + gup,) + 2uguq, ) (2)

where o, (u) is twist-2 pion wave function. We use the following definition for
twist—2 and —4 two-particle wave functions of pion:

1
< Old(O0) (@) (k) >= if, b, /0 e * (olu) + 229, (u) + O(z*))du

1
+fx (J:,, - k—“a:z)/ e""“k"gg(u)du +... (3)
0

kx

Here g; and g, are twist-4 pion wave functions.

In this paper we use different models for pion wave function. The first on is
asymptotical wave function. In [3] it was shown that at asymptotically large Q2
the pion wave funetion of leading twist has the following form:

P (u) = Bu(l — u) (4)

The attempt to describe pion form factor at Q% > 3GeV? by hard rescattering
mechanism only leads to a conclusion that the form of the wave function is much
different from asymptotical one and it wag suggested to use the following model
for pion twist-2 wave function (see [11]):

PO, i~ 500MeV) = 30u(1 - u)(2u— 1) )

And the third model pion wave function is
P () = gu(1 — u) (1 + Agg[s(m - 12 -1}

+A4§{21(2u— )7 - 14(2u - 1)% 4 IJ) (6)
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which was proposed by Braun and Filyanov in [13] at low normalization point
p= 05GeV, with coefficients A, = % and A4 = 0.43 which is in agreement with
QCD sum rules for first moments of pion wave function and provides that at a
middle point u = 0.5

Px(0.5) ~ 1.2, (7)

This value is with experimental values of various hadronic coupling constants
calculated be light-cone sum rules approach (see [13]).
It is easy to check that (2) satisfies to Ward Identities:

Putur = —folp—q)
G Fu = —fr(p— 9)#' (8)

Twist-4 quark wave functions g;(u) and ga(u) give the following contribution
into the correlator (1):

fr]; w (((1 - u)Pl” + ug?)? [4"“(“)(%(1)2 =4 )gw

_2(1 - “)pﬂpv + (PpQ'v + ‘?.u.'Pv)(l - 2“) + 2UQp‘Iv)
—4g2(u)((1 — u)*pupy + u(l — u)(Pugs + qups) + v2qua,)
—4G2(u)(2(1 ~ wlpupy — (1 = 2u)(Pugs + qups) — 2ugug, )]

2g5(u)
i wpr + uazg"") ' @)

where Ga(u) = — [¥ g2(v)dv.
There are also quark-gluon twist-4 operators:

< 0]d(0)7,4759: Gapl(va)u(z)|x(k) >
= k“(k":ﬁ - ‘nﬂkﬂ)%fr'[e_ikx(al-l-"ns)Da(I’"((li)

kulﬂ

k o —tkr(a;+va;)
+(kﬂ(g#a - ;: )_ka(gpﬁ_ )) flfe ke(ent ”DQ(I)-L(QI')J (10)

kz

< 0}d(0)7,uigs Gap(vziu(x)|x(k) >
= kulkary — xakﬂ)lf, ]e_ikI(°’+”“3)Da‘l'||(a,-)
K

k,ul'a ku;tﬁ

-+ (kﬂ(g#ﬂ - kI )_ ka(guﬁ - W)) f;rV/.eu’.kx(arl-uaa)Da,"I’J_(Q{), (11)

where éap = %eamwG’“’, Da; = dojdazdaad(l — oy — ay — aa).
The contribution of these operators (10,11) is:

' 1
fx ]0 du((l — u)pz ¥ uqz)z [(2(1 — u)ppp,, — (l — Qu)(ppq‘, + Qppy)
~2udu)Aw) - %g*‘”(pz — ¢*)B(u) + 2(pug, — qypv)C(u)] o (12)
where

A(u) = -/D ﬂ.'al /_- 1 % [‘I’"(O’,) + Q‘I’J_(ﬂi)

+(1- 2222 ) @y + 20,0 (13)
B(u) = fnu dary fu:a ‘%‘“ [lI'”(a.-) + (1 —2Z ;3“‘) «1>"(a,-)] , (14)

Clu) = _/: day /;:ﬂ:l % [‘I’.L(Ofi)+ (1 —2- ;:1) ‘I’J.(O’-')} - (15)

A systematic study of the higher twist wave functions has been done in the pa-
per {13]. The set of wave functions suggested in the paper includes contributions
of operators with lowest conformal spin and also the corrections corresponding to
the operators with next-to-leading conformal spin, which numerical values were
estumated by the QCD sum rule method. This set is (hereafter & = 1 — u):

‘I'"(a,-) = 120662(01 - 0’2)01020’3:

1

\I’"(a;) = —12062010203 (5 +e(1— 3&3)) ,

. 1

q)_L(Ll',') = 3062(01 - ag)ag (:-3- + 26(1 - 2&3)) ,
1

¥y (o5) = 306%(1 — az)ad (5 +2e(1 - 20:3)) , (16)

D222 beaf - 3 6 »
gi(u) = 56 au + Eé uu(2 + 13au) + 10u°(2 — 3u + 5t }In(u)

+10a%(2 — 3u + gfﬁ) ln(u)) :



ga(u) = 1—30-52&!1(11 _ ),
Ga(u) = gézfﬂu?, (17)
where
6% ~ 0.2GeV?, ¢~0.5. (18)

The value of 6* was determined in [14).
Using this set of the wave function we obtain the following expressions for

A(u), B(u) and C(u):

A(u) = 8 (10u3(1 - u)? + ¢ [—4u — 22u® + 52u° — 26ut — 41n(! — u)

+4u%(10 ~ 15u + 12u?) In (1 - “)D , (19)
B(u) = 6% (~106?(1 — u)? + ¢ [—4u — 22u? + 52u® — 26ut — 41n(1 ~ u)
+4u3(10 — 15u + 124 In (1 : “)D , (20)
Cu) = 206%cu®(1 ~ u)*(2u - 1). (21)
II.

Let us consider hadron contribution into correlator T, uv- A1 -meson gives the
following contribution into this correlator:

—i 3 ~ €171
T < 0lialA1(p) >< Au(p)je™ [x(k) >

my
2 2

-—quv% (1 - m—;) (Gl(Qz) - (1 - 2—;) Gz(Q2))

2,0, (G2(@)+ %62(92))
+a.a (6@ - (1- %) @)]. @

where

< OljzlAl(P) >=1tieuma fa, (23)

< Al (k) >= —,;—: (2P — 0. )ger — (20 - 0o g2 )G (Q?)
—'n%((?p - 4.9 — ¢*(2p ~ Q)u)QAG2(Q2)] , (24)
A

my = 1L.26GeV is Aj-meson mass, €, is a polarization of the meson, f4 = 0.2

which was determined in [15] from a fit to the absolute rate for 7 —s vemaw

decay. Notice that in paper [10] it was used another set for mass and A;-coupling
2

constant - %} = 6.0 and my = 1.15GeV. This parameters were determined in
[16] by QCD sum rule, f4 = \/fi"::

The heavier spin-1 states contributions have the same form as (22).

In the limit of massless quarks due to the conservation of axial current jf‘,
the only massless state of spin-0 (pion) gives nonvanishing contribution into the
correlator (1). This contribution is

2 <OIe(p) >< 7™ [r(k) >= S @er-0. @)

Pion form factor #%(Q) was studied in [1].

111.

To study G form factor we consider correlation function hpt ¢®):

Tuv(p, @) = 9 /1P, ¢) + ... (other tensors). (206)

Then according to (14) and (25) it is possible to write the following dispersional
relation for the structure g,,,:

2 2 oo 2
19 ) = Ay 1 [ ple, @)

+ (subtraction terms), 27
R R o RN ) @)

where p(s, Q?) is the spectral density of higher state (spin-1) contribution into
the correlator (1), sy > m?% and pion contribution is absent.



To suppress higher states contribution and to kill subtraction terms in 27)
we use so called Borel operator B which was suggested in [2]:

Bpa f(P?) = %ﬂ (—3%5)“ (P = A,
%2 =n, P’=-p’, n—ooo (28)
Applying this operator to (27) we obtain
A% = .J'A.Tnf,,Ch(Q?)e_ﬂ':L -+ %fwe'ip(s, Q*)ds. (29)

o

Notice, that higher states contribution is suppressed by a factor =3/t < =0/t
From other side, the leading twist-2 wave funciion gives the following contri-
bution to fZ:

fB(tm'n—z) _ _.& ! Qzﬁor(u)e—zﬁ_g;vdu
! T2 —u)?

= %/000 On (S—Jr"s'"QT) e~ tds. (30)

In (30) we represent the formula in the form of dispersional integral after Borel

transformation and '%'-(p,— (ﬁ;) is equal to imaginary part of the correlator at
p?=s.
According to (9) and (12) twist-4 wave functions contributions are

fBGwisi=) _ f_:/l (Q2(491(u) — B(u))  491(v) — B(u)
0

2 11— u)? (1 — u)?
_(4192_(1)) ) @ rau = I /ﬂ‘” ds ([491 (E{Qﬁ)
() [ ) e w

Due to asymptotic freedom in the limit 5 — co the imaginary part of the
correlator tends to his perturbative value. So it is possible, like in usual sum
rules, to estimate higher states contribution suggested that the imaginary part of
the correlator (1) is equal to its calculable part (by operator product expansion)

starting at s = sp. Or by other words, here we use the standard concept of duality,
which tell us that A;—meson occupies the "region of duality” in the invariant
mass s up to a certain threshold sq ~ 3GeV2. Thus, to take into account higher
states contribution we use the following limits in of integration (30,31):

Sq

Ugugm or 0 <5< sg. (32)

Using eqs.(20-32) we obtain the following sum rule:

B(twist—2) (B(twist—4) 2
4 L4 = (3)

Gi1(Q*) =

2
fAmA

where we use a standard model for higher state contribution using the limits of
integration (32) in expressions for flﬂ(z) and flﬂ(é). ,

Three models of the leading twist wave function . (u) were considered. In
Fig.1 it was shown Q?—dependence of G form factor which was calculated using
eq.(33) at t = 1.5GeV? and 59 = 3GeV?2.

Notice, that the dependence of Gy on the pion wave function is very weak at
(Q? ~ 2.5GeV?. The reason of this is that at Q2 ~ sy = 3GeV? we integrate a
pion wave function in the region 0 < u < 0.5. In the limit ¢ — oo this integral
is equal to 0.5 and does not depend on the form of wave function. 14 is clear
that using for respectively large ¢ the dependence of sum rule on the pion wave
function will be weak and at Q* ~ 2.5GeV? this dependence is compensated by
a small changing of integration region over u.

In this picture we show predictions which were obtained by Ioffe and Smilga
in [10] from QCD sum rules for three-point correlator. Notice that there is a big
disagreement between predictions of QCD sum rules for three-point correlator
and the case of asymptotic wave function for 7-meson. The best agreement with
predictions of Ioffe and Smilga at Q2 < 2GeV? we have in the case of BF-wave
function. At Q* ~ 3GeV? the predictions of [10] two times smaller than the
result obtained in this paper. Probably, this disagreement can be explained by
large contribution of higher dimensions operators which becomes large at this
momentum transfer (see details in [10}). At Q% < 2GeV? disagreement between
the case of BF-wave function and three-point sum rule is about 20% which is usual
accuracy of QCD sum rules. In this picture we show the experimental value for
G1(0} which is determined from partial width of decay 4; — 7y. According to
(17] T(Ay — 7y) = 640 + 246keV . Stability of the sum rule (33) is illustrated in
Fig.2. Notice that at @? > 15GeV? continuum contribution becomes larger than
30%. Twist—4 operator contribution is smaller than 10%.



Iv.

To find Gy form factor, let us consider g.p, and ¢,q, tensor structures of
contribution of hadrons into the correlator (1). The only spin—1 states give
nonzero contribution into these structures. In the case g,p, this contribution has
the following form:

fﬂ'(pz'l Q2) ==

I

(G(')(Q"’) + 5 "’(Q?)) (34)

and in the case g,g, the contribution is:
2 12y _ Ji (i} 2
B0 =Y 1 (6@ + &
rLL T 4

where §, is @ sum over spin-1 resonances (4; and higher states with JF¢ = 1+,

{"(Q:')) - Gé"’(@z)) (@9

m; and f; are their masses and residues into axial current, G(i) and G(i) are their
form factors. From other side, f, and fz were calculated in Sectlon 1. Thus
using eqs.{34,35) we have the following sum rule for G; form factor:

fi

— 5 Fal??. @) = fo#?, Q)= o G@), (36)

I )

The left side of this expression was found in Section IT al p? ~ 1 — 3GeV?
and @ > 1GeV? Using Borel operator (see {28)) and using the model of contin-
uum which was described in previous Section to take into aceount higher state
contributions we obtain the following sum rule:

fj_e:::‘- " e_‘-gi_:fdu (3 + u)pa(u)
fa o l1—u
1

(0 — )t
+%A(u)) + 2u(1 + uw)ga(u) + C'(u)) } (37)

+ {(1 + 2u)(~2g1(u) — 2G2(u)

2(s+ Q%)

L [ { il Grd
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1 [35+4 Q2 $ s 1 5
+62; [—s+ g (——291 (—3+Q2) — 26, (_S—I-Q"’) + §A (—~—-———3+Q2))
s(2s + Q?)

Crann(sra) (e} - (58)

(Q* dependence of G4 form factor for different wave functions are shown in Fig.3.
These results were obtained from sum rule (38) at £ = 1.5GeV? and sp = 3GeV?.
it is interesting compare the results obtained with the first calculation of this
formfactor which was made by foffe and Smilga [10]. They used QCD sum rules
for three point correlator and their results are depicted in Fig.3 too. In the case
of this form factor there is a good agreement between the case of asymptotic wave
function and predictions which was obtained in [10]. We have a big disagreement
between our results for CZ and BF wave functions at % ~ 1GeV?. This dis-
agreement can be explained by a large contribution of higher twist operators.
At Q% > 2GeV? the contribution of twist-4 operators becomes smaller 20%. At
lower @2 ~ 1GeV? this contribution is more than 30%. Stablity of the sum rules
i3 illustrated in Fig 4.

+2

V.

In this paper we have used light-cone sum rules 1o calculate electromagnetic
% — A; form factors in the region of intermediate momentum transfers: 1GeV? <
(3? < 15GeV?. It was studied the dependence of the results obtained on the form
of the pion wave function of leading twist. It was found that at Q% > 3GeV? the
behaviour of the form factors in the case of asymptotical wave function are very
different from the cases of CZ and BF wave funciions. It was shown that the
results obtained in the cases of CZ and BF wave functions are not very different
from each other at Q? ~ 10GeV2.

We comparte the results obtained in this paper with the first calculations of
these form factors which was made in framework of QUD sum ruies for three
point correlator by Ioffe and Smilga [10]. These two predictions are in agreement
within 20-30% accuracy at Q% ~ 1 — 2GeV?. This accuracy is usual accuracy
of QUCD sum rules. It is shown that there are disagreements between these two
approaches at 7 > 2GeV? and Q? < 1GeV? which can be explained by large
contribution of power corrections at high Q2 in the case of three-points sum rule
and by contribution of higher twist operators at respectively small Q? in the case
of light-cone sum rules.

We obtain that vector dominance does not work in the process. If we iry to
fit the form factors by p and p'-mesons then we find that p'-meson contribution
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is dominant at Q* > 1GeV?, and we can not use vector dominance to estimate
p— A; — m-coupling constant.

It is shown that at Q% > 1 — 2GeV* form factor G4 increases with growth of
@Q?%. This behaviour can be explained in framework of naive quark model, where
Aj-meson is consist of two quarks in P-wave.

Notice that it will be very interesting to measure Gy form factor at Q2 ~
2.5GeV? because here we have a very weak dependence on the form of pion wave
function. The slope of the form factor gives additional information on the func-
tion.

Acknowledgements. The author is grateful to V.M. Braun, N.Isgur and A.V.
Radyushkin for useful discussions.

APPENDIX A

In [13} it was shown that there are relations between wave functions of the
same twist. Here one more relation for twist-4 wave function will be obtain.
Notice, that a set of wave functions suggested in [13] is in agreement with this
relation. It is a generalization of one of the relations obtained in [13].

Let us consider the following matrix element:

1 -
7, < V0o v rsw(@)lm >= (9up0s + 9100 — Juvd,)
x
1 . , 22
X due™ "M (i () +iztg(u) ~ ——g¢ u)
/ or(0) + 2 02(8) = Zosgala)
1
+Hgupy + GvpTy — 9;"':'70)/ due™""¥% gy (u), (A1)
0
and find first derivative of (A1) over z,

i9,0(42) ] due™""9% (2, (u) + 26 (u) ~ uga(u))

1
Figup = 9p7u) /0 due™"%(2g; (u) + 265(u) + uga(u)). (A2)

From other side, using equation of motion for massless quarks we have;

1 & =
7. 8z, © 0ld(0)1a 1o v ysu(z)|m >

12

1! 5
=iz [ vy < 00114342152 09 (o)) 7 >
T JD

1!
= !f—,/ vdvz, ((gupgw\ + Quplur — .q;wgpk)
x* JO

< 0Jd(0)gGau(vE)1rvsu(2)|m > +eupn < 0|d(0)igGavmru(z)|m >)

i
= igpp(qz)-/; vdvDaie—qu(a,+ua3) (‘D"(Ct,‘) - 2@1(0’.‘))

1
Hilguey = 20y) [ o Dase ) (B (o) 29 (@)
1]

Using new variable u:

uU— o
oy tvaz=u v=——"
Q3

¢q.(A5) becomes

1 1
ig,,p(qz)/ e U du A(u) + i(quz, — a:,,qp)] e~ = du B(n),
0 0
where

u l-ay
Alu) = fﬂ dar ] %(u-al)(@u(a,-)—zm(a,-)),

s
5w = [ " day / TP o) (o) + 201 ()
Comparing eqs.(A2) and (A7) we obtain:
2g1(u) — 2G2(u) — uga(u)
= [Fao [T R ) (g0 - 2100

—o, O

291(?1) + 2G3(u) + uga(u)
u e Y .
= f dalj 0—23(11 — o) (g (a) + 20 (ay)) .
4] t—cy 3
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(A3)

(Ad)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(All)



‘The first relation (A10) was obtained in [13]. The second equation (A1) is a
new one. Using (A10) and (A11) we obtain

2G2(u) + ugs{u) = /0“ dalf s %‘:éi(u — o) (Py(o)+ W (a)). (Al12)

It is not difficult to check that the set of wave functions suggested in [13] satisfies
to this new relation (A12). Notice that the set of wave funciions was fixed by
using two integral relations which are valid for any twist-4 wave functions, and
additional one which was obtained for asymptotic and preasymptotic twist-4 wave
functions. Thus, this new integral relation is a generalization of the constraints
obtained in {13} for the case of asymptotic and preasymptotic wave functions.

Let we write the last relation for twist-4 wave function which was obtained in
{13}

g2(u) = j daqj ' daa 2(I'_|_(a) QH(Q,)) {(A13)

U=

Equation (A12) can be useful for construction of a set of wave functions which
are far from asymptotic ones.
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