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We outline how one can approach nonperturbative aspects of the QCD dynamics study-
ing elastic processes al energies accessible at upgraded CEBAF. Our point is that, in the
absence of a complete theory of the nonperturbative effects, a possible way out is based
on a systematic use of the QCD factorization procedure which separates theoretically
understood (“known”) short-distance effects and nonperturbative {“unknown”} long-
distance ones. The latter incinde hadronic distribution amplitudes, soft components of
hadronic form factors etc. Incorporating the QCI} sum rule version of the QCD factor-
ization approach, one can relate these nonperturbative functions to more fundamental
obects, vacuum condensates, which accumaulate information about the nonperturbative
structure of the QCD vacuum. The emezging QCD sum rule picture of hadronic form
factors i: characterized by a domirant role of essentially nonperturbative effects in the
few Gel’ region, with perturbative mechanisms starting to show up for momentum
transt ) closer to 10 GeV? and higher. Thus, increasing CEBAF energy provides
a uniq.  .pportunity for a precision study of interplay between the perturbative and

nonpertuibative phenomena in the QCD description of elastic processes.
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L. HIERARCHICAL STRUCTURE OF NPQCD DESCRIPTION OF
ELASTIC PROCESSES

“What can we learn about nonperturbative QCD from studying elastic pro-
cesses at CEBAF energies™ In some sense, all we will learn from studying elastic
processes at any energy will involve nonperturbative aspects of QCD because the
very nature of initial and final state hadrons is essentially nonperturbative. In
the few GeV energy range, the nonperturbative effects are especially important
and, in fact, play a crucial role. However, it is also true that to learn something
about nonperturbative QCD one should formulate first a theoretical framework
adequately describing the nonperturbative aspects of quantum chromodynamics.
The problem is that the nonperturbative QCD (NpQCD) is not a completed the-
ory yet, and there is no formalism which allows one to calculate nonperturbative
effects from the first principles of QCD. Still, because of asymptotic freedom,
there are regions of momentum space where QCD is under theoretical control,
and these regions can be used as a starting point for a step by step penetration
into the nonperturbative regions of QCD. This step by step strategy is based on
a generic idea that one should make first a full use of what is known, isolate the
structures which are unknown, parameterize them in some way and then study
the parameterizing functions as separate objects. In fact, this is exactly the pro-
cedure developed to study strong interaction physics long before the invention of
QCD.

A. Form factors

Consider, e.g., a typical CEBAF experiment on electron-proton elastic scat-
tering. The electron properties are known from QED, 50 one can readily write
down the matrix elements for interaction between the electron and electromag-
netic field. However, a similar matrix element {P’|J#|P) for the proton is not im-
mediately known because the strong interaction physics is involved which cannot
be directly approached in a straightforward perturbative framework. Introduc-
ing elastic form factors GE(Q%). G%,(Q?), we accumulate unknown information
about the strong interactions (and, hence, about NpQCD) in these two func-
tions. In fact, many models were proposed to calculate G%(Q"’),Gﬁ,(()?) and

other hadronic form factors. However, most of these models have a very remote
(if any) connection with the basic principles of QCD and QCD Lagrangian. As
a result, experimental success or failure of such models usually tells us very little
about the nonperturbative aspects of QCD. In other words, to get an informative
answer from experiment about NpQCD, the question must be cast in a “QCD
language” based on concepts which have a clear and direct relation to the QCD
Lagrangian.

B. Wave functions

Introducing hadronic form factors, we incorporated only a part of what we
know now, namely, the theory of electromagnetic interactions. However, as em-
phasized above, QCD is not a total terra sncognita: its short-distance behaviour
can be calculated using perturbation theory. In particular, one can use pertur-
bative QCD to calculate the Q*-dependence of hadronic form factors [1-3] at
large momentum transfer Q (most probably, very large). According to the fac-
torization theorem [4-6), GP(Q?) is given by a convolution of the hard scattering
amplitude T({x}, {z'}; Q?) and proton distribution amplitudes (sometimes also
called wave functions) (2, T32,%3) specifying the probability amplitude to find
the proton composed of its three valence quarks carrying the fractions z I, 2, and
z3 of its large longitudinal momentum P (of course, 2) + 9+ 25 = 1). Formallly,
the distribution amplitude ©(z1, 22, z3) can be defined as a function whose mo-
ments are given by proton-to-vacuum matrix elements of some local composite
operators
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The hard scattering amplitude Tz}, {2'}; Q%) is calculable from perturbative
QCD and, in this sense, is known. On the other hand, the distribution amplitudes
¥(z1, 22, 23) or matrix elements (0|0~} P) are unknown functions/parameters
describing nonperturbative properties of the nucleons in QCD. These functions



are more universal than form factors: the same distribution amplitude can be
used to calculate different types of hard elastic amplitudes in perturbative QCD.

C. Condensates

As emphasized above, matrix clements (010w} |P) are not known in pQCD.
However, one can again incorporate asymptotic freedom in the form of the oper-
ator product expansion to calculate the large-p? behaviour of the correlator

B (2) = i [ (01T (O ) (2)010) (O)1P)eP e @

of the relevant composite operators.

The operator product expansion represents a two-point correlator as a sum of
terms, each of which js a product of perturbatively calculable coefficient function
and a vacuum-to-vacuum matrix elements of local operators - condensates [7].
These matrix elements describe/parameterize nonperturbative properties of the
QCD vacuum. In some cases, 1t Is convenient to introduce noniocal condensates
[8.9], eg. {014(0)q(2)]0}, which generate the local condensates {01g{0}g(0}]0y =
(99). (9D%q), ete. after ‘Taylor expansion in z.

Incorporating the fact that the two-point correlator can be written via a
dispersion relation as an integral over the hadronjc Spectrum, one can get a QCD
sum rule [10,6]
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in which the proton-to-vacuum matrix element (OlO(n}|P) is related to conden-
sates, i.e., to a set of universal numbers (or functions, if one uses the nonlo-
cal condensates) specifying the properties of the nonperturbative QCD vacuum.
Knowing these functions, one can calculate (0104} )P} from the QCD sum rule,
and vice versa, knowing matrix elements Jike {010} |P), one can get information
about vacuum condensates, The condensates are more universal than distribution
amp‘lil.udes: the same get of condensates appears in QCD sum rules for different
form factors, distribution amplitudes, decay constanis, eie.

D. Agcp

In principle, all the condensates {gg), {GG), ete. are determined by the
magnitude of the fundamental QCD parameter Agep, ey, {dq) = —aA%CD,
(GG = bAdep, etc. However, al present stage of NpQCD, the coefficients
a,b,ete. are not known. When (and if) the NpQCD will become a complete
theory, then Agep will become the only unknown parameter to be extracted
from experiment.

E. Hierarchy in NpQCD description

To summarize, the nonperturbative aspects of QCD can be de
scribed/parameterized by a hierarchy of functions having more and more fun-
damental nature:

1. Form factors - hadron to hadron matrix elements of various currents, eg.,

(P'J21P).

2. Distribution amplitudes (wave functions) - hadron to vacuum matrix el-
ements of local (for moments) or nonlocal {for distribution amlitudes)
composite operators constructed from quark and gluonic fields, e.g.,

(0IO(n}1P).

3. Condensates - vacuum to vacuum matrix elements of local or noulocaj com-
posite operators, ¢.g., (99), (GG), {3(0)g(2)), etec.

4. Agcop - fundamental scale governing all other Tass, momentum, distance
etc. scales in QCD.

II. THE SIMPLEST FORM FACTOR: Fl a0 ()

A, Preliminaries

The distribution amplitudes wr({z;} ) are universal functions describing a
hadron H in various hard elastic processes. Studying the latter experimentally,



one can hope to fix a set of distribution amplitudes which will be in agreement
with all the data. Adhering to our strategy of a step by step expansion from
simpler situations to more complicated ones, let us consider the simplest case
when the hadron has only two constituents. For the pion, the simplest and
directly measurable {0|0| P)-type object is the matrix element of the axial current

(0ldysy"u|P) = if, P*. (4)

It appears in the amplitude for the * — pv decay, which involves one known
weak interaction vertex and one unknown gqn vertex parameterized by a single
constant f,. Experimentally, f, ~ 133 MeV. By definition, this constant also
fixes the integral normalization of the pion distribution amplitude

‘/D px(z)dz = f, . (5)

Next in complexity are the amplitudes involving three vertices. The problem
is simpler when the extra vertex has a known structure, i.e., when it corresponds
to an EM or weak current. An example of such an amplitude is the form factor
#y+20(q1.92) describing the coupling of the neutral pion to two photons with
momenta ¢; and ¢2. To apply perturbative QCD, one should be sure that vir-
tuality of at least one of the photons is large. Experimentally, it is difficult to
arrange two highly virtual photons, so a reasonable cornpromise is the gituation
when one of the photons is real ¢? = 0 or slighily virtual —¢? << m? and another
one has a large virtuality ¢ = —-Q?2m?.

The cleanest experimental realization for this form factor is on aete -
machine, i.e., one should study the process ete~ — ete= 50 implying the lowest
order QED subprocess ete~ — ete~yy" and subsequent fusion of v¥* into 2.
In this case, the origin of the photons is most clean theoretically, so one directly
measures F,_«,0(Q?).

For a fixed-target machine like CEBAF, one can imagine two possibilities for
the subprocess:

a) 7y* — x°, with an almost real Primakoffl photon coming from the hadronic
target, or

b) ¥*x® — +, now with a pion extracted from the target and a real photon de-
tected in the final state. ‘To detect the second subprocess, one should exclude

the pomeron exchange. This is a very difficult task though polarization mea-
surements can make this more feasible. With the second subprocess, one would
also face the standard set. of problems related to extrapolation to the pion pole.
Feasibility of the F, 1o x0(Q?) experiments at CEBAF is under study [12].

B. Theory

In perturbative QCD, the vy* — #° form factor is described by a simple
diagram similar to the handbag diagram for deep inelastic scatlering. Tt gives

[5]:

ar !y, (z)
pQCD 2y _ Pxlz) 4
PR @ = 35 [ 2 v o0/, (6)
where the unknown nonperturbative information is accumulated by the integral
1
1= / Py, (1)
0 F

A few remarks are in order here.

1. The pQCD expansion starts with the term of zeroth order in the QCD
coupling constant a,, i.e., the asymptotically leading term has no suppres-
sion.This situation is identical to that in deep inelastic scattering. Hence,
we have all the reasons to expect that the pQCD description in this case
must work at Q2 as low as | GeV2.

2. The value of F,,.,0(@?) at Q2 = 0 reduces to the amplitude for the two-
photon decay % — 49, and the latter is fixed by the ABJ-anomaly [!1).

Thus, despite the fact that the process 7% - 77 for real photons does not,
involve any large momentum transfer, this amplitude is calculable

Prach(g) = -1, (8)

LT

though the result involves another nonperturbative parameter - the pion decay
constant f,. However, its value is well known experimentally: f, ~ 133 MeV.



On the large-Q? side, assuming the so-called asymptotic form [1,4,3] for the pion
distribution amplitude

@3 (z) = 6fez(l - 2), )

one obtains an absolute prediction for the asymptotic behaviour [5]
as 4'-fl'
F‘ry't“(Qz) = _Q?_ + O(IIQ") (10)
Brodsky and Lepage [13] proposed an interpolation formula

F‘n't"(Qz) = (11)

1
whe (14 255)

which reproduces both the Q2 = 0 value and the high-Q? asymptotics.

The Bl-interpolation formula has a monopole form F,,.,0(Q?) ~ 1/(1 +
Q?/s0) with the scale sy ~ 4n?f2 2 0.7 GeV? being numerically very close to the
£-meson mass squared: mf, 7 0.6 GeV?2. So, the BL-interpolation suggests a form
similar to that based on the VMD expectation Flrpeno{@Q?) ~ 1/(1+ Q*/m?). In
fact, as it will be explained later, the combination s0 = 4x% {2 plays an important
role in the QCD sum rule analysis of the axial current channel: g gives the pion
duality interval or the effective threshold for higher states in this channel, and the
BL-interpolation formula exactly coincides with the resuit based on the so-called
local duality prescription [14].

Comparison with existing experimental data {15], shown in Fig.1, shows a
good agreement with the BL-interpolation formula and local duality. It should
be emphasized here that these approaches assume/require the asymptotic form
for the pion distribution amplitude. On the other hand, the curve based on
the unmodified lowest-twist PQCD prediction with asymptotic wave function
(eq.(10)) goes marginally higher than the data. The situation is even worse if
one takes the Chernyak-Zhitnitsky form

¢5% () = 30fux(l - z)(1 - 22) (12)

which increases the I-integral by the factor 5/3 ~ 1.67. A simple monopole-type
interpolation to the CZ asymptotics is also excluded. Thus, the Foyere(Q?) is

Frral0.Q 5}/F* 0 (0.0)

-
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FIG. 1. Comparison of experimental data with theoretical predictions for
F. eno{@%). a) VMD, b) BL-interpolation & QCD local duality, ) Finite-M* QCD
sum rules, d) Leading-twist pQCD with asymptotic distribution amplitude, €} Lead-
ing-twist pQCD with CZ distribution amplitude.

rather sensitive to the form of the pion distribution amplitude ex(z). In fact,
if one agrees that there are no reasons why the interpolated pQCD prediction
for this process should not work with, say, 10 or 20 % accuracy for Q? between
I and 2 GeV?, then one should also agree that existing data exclude the CZ
form for the distribution amplitude. On the other hand, the data are absolutely
consistent with predictions based on the asymplotic form of p,(z). The data
also agree with the VMD-curve and the results of a more detailed (“finite- M2")
QCD sum rule analysis [14].

For further applications, it is also very important to note that the BL-
interpolation formula implies a suppression of the hard quark propagator in the
region of small virtualities

Vol 3fx .
[} %d.":—’Q—u—?_*_so. (13)

A possible interpretation is that in the regions where the quark virtuality x(}?
1s small, one should take into account effects due to the transverse momentum;:
*Q? — (2Q% + k3). Then sp may be treated as an average value of the com-
bination &2 /z. This value is not small: s == 0.7GeV?, and one should expect



sizable predasymptotic effects for Q% ~ 1GeV2. On the other hand, one should
expect that the higher 1/Q? corrections do not strongly affect the pQCD result
above Q222 — 3 GeV2.

C. Lessons

Thus, the analysis of Fye xo(@?), which is the simplest form factor from both
the pQCD and NpQCD (QCD sum rule) points of view, shows that

e The experimentally measured magnitude of this form factor agrees well
with the prediction assuming the asymptotic form of the pion distribution
amplitude.

¢ Extrapolating the pQCD prediction Frrens(Q?) = 4x Fx1/Q? into the re-
gion of moderate and small Q2, one should substitute I by a smaller value
HQ?) ~ I/(1 + 30/Q?) with s, being a “typical hadronic scale” ~s m?.

III. PION ELECTROMAGNETIC FORM FACTOR

Now we can make the next step and consider a more complicated case when
only one vertex of a 3-point function is kanown and two are unknown. So, let us
discuss the pion electromagnetic form factor Fyerx(Q?) and compare its physics
to that of F,.,0(Q?).

The perturbative QCD prediction [1-3) is that, at (asymptotically) high Q2,
the pion EM form factor is dominated by a hard gluon exchange

2
FI99P(Q?) = Gras 27 +001/Q") (14)
where I is the same integral of the pion distribution amplitude we encountered

studying F,,..(Q?).
It is instructive to rewrite the pQCD formula as

s N o
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For the asymptotic wave function, one has 1/f = 3 and FPCDas2y
Z—‘g‘(a,/r), or, numericaily, Q?Fr9¢D.as _, (as/7}(1.4GeV?). “Experimen-
tally”, {(a,/x) is close to 1/10. So, this is the high-Q@? prediction. On the other
hand, the pion form factor has an absolute normalization at Q% = 0: F,(0) = 1.
To extrapolate the one-gluon-exchange (OGE) term to low @? values, one can
try to use the prescription I — I/(1 + 50/Q?) discussed above. In this case,
the OGE formula extrapolates into zero at Q% =0, indicating that the low-Q?
behaviour might have nothing to do with the OGE. One can try another extrap-
olation prescription 12 — 12/(1 + 250/Q?) which coincides with the original one
in the first 1/Q?% correction at large Q2, but gives an overall monopole formula
FPSE(Q?) ~ 1/(Q? + 250). Then FPCE(0) = (1/3f,)*(e, /7). Thus, with the
asymptotic wave function (I/3f, = 1), favored by the F,.,.,.(Q?) data, this ex-
trapolation gives a nonzero, but small {a./7) ~ 1/10 part of the total pion form
factor value F,(0) = 1. This also suggests that the low-Q? behaviour of the pion
form factor is dominated by contributions different from the OGE.

One can try also to arrange a brute force interpolation Q%) = /(i +
Q?/M?) between the Q? = 0 value and the asymptotic pQCD prediction. Then
one should take M? = 2sq(er, /) which is 0.14 GeV? for the “standard” value
(a,/%) = 0.1. To make M? closer to mz, one should take o, ~ 1.5 which seems
too large. In any case, pQCD is not applicable if a,2>1. If one takes Chernyak-
Zhitnitsky wave function, then 7 /JFx = 5, and the interpolation parameter M?
is equal to %‘-’a,/r, and a, > 0.5 puts M2 close to the desired value around
0.6 GeV?. However, as discussed earlier, the CZ distribution amplitude is ruled
out by the data on the F\y2(Q?) form factor.

Ar: lternative explanation, suggested by our original interpolation attempt
(and 1. )CD sum rules, as we will see later) is that “1” (i.e., FL(0)) does not
interpotate into the one-gluon-exchange term, simply because “1” does not and
cannot contain the (a,/x) factor. The very presence of the (a,/w) factor means
that the one-gluon-exchange diagram is a higher-order correction to a diagram
which has the zeroth order in a,. Such a diagram exists and it corresponds to
the so-called soft contribution. It describes the situation when the active quark
is only slightly virtual both before and after scattering. It is this diagram which
provides the pion form factor normalization to unity at zero momentum transfer.
The soft contribution Fzolt g totally nonperturbative, it definetely dominates the

11



form factor at low 2, and though one may question the range of Q2 in which
this dominance persists, there is po question that the soft contribution plays a
very unportant role at CEBAF energies [16).

IV. QCD SUM RULES: A KEY(HOLE) TO NPQCD PHYSICS

Ideally, one should be able to calculate the NpQCD functions Fioii(Q?),
Fyrex(Q?), pu(z), Gn(QY), ¥N(Z1, 22, 23), ele. from a theory. Mowever, bad
news is that there is no such theory yet. Of course, there are some good news
coming from the progress of lattice QCD, chiral perturbation theory, QCD sum
rules and other approaches going beyond the standard PQCD boundaries. Among
these approaches, the QCD sum rule method [7] has the widest tange of applica-
tions and many impressive results. An attractive feature of the method is that
it is based exactly on the idea to use the well-understood properties of QCD in
the asymptotic freedom region to probe its nonperturbative dynamics.

A. Basics

One of the fundamental ideas of the QCD sum rule approach is that the appli-
cability of pQCD is limited not by an uncontrollable increase of a,(k?) at small
momenta . Rather, the predictive power of pQCD is limited by nonperturbative
effects which appear at momentum transfers for which a, is still smalj. Consider,
eg., the one-gluon-exchange diagram discussed above. If momentum k flowing
through the gluon line s, say, only 500 MeV, one cannot rely on pQCD not be-
cause a, (500 MeV) is too large (in fact, it is stiii reasonably small}, but because
one cannot trust the pQCD formula D(k) ~ 1/k2 for the gluon propagator. Just
like the Fyyex(Q?) form factor has no | /Q? singularity at small Q?, the “real-life”
gluor propagator will not blow up in small-k? region. In other words, the “ex-
act” gluon propagator D(k) (which is a T-product of two gluonic fields averaged
over the “physical” vacuum) differs from its perturbative counterpart obtained
by averaging the T-product over the perturbative vacuum, and the difference is
concentrated in the small-momentum region. At large momenta, the difference
vanishes and one can rely on pQCD.

12

Within the QCD sum rule approach, the objecis parameterizing the difference
between “real” {“exact”, “physical”, etc.} and perturbative vacua of QCD play
a crucial role. Examples include quark condensate (¢9). gluon condensate {GGY,
mixed condensate ({0 G)y), etc.

Another basic concept is the quark-hadron duality. A good example is
provided by the et e~ -annihilation into hadrons. In the low-energy region,
ot (s, ete~ hadrons), the total cross section contams pronocunced resonances
and has no similarity to the smooth curve given by a perturbative QCD calcu-
lation of 0% (5, ete~ — 9q). However, despite the fact that locally in energy
the difference between the theoretical perturbative calculation and experimental
nonperturbative result is drastic, if one integrates both cross sections over a large
enough energy range (0,5), the resulis will be very close:

s 5
/ o' (s,ete” - q¢)ds ~ f o' (s, ete” — hadrons)ds . (16)
[} 0

In fact, the version of quark-hadron duality incorporated within the QCD
sum rule approach is more sophisticated. A typical QCD sumu rule has the form

0O 00 ~ 12
hadro —/M7, ark —s/M? (GG) (W)
/(; P (s)e M g ./0' Pl (s)e M g ezt bTJ? + ...

(17)

‘Thus, the difference between the idealistic perturbative quark spectrum and the
“real-life” hadronic one s measured with an adjustable weight function ¢—*/M*
(M is usually referred to as the “Borel parameter”), and the resuit js expressed
in terms of quark, gluon, ete. condensates (99),(GG), ... .

Of course, having just a few first condensates, it is possible to reconstruct
only the gross features of the physical spectrum. The usual approximation is Lo
represent the physical spectrum by a “first resonance plus continuum” model,
with the “continuum” coinciding with the perturbative prediction and starting
at some effective threshold s — so. The value of sy and pParamelers fr mpg
specifying the first resonance contribution are extracted from the sum rule

‘0 X . =2
f}ze_"“a“lu -_—f p‘l““’*(s)e"‘/'" ds + ai(ﬂ;—cj-)- + 5%92— +.o. (18)
0

by requiring the best agreement between its left- and right-hand sides.

13



B. Local duality

Now, if one formally takes M = 0o, one obtains the local duality relation

fa= [ ot o)as (19)

which states that one can get the lowest resonance contribution by just integrating
the perturbative density over the appropriate duality interval sq (the bonus of
the finite-M? QCD sum rules with condensates is that it allows one to calculate
so from the condensate values rather than input it as a free parameter).

In the axial-current channel, one has an infinitely narrow pion peak p, =
7f25(s — m2), a rather wide peak at s = 1.6 GeV? corresponding to A, and
then “continuum” at higher energies. The simplest model is to treat A, also as
a part of the continuum. For the continuum, the jowest-order perturbative QCD
calculation gives an energy independent result PPt = 1/4x. Incorporating the
local duality, we get the relation between the pion decay constant and the pion
duality interval:

51 = 41l'2f3. (20)

For the pion distribution amplitude, the tocal duality prescription gives

3s
¢rP(z) = ﬁx(l —z), (21)

which coincides with the asymptotic wave function if one takes sy = 422 J£2
As we have seen eatlier, the combination 4x? f? naturally appears in the
Brodsky-Lepage interpolation formuta. In fact, the local duality prescription

0 Jp
] pquark(s) ds = / phadron (3) ds (22)
0 0
applied to the relevant spectzal density gives the expression [14]
1 1
FD) A2y
1'7'#0(Q ) ﬂ'f, 1 i 02/30 (23)

which coincides with the BL formulaif 5o = 47%f2 ie. ifthe pion duality interval
for the 3-point function is equal to that extracted from the basic 2-point function.
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Local duality can also be used to get an estimate for the soft contribution to
the pion form factor [17]:

1+ %
F:pjt(LD)(Q?) =1= —— 7 (24)

(1+8)"

Q?

For large Q?, this soft contribution behaves like 6s3/Q*, which is one power of
50/Q?* down compared to the one-gluon-exchange term.

To get the local duality estimate for the one-gluon-exchange (OGE) contribu-
tion, one should perform a two-loop calculation for a three-point function, which
i rather involved. However, the Q? = 0 value can be easily extracted from exist-
ing result for the two-point function: Fy “F(-P) g2 0) = a,/x. The high-Q?
local duality result coincides with that obtained in PQCD with the asymptotic
wave function F,?GE(LD)(Qz)h:,,w = FPCDos g2y %i}("—;l), and the siin-
plest interpolation is

3 i
F’?GE[LD)(Q:!) = (a;) L4+ Q?%/2s (25)

Combining the O(1) (soft) and the O(a,) (“hard”) terms produces the total local
duality estimate for the pion form factor

F:o]t(LD)(Qg)_,_F.QGE(LD)(QQ)
14 2

FIEOYQY) = : (26)
The resuiting curve is in good agreement with existing data (see Fig.2).

Local duality can be also applied to the nucleon form factors [18]). For the
proton magnetic form factor the result is f19]

Ghy(Q?) = g\/Tz —1{(aT? ~ 1)1 - 1) 4 (4T~ yTV/TE 1}_l .

where T' = 1+ Q?/2s¢ and the duality interval s, for the nucleon [20]is 2.3 GeV2.
The agreement with experimental data shown in Fig.2 is also good. The theo
retical curve starts to systematically deviate from the data only in the region
Q*215GeV2.

It should be noted, that though jocal duality works very well in many cases, it
has a less fundamental status compared to the original QCD sum rules involving

15
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FIG. 2. Comparison of local duality predictions with experimental data for the pion
form factor (left): Q* P Py (sokid curve), Q* FPPNQ) (dashed curve) and
proton magnetic form factor (right).

Q%{Gev?)

condensates and finite values of the Borel parameter M2, In fact, only a thorough
study of the Borel sum rules can lell whether the duality interval s, is really the
same in different situalions, in particular, if it depends on Q? or not in the form
factor calculations. Absence of such a dependence is not obvious, because the
coefficients characterizing the magnitude of the condensate corrections in a form
factor surn rule, usually depend on Q2. Such a dependence is especially important
atl large and small Q2.

C. Low ?

At small @2, the perturbatively calculated coefficient functions contain sin-
gularities In(Q?), 1/Q2, ete. Just like in all cases considered earlier, these singu-
larities simply signalize that one cannot extrapolate the perturbative result into
the nonperturbative region. More formally, these singularities are generated by
long-distance Propagation in the channel related to smail momentum Q. As a
result, one obtains a new type of NpQCD objects - two-point correlators n(Q?)
taken at low values of Q2. To evaluate them, one can use again the same old
tactics: take the correlator I(Q?) in the asymptotic freedom region of large Q2
where one can rely on the operator product expansion (with condensates elc.),
construct the model hadronic spectrum and then, using this spectruin, calculate
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FIG. 3. Comparison of QCD sum rule calculations in the low-Q? kinematics with
experimental data for the pion form factor (left) and proton magnetic form factor (right).

0(Q?) in small-Q? region. As a result, one would get 1/(Q? + m?2) instead of
1/Q?, and there will be no singularities for Q? = 0, just as expected. In this way,
QCD sum rules were used to calculate the low-Q? behaviour of pion (21}, kaon
[22], proton and neutron [23] form factors.

D. High Q* and nonlocal condensates

At high Q2, some of the coefficients in front of higher condensates contain
factors like Q%, @1, ete. and one should resum OPE in some way. It was demon-
strated [24] that the Q? growth resuits from the Taylor expansion of the original
nonlocal condensates over the local ones. To get rid of this problem, it was
suggested [9] Lo avoid the Taylor expansion and work directly with nonlocal con-
densates. It is convenient to parameterize the nonlocal condensate (¢(0)g(2))
as

(§(0)a(2)) = (4} [ T e gy (28)

The v¥-moment of the function f(v)is given by matrix elernent (¢ D*)N ¢}, and
for this reason one can interpret f(v) as the distribution function of vacuum

quarks in virtuality.
In particular, for the lowest two moments one has
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fo frydv =1, fa uf(u)du_2Tq)—: 2", (29)

with ,\ﬁ having the meaning of the average virtuality of vacuum quarks. Some
earlier QCD sum rule studies [20] give the estimate A2 =0.4GeV? Constructing
models of nonlocal condensates, one should salisfy also some other constraints.
For instance, if one assumes that the vacuum matrix element {G(D?)Noq) exists,
then f(v) should vanish faster than 1/vNo+) as 5 . o5, The opposite, small-»
limit of f(v) is governed by the large-|z| properties of the function Q(z?), ie., by
its behaviour at large space separations or at large values of the imaginary time
variable r = izg. The latter case can be easily assessed using the QCD sum rule
for the heavy-light meson spectrum in the heavy quark eflective theory (HQET).
ln the HQET, the heavy quark has a trivial propagator Sg(z) ~ 6%(2)8(z;)
and, hence, the time dependence of the corzelator of two heavy-light currents
is determined by the light quark propagator [25]). At large imaginary time r,
the correlator is dominated by the lowest state contribution ~ e-T4 where A =
(Mg =mQg)|mg—oo is the lowest energy level of the mesons in HQET. This means
that Q(z2) ~ e~ 1:1A for large Euclidean z and f(v) ~ e=A*/% jp the small-v region
[26]. Numerically, A is around 0.45 GeV. As a result, f(v) is a function peaked
around v = )«;*'/2 ~ 0.2GeV? . Choosing a different value of the average virtuality
A? changes the peak location. Calculating F?°/'(Q?) within the QCD sum rules
approach and using simple models for the nonlocal condensates, we obtained the
curves showing a rather strong dependence on the parameters characterizing the
nonlocal condensates [24]. This, in principle, gives a possibility of extraciing
Lthese parameters from the data. The qualitative observation is that the bigger
the average virtuality parameters A3, 2%, the smaller the soft contribution.

The nonlocal condensates were also used (9] in QCD sum rules for the pion
distribution amplitude wx(z). The trend observed in these studies is that when
the average virtuality parameter Ag increases, the resulting distribution ampiitude
becomes narrower, changing from the Chernyak-Zhitnitsky form for ,\3 =0to
the asymptotic form for /\3 ~1GeV?2,

From above observations, one can expect that thers may be a correlation
between the form of the pion distribution amplitude and the size of the soft
contribution to the pion form factor, namely, that broad distribution amplitudes,
.g.. those of the CZ type imply a large soft contribution, while the narrow ones
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are accompanied by smaller soft terms. In fact, this correlation really takes place
because the QCD sum rules for the moments of the pion distribution amplitude
and those for the pion form factor have a very similar structure [19,27).

E. Light-cone sum rules

Recently, another way of extending the applicability range of the QCD sum
rules to higher Q? was proposed [28). It is based on the analysis of the hadron-
to-vacuum matrix elements for the correlator of two currents, e.g., for the pion
form factor one should consider

T (prp2) =[O (1,8 (o) ate (30)
and apply, at large Q? = =(p1 — p2)?, the operator product expansion
TP () ~ Y Cazh)o, (31)

In this approach, one of Lhe pions (which is in the bracket I7(p1}}) appears explic-
itly and is treated like in pQCD, t.e., decsribed by matrix elements {01, w1
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FIG. 5. Combination Q*Fo(@?) calculated within the light-cone sum rule approach
for different choices of the pion distribution amplitude.

or distribution amplitudes, while another (generated by the current (x) is
extracted from the correlator using the QCD sum rule technique.

As a result, one can explicitly study sensitivity of the soft term to the choice
of the pion distribution amplitude. Again, assumning the CZ amplitude, one gets
a very large soft term (see Fig.5). One should also remember, that using the
CZ form, one obtains a large OGE contribution as well. Hence, in the CZ-
case, adding the soft and OGE terms marginally overshoots the data On the
other hand, using the asymptotic foin, one obtains a curve comfortably close to
experiment. .

The light-cone QCD sum rules were also applied to the y*x — A, transition
form factor [29]. Future applications of the light-cone sum rujes should include
baryon form factors GEMn(Q%), transition form factors for YN — A, 4N -
N* ele. transitions, all measurable at CEBAF. The kaon form factor can be
calculated both in the light-cone sum ruje approach and with standard 3-point
sum rules. The results for Fg(Q?) are sensitive both to the strange-quark ._mass
™, and to the difference between the strange-quark condensate (55} and the
“ordinary” (uu). It should be mentioned, that the results of the QCD sum
rule calculations of the kaon form factor in the low-Q? ragion [22] are in good
agreeient with existing data.
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V. CONCLUSIONS

Our goal here was to describe a modern picture of the nonperturbative QCD
physics behind the elastic electron-hadron scatlering processes al CEBAF en-
ergies. This picture, formulated directly in terms of quark and gluon fields, is
based on a systematic use of the QCD factorization of the short-distance (per-
turbative) and iong-distance {nonperturbative) eflects within the framework of
the QCD sum rule method. This method relates the nonperturbative dynamics
of individual hadrons to nontrivial properties of the QCD vacuum, thus provid-
ing a unified description of nonperturbative effects in QCD. The QCD sum rule
analysis shows that elastic processes at CEBAF energies are dominated by non-
perturbative effects, with possible signatures of the perturbative QCD dynamics
in 10GeV energy region. On several examples, we demonstrated sensitivity of
the QCD sum rules predictions for elastic processes to parameters and/or func-
tions describing/parameterizing the nonperturbative aspects of the QCD dvoam-
ics. This opens a possibility of experimental determination of these parameters
Such a determination, however, would require both a high precision of CEBAF
experimental data and a wider range of energies and momenta involved in these
experiments. The increase of CEBAF energy is especially crucial for a detailed
study of the interplay between the nonperturbative and perturbative QCD effects
in elastif: processes.
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