Feasibility and Analysis of Line-Frequency Interference in the CEBAF Accelerator

I. INTRODUCTION

The design specifications for the CEBAF electron beam (4 GeV, 200 microampere, continuous wave) include a spot size and stability on target of approximately 100 microns and a geometric beam emittance of 2 e-9 meter radian at 1 GeV. Time averages of these parameters are important and can be significantly degraded by line-frequency interference. In addition, there are several septa in the accelerator which have beam clearances of only a few millimeter; beam position perturbations at these locations could result in beam loss and interruptions in beam delivery, not to mention potential damage to system components by 800 kW of beam power.

The CEBAF accelerator is composed of two parallel linear accelerators, connected head-to-tail by five 180-degree recirculation arcs at one end and four such arcs at the other. Beam from the injector enters the North Linac (NL), merging with the recirculated beam. The beams of differing energy are separated at the first "spreader" and transported to the "recombiner" at the entrance of the South Linac (SL). After acceleration, the beams are separated again at the second spreader region, where each beam is directed either into a recirculation arc for the next pass through the system or toward the end stations for experimental use.

During early operation of the CEBAF injector, we observed beam motion in the 45 MeV region on the scale of several millimeters [1]. The injector has been cleaned up well by means including the correction of grounding errors and the re-routing of some power distribution lines, but in commissioning the accelerator we are finding line-synchronous energy variation and millimeter scale steering perturbations in the main accelerator.

II. DATA ACQUISITION

The beam position monitor (BPM) system at CEBAF has a global trigger for synchronization with pulsed beam operation. We have provided a line-synchronous mode for the master system trigger, along with a programmable delay with respect to the AC line zero crossing. This delay allows the use of the beam position monitors (which have a 1 Hz update rate through the control system) as a multichannel data acquisition system, effectively a digital sampling oscilloscope, gathering synchronized orbit data throughout the accelerator as a function of phase delay with respect to the AC line. Measurement of the beam position in dispersive regions provides relative beam energy information at a resolution of approximately 0.001% [2].

The present injector line synchronous trigger uses a simple zero crossing detector, and has a jitter window of approximately 20 microseconds with respect to a line-synchronized phase locked loop. The programmable delay (16 bits with 1 microsecond resolution) spans the full 12 millisecond 60 Hz cycle. BPM data are logged for each of a series of values for the time delay with respect to the AC line trigger. For the measurements reported here, we used a 500 microsecond delay increment, cycling multiple times through the 60 Hz period.

The present BPM system has an analog bandwidth of approximately 50 kHz, so the measurements described here are not limited by the BPM hardware. Each position reading update to the control system consists of the average value from twelve sequential beam pulses, sampled approximately 65 microseconds into each macropulse (typically 100 microseconds in duration). The BPM hardware monitoring the various recirculated passes of the beam around the machine is multiplexed to the digitizers so that in each 1-second interval, each of the 5 passes is sampled 12 times. The precision of each averaged measurement at the 15 microampere beam current used for much of the recent commissioning operations is typically 0.2 millimeter. The averaging process strongly suppresses detection of perturbations at various harmonics of 5 Hz, but the harmonics of 60 Hz are unaffected.

III. DATA ANALYSIS

The time structure of the position perturbations is well represented by the first three harmonics of the line frequency, dominated by the fundamental and third harmonic (see Figure 1). Ground loop current measurements made without the averaging limitations of the our BPM protocol are similarly dominated by the first and third harmonics of 60 Hz, supporting the idea that harmonics of the 60 Hz are most important. We have Fourier analyzed the position data for the sine and cosine components.
lines until the multipass linac BPM system becomes operational. We find all beams carrying comparable steering perturbations in the separated regions, as might be expected from the above discussion. Comparison against static optics data for this configuration shows that the transport through the arcs is consistent with the static optics with time variations in both steering and energy, so the first three arcs appear to be relatively free of line-frequency sources. (Data in this set for the fourth and subsequent arcs is incomplete due to partial interception of beam at a septum upstream from the fourth arc.)

The propagation of the beam downstream from the vertical separation magnets of the spreaders to the point of injection into the arcs is also consistent with static optics, except for a localized perturbation coincident with the path length adjusting "dogleg" chicane magnets. These dogleg regions contribute horizontal (in the plane of the chicane) momentum kicks of similar magnitude to each beam, corresponding to a kick of approximately 5 microradian for the first pass (395 MeV in this instance) beam. This local perturbation was investigated, and a malfunction in the dogleg magnet supplies was found to be generating ripple of the proper magnitude to explain the effect. We have not yet identified a source for the horizontal and vertical perturbations observed at the spreader magnets.

In these and other measurements made to date, there is a clear increase in the 180 Hz component for the higher passes, becoming more significant than the 60 Hz component for the third and fourth passes.

Table 1: Sine and cosine components of energy variation for first, second, and third harmonics of 60 Hz, in parts per million. The arc 1 data represent the North Linac ripple alone, while the arc 2 data represent the sum of North Linac and South Linac ripple. A weighted sum of these for comparison against the arc 3 measurements is shown in the bottom row (see text). Discrepancies are typically 10 to 20 parts per million.

<table>
<thead>
<tr>
<th>Harmonic Amplitudes of Energy Variations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>sin</td>
</tr>
<tr>
<td>Arc 1</td>
</tr>
<tr>
<td>Arc 2</td>
</tr>
<tr>
<td>Arc 3</td>
</tr>
<tr>
<td>Arc 1 + Arc 2</td>
</tr>
</tbody>
</table>

B. Energy perturbations

The same analysis also provides a measure of line-synchronous energy variations, as the arcs include regions of dispersion up to approximately 2.5 meter. The energy variation for the first three line harmonics is shown in Table 1. The data of the table have precision of 10 parts per million (estimated from the observed scatter of 50 parts per million in energy estimates made from the same BPMs in real time, coupled with averaging over 25 times as many samples as are used in the on-line routine, and (2) from the residual errors of the fit to the data). The row labeled "Arc 1 + Arc 2" contains a weighted sum of the Arc 1 (North Linac ripple) and Arc 2 (North Linac plus South Linac ripple). For this run, the beam energies were 395 Mev in Arc 1, 750 MeV in Arc 2, and 1105 MeV in Arc 3. The injector energy lock was active for this run, compensating for the injector energy ripple. Therefore the absolute energy ripple in Arc 3 should be equal to the sum of the energy ripple in Arc 2 plus the contribution from the second pass through the North Linac. The discrepancies between the measured Arc 3 ripple and the weighted sums for Arcs 1 and 2 are typically in the 10 to 20 parts per million range, in reasonable agreement with the error estimates we have for the ripple determinations.

IV. CONCLUSIONS

We have devised a method of taking beam position data throughout the CEBAF accelerator, using the BPM system in a sampling mode, to determine the line-synchronous beam position perturbation. We have found that comparison of these data against the measured static optics provides a useful means of identifying sources of line-frequency interference. We have identified microradian-level point sources of interference (magnet ripple) and have resolved relative energy variations of the beam at the 0.001% level. We anticipate that the techniques we are using will be useful for periodic measurement and long-term feedback correction of residual line-frequency variations at CEBAF.

V. REFERENCES