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Abstract

We develop a QCD sum rule analysis of the form factor Fγ∗γ∗π◦(q2, Q2) in the region
where virtuality of one of the spacelike photons is small q2 � 1 GeV2 while another is
large: Q2>∼ 1 GeV2. We construct the operator product expansion suitable for this kinematic
situation and obtain a QCD sum rule for Fγ∗γ∗π◦(0, Q2). Our results confirm expectation
that the momentum transfer dependence of Fγ∗γ∗π◦(0, Q2) is close to interpolation between
its Q2 = 0 value fixed by the axial anomaly and Q−2 pQCD behaviour for large Q2. Our
approach, in contrast to pQCD, does not require additional assumptions about the shape of
the pion distribution amplitude ϕπ(x). The absolute value of the 1/Q2 term obtained in this
paper favours ϕπ(x) close to the asymptotic form ϕasπ (x) = 6fπx(1− x).
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1. Introduction.

The transition γ∗γ∗ → π0 of two virtual photons γ∗ into a neutral pion provides an exceptional

opportunity to test QCD predictions for exclusive processes. In the lowest order of perturbative

QCD, its asymptotic behaviour is due to the subprocess γ∗(q1)+γ∗(q2)→ q̄(x̄p)+q(xp) with x (x̄)

being the fraction of the pion momentum p carried by the quark produced at the q1 (q2) photon

vertex (see Fig.1a). The relevant diagram is similar to the handbag diagram for deep inelastic

scattering, with the main difference that one should use the pion distribution amplitude ϕπ(x)

instead of parton densities. For large Q2, the perturbative QCD prediction is given by [1]:

F as
γ∗γ∗π0(q2, Q2) =

4π

3

∫ 1

0

ϕπ(x)

xQ2 + x̄q2
dx

q2=0−→ 4π

3

∫ 1

0

ϕπ(x)

xQ2
dx ≡ 4π

3Q2
I (1)

(Q2 ≡ −q2
2, q2 ≡ −q2

1 and our convention is q2 ≤ Q2). Experimentally, the most important

situation is when one of the photons is almost real q2 ≈ 0. In this case, necessary nonperturbative

information is accumulated in the same integral I (see eq.(1)) that appears in the one-gluon-

exchange diagram for the pion electromagnetic form factor [2, 3, 4]. The value of I depends on

the shape of the pion distribution amplitude ϕπ(x). In particular, using the asymptotic form

ϕasπ (x) = 6fπxx̄ [2, 3] gives F as
γγ∗π0(Q2) = 4πfπ/Q2 for the asymptotic behaviour [1]. If one takes

the Chernyak-Zhitnitsky form ϕCZπ (x) = 30fπx(1 − x)(1− 2x)2 [5], the integral I increases by a

sizable factor of 5/3, and this difference can be used for experimental discrimination between the

two forms.

An important point is that, unlike the case of the pion EM form factor, the pQCD hard

scattering term for γγ∗ → π0 (γ denoting a real photon) has zeroth order in the QCD coupling

constant αs, i.e., the asymptotically leading term has no suppression. The situation is similar

to that in deep inelastic scattering. Hence, we have good reasons to expect that pQCD for

Fγγ∗π0(Q2) may work at accessible Q2. Of course, the asymptotic 1/Q2-behaviour cannot be true

in the low-Q2 region, since the Q2 = 0 limit of Fγγ∗π0(Q2) is known to be finite and normalized

by the π0 → γγ decay rate. Using PCAC and ABJ anomaly [6], one can calculate Fγγ∗π0(0)

theoretically: Fγγ∗π0(0) = 1/πfπ. It is natural to expect that a complete QCD result does not

strongly deviate from a simple interpolation πfπFγγ∗π0(Q2) = 1/(1 + Q2/4π2f2
π) [7] between the

Q2 = 0 value and the large-Q2 asymptotics3. This interpolation implies the asymptotic form of

the distribution amplitude for the large-Q2 limit and agrees with CELLO experimental data [9].

It was also claimed [10] that the new CLEO data available up to 8GeV 2 also agree with the

interpolation formula. This provides a strong evidence that the pion distribution amplitude is

rather close to its asymptotic form. Because of the far-reaching consequences of this conclusion,

it is desirable to have a direct QCD calculation of the γγ∗ → π0 form factor in the intermediate

region of moderately large momentum transfers Q2>∼1GeV 2. Such an approach is provided by

QCD sum rules. As we will see below, the QCD sum rules also allow one to calculate Fγγ∗π0(Q2)

for large Q2 without any assumptions about the shape of the pion distribution amplitude. In fact,

3In particular, such an interpolation agrees with the results of a constituent quark model calculation [8]
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the QCD sum rule for Fγγ∗π0(Q2) can be used to get information about ϕasπ (x).

2. Definitions.

The γ∗γ∗ → π0 transition form factor Fγ∗γ∗π0(q2, Q2) can be defined through the matrix element∫
〈π,

→
p |T {Jµ(X)Jν(0)} |0〉e−iq1Xd4X = α

√
2εµναβq

α
1 q

β
2 Fγ∗γ∗π◦

(
q2, Q2

)
, (2)

where α = e2/4π is the fine structure constant, Jµ = e
(

2
3
ūγµu − 1

3
d̄γµd

)
is the electromagnetic

current of the light quarks and |π,
→
p〉 is a π0 state with the 4-momentum p. To incorporate QCD

sum rules [11], we consider a three-point correlation function

Fαµν(q1, q2) =
i

α
√

2

∫
〈0|T

{
j5
α(Y )Jµ(X)Jν(0)

}
|0〉e−iq1X eipY d4X d4Y , (3)

(cf. [12]) containing the axial current j5
α = 1√

2

(
ūγ5γαu − d̄γ5γαd

)
serving as a field with a non-

zero projection onto the neutral pion state: 〈0|j5
α(0)|π0,

→
p〉 = −i fπpα. The three-point amplitude

Fαµν(q1, q2) has a pole for p2 = m2
π:

Fαµν(q1, q2) =
fπ

p2 −m2
π

pαεµναβq
α
1 q

β
2Fγ∗γ∗π◦(q

2, Q2) + . . . , (4)

i.e., the Lorentz structure of the pion contribution is pαεµναβqα1 q
β
2 , and the spectral density of the

dispersion relation

F
(
p2, q2, Q2

)
=

1

π

∫ ∞
0

ρ (s, q2, Q2)

s− p2
ds+ “subtractions”. (5)

for the relevant invariant amplitude can be written as

ρ
(
s, q2, Q2

)
= πfπδ(s−m2

π)Fγ∗γ∗π◦
(
q2, Q2

)
+ “higher states”. (6)

The higher states include A1 and higher broad pseudovector resonances. Due to asymptotic

freedom, their sum, for large s, rapidly approaches the pQCD spectral density ρPT (s, q2, Q2). The

simplest model is to approximate all the higher states, including the A1, by the perturbative

contribution:

ρmod
(
s, q2, Q2

)
= πfπδ(s)Fγ∗γ∗π◦

(
q2, Q2

)
+ θ(s− so)ρPT (s, q2, Q2) (7)

where the parameter so is the effective threshold for higher states. To suppress the higher states

by an exponential weight exp[−s/M2], we apply the SVZ-Borel transformation [11]:

B̂(−p2 →M2)F(p2, q2, Q2) ≡ Φ(M2, q2, Q2) =
1

πM2

∫ ∞
0

e−s/M
2

ρ(s, q2, Q2) ds, (8)
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Figure 1: a) Leading-order pQCD contribution. b) Triangle diagram. c) General structure of

bilocal contributions.

which, moreover, produces a factorially improved OPE power series for large M2: 1/(−p2)N →
(1/M2)N/(N − 1)!.

To construct a QCD sum rule, one should calculate the three-point function F(p2, q2, Q2) and

then its SVZ-transform Φ(M2, q2, Q2) as a power expansion in 1/M2 for large M2. However, a

particular form of the original (1/p2)N -expansion depends on the values of the photon virtualities

q2 and Q2.

3. QCD sum rules for large q2.

The simplest case is when both virtualities are large: Q2 ∼ q2 ∼ −p2 > µ2 where µ is some scale

µ2 ∼ 1GeV 2 above which one can rely on asymptotic freedom of QCD. Then all contributions

which have a power behaviour (1/M2)N correspond to a situation with all three currents close to

each other: all the intervals X2, Y 2, (X − Y )2 are small.

The starting point of the OPE is the perturbative triangle graph (Fig.1b). Using Feynman

parameterization and performing simple integrations we get:

ρPT (s, q2, Q2) = 2
∫ 1

0

xx̄(xQ2 + x̄q2)2

[sxx̄+ xQ2 + x̄q2]3
dx . (9)

The variable x is the light-cone fraction of the total pion momentum p carried by one of the

quarks. Adding the condensate corrections, we obtain the following QCD sum rule:

πfπFγ∗γ∗π◦(q
2, Q2) = 2

∫ so

0
ds e−s/M

2
∫ 1

0

xx̄(xQ2 + x̄q2)2

[sxx̄+ xQ2 + x̄q2]3
dx

+
π2

9
〈αs
π
GG〉

(
1

2M2Q2
+

1

2M2q2
− 1

Q2q2

)

+
64

243
π3αs〈q̄q〉2

(
1

M4

[
Q2

q4
+

9

2q2
+

9

2Q2
+
q2

Q4

]
+

9

Q2q4
+

9

Q4q2

)
. (10)
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It is valid when both virtualities of the photons are large. In this region, the perturbative QCD

approach is also expected to work. This expectation is completely supported by our sum rule.

Indeed, neglecting the sxx̄-term compared to xQ2 + x̄q2 and keeping only the leading O(1/Q2)

and O(1/q2) terms in the condensates, we can write eq.(10) as

Fγ∗γ∗π◦(q
2, Q2) =

4π

3fπ

∫ 1

0

dx

(xQ2 + x̄q2)

{
3M2

2π2
(1− e−s0/M2

)xx̄

+
1

24M2
〈αs
π
GG〉[δ(x) + δ(x̄)]

+
8

81M4
παs〈q̄q〉2

(
11[δ(x) + δ(x̄)] + 2[δ′(x) + δ′(x̄)]

)}
. (11)

The expression in curly brackets coincides with the QCD sum rule for the pion distribution am-

plitude fπϕπ(x) (see, e.g., [13]). Hence, when q2, the smaller of two photon virtualities is large,

the QCD sum rule (10) exactly reproduces the pQCD result (1).

4. Operator product expansion for small q2.

One may be tempted to get a QCD sum rule for the integral I by taking q2 = 0 in eq.(10). Such

an attempt, however, fails immediately because of the power singularities 1/q2, 1/q4, etc. in the

condensate terms. It is easy to see that these singularities are produced by the δ(x) and δ′(x)

terms in eq.(11). In fact, it is precisely these terms that generate the two-hump form for ϕπ(x)

in the CZ-approach [5]. Higher condensates would produce even more singular δ(n)(x) terms. As

shown in ref.[13], the δ(n)(x) terms result from the Taylor expansion of nonlocal condensates like

〈q̄(0)q(Z)〉. Modelling nonlocal condensates by functions decreasing at large (−Z2), i.e., assuming

a finite correlation length ∼ 1/µ for vacuum fluctuations, one obtains smooth curves instead of the

singular δ(x) and δ′(x) contributions, and the result for ϕπ(x) is close to the asymptotic form [13].

Effectively, the correlation length provides an IR cut-off in the end-point regions x ∼ 0, x ∼ 1.

Similarly, we expect that, when q2 is too small to provide an appropriate IR cut-off in the sum

rule (10), such a cut-off is again generated by nonperturbative effects, i.e., that eventually 1/q2

is substituted for small q2 by something like 1/m2
ρ. Below, we show that this is exactly what

happens in the QCD sum rule framework.

To illustrate the nature of the modifications required in the small-q2 region, it is instructive

to analyze first the perturbative term. The latter, though finite for q2 = 0, contains contributions

which are non-analytic at this point:

ΦPT (q2, Q2,M2) =
1

πM2

∫ ∞
0

e−s/M
2

{
1 +

[
2
q2y

M2

+
q4y2

M4

]
eq

2y/M2

ln

(
q2y

M2

)
+ . . .

}
Q2ds

(s+Q2)2
, (12)

where y = s/(s+Q2) and dots stand for terms analytic and vanishing for q2 = 0. The logarithms

here are a typical example of mass singularities (see, e.g., [14, 15] and, for QCD sum rule applica-
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Figure 2: Bilocal contributions with coefficient functions given by a) single propagator; b) product

of 3 propagators; c) product of 2 propagators.

tions, refs. [16, 17, 18]): the singularities are due to the possibility of the long-distance propagation

in the q-channel. In other words, when q2 is small, there appears an additional possibility to get a

power-behaved contribution from a configuration in which the large momentum flows from the Q-

vertex into the p-vertex (or vice versa) without entering the q-vertex, and small momenta flowing

through other parts of the diagrams induce singular contributions. In the coordinate represen-

tation, such a configuration can be realized by keeping the electromagnetic current Jµ(X) of the

low-virtuality photon far away from two other currents, which are still close to each other. The

contribution generated in this regime can be extracted through an operator product expansion for

the short-distance-separated currents: T{J(0)j5(Y )} ∼ ∑
Ci(Y )Oi. Diagrammatically, the situa-

tion is similar to the pQCD limit q2, Q2 � −p2 discussed above. The only difference is that we

should consider now the limit −p2, Q2 � q2. The result again can be written in a “parton” form

(see Fig.1c):

F bilocal(q1, q2, p) =
∫ 1

0
φ(i)
γ ({y}, q2)T (i)({yq1}; q2, p)[dy], (13)

where φ(i)
γ ({y}, q2) can be treated as distribution amplitudes of the q1-photon, with y’s being the

light-cone fractions of the momentum q1 carried by the relevant partons (i.e., quark and gluonic

G-fields present in O). The functions φ(i)
γ ({y}, q2) are related to the correlators (“bilocals”, cf.

[19])

Π(i)(q1) ∼
∫
eiq1X〈0|T{Jµ(X)O(i)(0)}|0〉d4X (14)

of the Jµ(X)-current with composite operators O(i)(0). Performing such a factorization for each

diagram, we represent the amplitude F as a sum of its purely short-distance (SD) and bilocal

(B) parts. The SD-part (which is defined as the difference between the original unfactorized

expression and the perturbative version of its B-part) is regular in the q2 → 0 limit and can be

treated perturbatively. On the other hand, the low-q2 behaviour of the B-correlators Π(q1) cannot

be directly calculated in perturbation theory.
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5. Structure of bilocal contributions.

In the simplest case, the amplitude T (i)({yq1}; q2, p) in the bilocal term is given by a single quark

propagator (Fig.2a):

T (yq1, ȳq1; q2, p) ∼
1

(p− yq1)2
=

1

ȳp2 + yȳq2 − yQ2
, (15)

accompanied by two-body distribution amplitudes φ(i)
γ (y, q2), with yq1 and ȳq1 being the momenta

carried by the quarks (ȳ ≡ 1 − y). The yn-moments of φ(i)
γ (y, q2) are given by bilocals Π(i)

n (q2)

involving composite operators O(i)
n with n covariant derivatives. Note, that it is legitimate to keep

the q2-term in eq.(15) when substituting it into eq.(13): all the (q2/Q2)N and (q2/p2)N power

corrections are exactly reproduced there due to a phenomenon analogous to the ξ-scaling [20] in

deep inelastic scattering. Applying the SVZ-Borel transformation, we obtain the result

ΦB
1 (q2, Q2,M2) ∼ 1

M2

∫ 1

0
φγ(y, q

2)eyq
2/M2

e−yQ
2/ȳM2

dy, (16)

which has the structure of eq.(12): one should just take yQ2/ȳ = s.

In perturbation theory, the amplitudes φ(i)
γ (y, q2) have logarithmic non-analytic behaviour for

q2 = 0. Eq.(12) indicates that, for the triangle graph, there are only two independent sources of

logarithmic singularities. They correspond to two-body operators of leading and next-to-leading

twist in the OPE for T{J(0)j5(Y )}. The log q2-terms reflect the fact that the lowest singularity in

ΦPT (q2, Q2,M2) for the q-channel corresponds to threshold of the qq̄-pair production which, for

massless quarks, starts at zero. However, this is true only in perturbation theory. For hadrons,

the first singularity in the q-channel is located at the ππ threshold, with the ρ-resonance being

the most prominent feature of the physical spectral density for the correlators Π(i)
n (q2) . In other

words, the 1/q2 and 1/q4 terms in the condensates and logarithmic terms in the perturbative

contribution correspond to the operator product expansion for the correlators Π(i)
n (q2), which is

only valid in the large-q2 region. To get Π(i)
n (q2) for small q2, one can use this large-q2 information

to construct a model for the physical spectral density σ(i)
n (t) and then calculate Π(i)

n (q2) from the

dispersion relation

Π(i)
n (q2) =

1

π

∫ ∞
0

σ(i)
n (t)dt

t+ q2
. (17)

To this end, we use the usual “first resonance plus continuum” model

σ(i)
n (t) = g(i)

n δ(t−m2
ρ) + θ(t > sρ)σ

(i)PT
n (t). (18)

Practically, this means that we modify the original spectral density in the region t < sρ by

subtracting all the terms of the OPE for σn(t) in this region and replace them by the ρ-meson

contribution g(i)
n δ(t −m2

ρ). In particular, this subtraction eliminates 1/q2 and 1/q4 singularities

corresponding to the condensate δ(t)- and δ′(t)-contributions into σn(t). For the perturbative

7



contribution, the subtraction procedure removes the log q2 terms. If σPT (t) ∼ t (this produces the

q2 log q2 contribution), the “correction term” is given by

−
∫ sρ

0

tdt

t+ q2
+

g(1)

q2 +m2
ρ

= −sρ + q2 log

(
sρ + q2

q2

)
+

g(1)

q2 +m2
ρ

. (19)

As a result, the −q2 log q2 term cancels the first non-analytic term in the three-point function, and

effectively one gets log sρ instead of log q2 in the small-q2 region. In the large-q2 region, where the

original OPE must be valid, the correction terms should disappear. Requiring that they vanish

there faster than the contribution which they are correcting (i.e., faster than 1/q2) we arrive at

the relation g(1) = s2
ρ/2. In a similar way, if σPT (t) ∼ t2 (this gives the q4 log q2 term) one gets

the relation g(2) = −s3
ρ/3.

Imposing a universal n-independent prescription is equivalent to the assumption that the y-

dependence of the ρ-meson distribution amplitudes coincides with that of the perturbative corre-

lators and, furthermore, that the ρ-meson contribution is dual to the quark one, with the standard

duality interval sρ ≈ 1.5GeV 2 obtained in ref.[11]. In principle, one can use more elaborate models

for the distribution amplitudes ϕ(i)
ρ (y). As far as the requirement of smallness of the additional

terms in the large-q2 region is fulfilled, our results do not show strong sensitivity to particular

forms of ϕ(i)
ρ (y). However, using the local duality approximation for ϕ(i)

ρ (y) we are able to present

our results in a more compact and explicit form.

After the modifications described above, the contribution of the triangle diagram converts into

Φ0(M2, q2, Q2) =
1

πM2

∫ ∞
0

ds e−s/M
2 Q2

(s+Q2)2

{
1 + eyq

2/M2

[
2
y

M2

(
q2 ln

y(sρ + q2)

M2
− sρ +

s2
ρ

2(m2
ρ + q2)

)

+
y2

M4

(
q4 ln

y(sρ + q2)

M2
− q2sρ +

s2
ρ

2
−

s3
ρ

3(m2
ρ + q2)

)]
+ . . .

}
(20)

(here y = s/(s + Q2)). As promised, in this expression, we can take the limit q2 → 0 without

encountering any non-analytic terms. Note, that the modified versions of q2 log q2 and q4 log q2

terms do not vanish in the q2 → 0 limit. Finally, using the formula∫ ∞
0

e−s/M
2

g(s)
ds

M6
=
∫ ∞

0
e−s/M

2

(g(0) δ(s) + g′(s))
ds

M4

=
∫ ∞

0
e−s/M

2

(g′(0) δ(s) + g(0) δ′(s) + g′′(s))
ds

M2
(21)

we can rewrite the q2 → 0 limit of eq.(20) in the canonical form (8) and determine the relevant

spectral density ρ0(s,Q2).

Most of the singular condensate contributions of the original sum rule (10) can be interpreted

in terms of the bilocals corresponding to the simplest, one-propagator coefficient function. As a

result, they are subtracted by the procedure described above. To factorize the gluon condensate

8



contribution, we used a technique similar to that developed for the perturbative term. For the

diagrams with the quark condensate, the factorization in most cases is trivial. However, there are

also terms with the coefficient function formed by three propagators (see Fig.2b). In this case, the

long-distance contribution is described by the photon distribution amplitude φT (y, q2) related to

the O ∼ q̄γ5[γα, γβ]D . . .Dq operators. The OPE for such a “non-diagonal” correlator (cf. [21])

starts with the term proportional to the quark condensate: φT (y, q2) ∼ 1
q2 〈q̄q〉[δ(y) + δ(1− y)],

strongly peaked at the end-points. However, incorporating the nonlocal condensates to model the

higher-dimension contributions and employing a novel technique [22] applied earlier to a similar

non-diagonal correlator, we found that the distribution amplitude of the lowest-state (i.e., ρ-

meson) is rather narrow. Neglecting the higher-state contributions (whose distribution amplitudes

have oscillatory form) we obtain in the q2 = 0 limit

ΦT (M2, Q2) =
128π2αs〈q̄q〉2
27m2

ρQ
4M6

∫ ∞
0

e−s/M
2

sds
∫ 1

s/(s+Q2)

ϕTρ (y)

y2
dy, (22)

where ϕTρ (y) is the normalized distribution amplitude (its zeroth y-moment equals 1), which we

model by ϕTρ (y) = 6y(1 − y). Transforming ΦT (M2, Q2) to the canonical form by using eq.(21)

gives the spectral density ρT (s,Q2). Note that, for our model, ρT (s,Q2) contains the (1/s)+

distribution.

The OPE for the three-propagator coefficient function also produces operators like q̄ . . . γµDµq.

Naively, one would expect that such operators vanish due to equations of motion. However, when

inserted in a correlator, they produce the so-called contact terms [23]. In our case, the contact

terms give

ΦC(Q2,M2) = −256π2αs〈q̄q〉2
27Q6M6

∫ ∞
0

e−s/M
2

[
ln
s+Q2

s
− 2

Q2

s+Q2

]
sds. (23)

Again, the spectral density ρC(s,Q2), obtained after applying eq.(21), contains the (1/s)+ distri-

bution.

Finally, there are also configurations with the coefficient functions given by two propagators

(see Fig.2c) which correspond to three-body q̄Gq-type distribution amplitudes. Their contribution

was found to be small and, to simplify the presentation, we will not include them here.

6. Sum rule for Fγ∗γ∗π0(q2, Q2) in the q2 = 0 limit.

Since all the contributions, which were singular or non-analytic in the small-q2 limit of the original

sum rule, are now properly modified, we can take the limit q2 = 0 and write down our QCD sum

rule for the γγ∗ → π0 form factor:

πfπFγγ∗π0(Q2) =
∫ s0

0

{
1− 2

Q2 − 2s

(s+Q2)2

(
sρ −

s2
ρ

2m2
ρ

)

9



+ 2
Q2 − 6s+ 3s2/Q2

(s+Q2)4

(
s2
ρ

2
−

s3
ρ

3m2
ρ

)}
e−s/M

2 Q2ds

(s+Q2)2

+
π2

9
〈αs
π
GG〉

{
1

2Q2M2
+

1

Q4
− 2

∫ s0

0
e−s/M

2 ds

(s+Q2)3

}

+
64

27
π3αs〈q̄q〉2 lim

λ2→0

{
1

2Q2M4
+

12

Q4m2
ρ

[
log

Q2

λ2
− 2

+
∫ s0

0
e−s/M

2

(
s2 + 3sQ2 + 4Q4

(s+Q2)3
− 1

s+ λ2

)
ds

]

− 4

Q6

[
log

Q2

λ2
− 3 +

∫ s0

0
e−s/M

2

(
s2 + 3sQ2 + 6Q4

(s+Q2)3
− 1

s+ λ2

)
ds

]}
. (24)

The sum rule must be taken in the limit λ2 → 0 of the parameter λ2 specifying the regularization

which we used to calculate the integrals with the (1/s)+ distribution. Furthermore, this sum rule

implies that the continuum is modeled by an effective spectral density ρeff(s,Q2) rather than

by ρPT (s,Q2), with ρeff (s,Q2) including all the spectral densities which are nonzero for s > 0,

i.e., ρ0(s,Q2), ρT (s,Q2), ρC(s,Q2) and also an analogous contribution from the gluon condensate

term.

Using the standard values for the condensates and ρ-meson duality interval sρ = 1.5GeV 2, [11],

we studied the stability of the sum rule with respect to variations of the SVZ-Borel parameter

M2 in the region M2 > 0.6GeV 2. Good stability was observed not only for the “canonical”

value sπ0 = 4π2f2
π ≈ 0.7GeV 2 but also for smaller values of s0, even as small as 0.4GeV 2. Since

our results are sensitive to the s0-value, we incorporated a more detailed model for the spectral

density, treating the A1-meson as a separate resonance at s = 1.7GeV 2, with the continuum

starting at some larger value sA. The results obtained in this way have good M2-stability and,

for M2 < 1.2GeV 2, show no significant dependence on sA. Numerically, they practically coincide

with the results obtained from the sum rule (24) for s0 = 0.7GeV 2.

In Fig.3, we present a curve for Q2Fγγ∗π0(Q2)/4πfπ calculated from eq.(24) for s0 = 0.7GeV 2

and M2 = 0.8GeV 2. It is rather close to the curve corresponding to the Brodsky-Lepage interpo-

lation formula πfπFγγ∗π0(Q2) = 1/(1 +Q2/4π2f2
π) and to that based on the ρ-pole approximation

πfπF (Q2) = 1/(1 +Q2/m2
ρ). It should be noted, however, that the closeness of our results to the

ρ-pole behaviour in the Q2-channel has nothing to do with the explicit use of the ρ-contributions

in our models for the correlators in the q2-channel: the Q2-dependence of the ρ-pole type emerges

due to the fact that the pion duality interval s0 ≈ 0.7GeV 2 is numerically close to m2
ρ ≈ 0.6GeV 2.

For Q2 < 3GeV 2, our curve goes slightly above those based on the ρ-pole dominance and

BL-interpolation (which are close to the data [9]). This overshooting is a consequence of our

assumption that Q2 can be treated as a large variable: in some terms, 1/Q2 serves as an expan-

sion parameter. Such an approximation for these terms is invalid for small Q2 and appreciably

overestimates them for Q2 ∼ 1GeV 2 producing enlarged values for Fγγ∗π0(Q2).

In the region Q2 > 3GeV 2, our curve for Q2Fγγ∗π0(Q2) is practically constant, supporting the

pQCD expectation (1). The absolute magnitude of our prediction gives I ≈ 2.4 for the I-integral.

10



0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

2Q (GeV2 2 )

Q 2

F(Q 2 ) 
πf4 π

Figure 3: Combination Q2Fγγ∗π0(Q2)/4πfπ as calculated from the QCD sum rule (solid line),

ρ-pole model (dashed line) and Brodsky-Lepage interpolation (dash-dotted line).

Of course, this value has some uncertainty: it will drift if we change our models for the photon

distribution amplitudes (bilocals). The strongest sensitivity is to the choice of ϕTρ (y) in the tensor

contribution (22). However, even rather drastic changes in the form of ϕTρ (y) do not increase our

result for I by more than 20%. The basic reason for this stability is that the potentially large

1/q2 factor from the relevant contribution in the original sum rule (10) is substituted in (22) by

a rather small (and non-adjustible) factor 1/m2
ρ.

Comparing the value I = 2.4 with Ias = 3 and ICZ = 5, we conclude that our result favours a

pion distribution amplitude which is narrower than the asymptotic form. Parametrizing the width

of ϕπ(x) by a simple model ϕπ(x) ∼ [x(1− x)]n, we get that I = 2.4 corresponds to n = 2.5. The

second moment 〈ξ2〉 (ξ is the relative fraction ξ = x − x̄) for such a function is 0.125. This low

value (recall that 〈ξ2〉as = 0.2 while 〈ξ2〉CZ = 0.43) agrees, however, with the lattice calculation

[24] and also with the recent result [22] obtained from the analysis of a non-diagonal correlator.

7. Conclusions.

Thus, the QCD sum rules support the expectation that the Q2-dependence of the transition form

factor Fγγ∗π0(Q2) is rather close to a simple interpolation between the Q2 = 0 value (fixed by the

ABJ anomaly) and the large-Q2 pQCD behaviour F (Q2) ∼ Q−2. Moreover, the QCD sum rule

approach enables us to calculate the absolute normalization of the Q−2 term. The value produced

by the QCD sum rule is close to that corresponding to the asymptotic form ϕasπ (x) = 6fπx(1− x)

of the pion distribution amplitude. Our curve for Fγγ∗π0(Q2) is also in satisfactory agreement with

the CELLO data [9] and in good agreement with preliminary high-Q2 results from CLEO [10].

Hence, there is a very solid evidence, both theoretical and experimental, that ϕπ(x) is a rather

narrow function.
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