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Abstract

We estimate the kinematic dependence of the exclusive photo– and electroproduction of
JPC = 1−+ exotic mesons due to π exchange. We show that the kinematic dependence is largely
independent of the exotic meson form factor, which is explicitly derived for a 1−+ isovector hy-
brid meson in the flux–tube model of Isgur and Paton. The relevance to experiments currently
planned at Jefferson Lab is indicated.

PACS number(s): 12.39.Mk 12.39.Jh 12.40.Nn 12.40.Vv 13.40.Gp 13.60.Le

1 Introduction

Evidence for a JPC = 1−+ isovector state at 1.4 GeV has been published most recently in π−p→ ηπ−p
by E852 [1]. Since the JPC of this state is “exotic”, i.e. it implies that it is not a conventional meson,
this has raised significant interest in further experimental clarification. Specifically, the advent of high
luminosity electron beam facilities like CEBAF at Jefferson Lab have raised the possibility of photo–
or electroproducing a JPC = 1−+ state, leading to two conditionally approved proposals [2, 3].

Experimentally, herculean efforts have been devoted to photoproduce JPC = 1−+ states, but no
partial wave analyses have been reported which would confirm the JPC of the state. Condo et al.
claimed an isovector state in ρπ with a mass of 1775 MeV and a width of 100 − 200 MeV with JPC

either 1−+, 2−+ or 3++ using a 19.3 GeV photon beam [4]. Enhancements in b1π have been reported
in a similar mass region with a photon beam of 25− 50 GeV [5] and 19.3 GeV [6].

In this work we perform the first detailed calculation of the photo– and electroproduction of 1−+

states.
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2 Cross–sections

Since diffractive t–channel exchange is usually taken to be C–parity even, it follows by conservation of
charge conjugation for electromagnetic and strong interactions that JPC = 1−+ neutral states cannot
be produced by (virtual) photons γ∗ via a diffractive mechanism. However, to eliminate the possibility
of diffractive exchange completely, we shall specialize to charge exchange, i.e. to γ∗p → ρ̂+n, where
ρ̂+ is an isovector state of mass Mρ̂ with a neutral isopartner with JPC = 1−+.

We shall assume in this first orientation that s–channel and u–channel production of states in the
mass range of interest are suppressed, since very heavy ≈Mρ̂+Mp = 2.5−3 GeV excited nucleons need
to be produced for this mechanism to be viable. This leaves us with t–channel meson exchange. The
lowest OZI allowed mass exchanges allowed by isospin conservation are π+, ρ+, a+

1 and b+
1 . Utilizing

vector meson dominance, we note that the ρ+ and b+
1 exchanges require coupling of γ∗ to ω, which is

suppressed by (0.30)2 = 9% relative to the coupling to the ρ0 which occurs for the other exchanges
[7]. Of the remaining exchanges, a+

1 is likely to be suppressed1 due to the large mass of the a+
1 in

its propagator. On the other side, π+ exchange remains possible, and is generally expected to be
especially relevant for a photon at CEBAF energies. The case is further strengthened by noting that
there is a large pπ+n coupling and that there is already experimental evidence from E852 for the ρ0π+

coupling of a 1−+ state at 1.6 GeV [8, 9]. In contrast, ρ+ exchange is expected to be highly suppressed,
at least for hybrid ρ̂ in the flux–tube model, since the relevant coupling ρ̂+ → ωρ+, where the photon
is regarded as on ω within VDM, is almost zero [10]. We henceforth restrict to π+ exchange. At
CEBAF energies a single particle rather than a Reggeon picture is appropriate. Nevertheless, we have
verified that a Regge theory motivated t dependence does not introduce more sizable corrections to
our predicted cross–sections than variations of parameters do.

We write the Lorentz invariant amplitude as [11]

M = eFρ̂γπgpπnFpπn(t)
i

M2
π − t

εµναβε
γ
µε
ρ̂∗
ν q

γ
αq

ρ̂
βūpγ5un (1)

where ε denotes the polarization vectors of the incoming γ∗ and outgoing ρ̂, q is the corresponding
4–momentum, and u is a bispinor for the initial proton and outgoing neutron. The π propagator
has the form i/(M2

π − t), where t = (qp − qn)2, and we assume a conventional monopole form for
the cut–off form factor Fpπn(t) = Λ2/(Λ2 − t) with Λ = 1.2 GeV. We take the nucleon–π coupling
constant gpπn = 13.5 [12]. Eq. 1 is the only Lorentz invariant structure that can couple the nucleon to
a pseudoscalar exchange (via ūpγ5un), and the pseudoscalar to γ∗ and ρ̂ vector particles. As far as the
Lorentz structure is concerned, the π exchange amplitude for virtual Compton scattering [11], vector
meson (e.g. ρ) and ρ̂ production is identical, since the amplitude is not dependent on the C–parity or
G–parity of the state. This is the central observation that enables us to link ρ̂ production with virtual
Compton scattering. In fact, we suggest that ρ+ photo– and electroproduction should be able to test
the results in this work directly in the near future, since diffractive exchange is not possible.

Define four (dimensionless) structure functions for the (unpolarized) ep→ e
′
ρ̂n electroproduction

cross–section as [11]

d5σ

dE′dΩedΩρ̂
=

α2

64π3

E
′

E

|qρ̂|
MpW

1

Q2

1

1− ε [σT + εσL + ε cos 2φ σTT +
√

2ε(1 + ε) cosφ σLT ]

1Within Regge phenomenology, the a1 and b1 are not a leading Regge trajectories.
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ε−1 = 1 + 2
Q2 + (E − E′)2

4EE′ −Q2
(2)

where E(E
′
) is the initial (final) electron energy and θe the electron scattering angle in the frame where

the proton is at rest. Mp is the mass of the proton and ε the virtual photon polarization parameter.
W 2 = (qp+qγ)2 and Q2 = −q2

γ. The azimuthal angle φ and the ρ̂ angle relative to γ∗, θc.m., are defined
in the centre of mass frame of the target proton and γ∗. ¿From Eqs. 1 and 2 the structure functions
are

σT = [(qρ̂0|qγ| − |qρ̂|qγ0 cos θc.m.)
2 + (|qρ̂|qγ0 − qρ̂0|qγ| cos θc.m.)

2 + (qρ̂0)2|qγ|2 sin2 θc.m.] X

σL = 2|qρ̂|2Q2 sin2 θc.m. X

σLT = 2|qρ̂|
√
Q2 (qρ̂0 |qγ| − |qρ̂|qγ0 cos θc.m.) sin θc.m. X

σTT = −|qρ̂|2(qγ0 )2 sin2 θc.m. X

X =
−t

(t−M2
π)2

[Fρ̂γπgpπnFpπn]2 (3)

where q0 represents the energies of ρ̂ and γ∗, and q the 3–momentum of ρ̂ and γ∗; all in the centre of
mass frame of the incoming proton and photon.

As we shall see later, the kinematical dependence of cross–sections will depend only weakly on the
ρ̂ form factor Fρ̂γπ. Hence most of the conclusions of this work depend weakly on the details of the
(unknown) form factor, and are hence independent of the detailed model assumptions made in the
next section. One crucial exception is the absolute magnitude of cross–sections, which depend strongly
on the form factor.

3 Flux–tube model form factor for a 1−+ isovector hybrid

A 1−+ state cannot be a conventional meson due to its quantum numbers. One possibility is that
it is a hybrid meson. This possibility will be further explored here. Extensive hybrid meson decay
calculations have been done in the flux–tube model of Isgur and Paton [7, 10]. The model is non–
relativistic and is formulated in the rest frame of the hybrid. Since the hybrid form factor is Lorentz
invariant it can be evaluated in any frame, particularly the hybrid rest frame. The Lorentz invariant
relativistic amplitude, evaluated in the hybrid rest frame for a hybrid of polarization 1, is [12]

MR = eFρ̂γπεµναβε
γ
µε
ρ̂∗
ν q

γ
αq

ρ̂
β = −ieFρ̂γπMρ̂|pγ|

MR =
√

2Eπ 2Eρ 2Mρ̂MNR (4)

where we wrote the relativistic amplitude in terms of the non–relativistic amplitude which we shall
compute. The meson wave functions are normalized differently in a non–relativistic model than in a
relativistic case as shown in Eq. 4. Here Eπ and Eρ (from γ∗ via VDM) are the on–shell energies of
the π and ρ, each with momentum |pγ| in the hybrid rest frame.

The evaluation of the non–relativistic amplitude proceeds as follows. It is taken to be the product
of the VDM coupling of γ∗ to the ρ, the propagator of the ρ and the flux–tube model amplitude for
the decay of a 1−+ hybrid to ρπ
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MNR =
e

2γρ

M2
ρ

M2
ρ +Q2

Flux–tube model amplitude (5)

where γρ = 2.52 [7]. The flux–tube model amplitude is evaluated as enunciated in by Close and Page
[10], i.e. we assume S.H.O. wave functions for the ρ and π, with the hybrid wave function and the
flux–tube overlap as in ref. [10], except that the small quark–antiquark seperation r behaviour of the
hybrid wave function is ∼ r.

Utilizing Eq. 4 to express the form factor in terms of the relativistic amplitude, and to write this
in terms of the non–relativistic amplitude; and using Eq. 5, we obtain

Fρ̂γπ =
32 π

3
4

γρ


√

p2
γ +M2

π

√
p2
γ +M2

ρ

Mρ̂


1
2

M2
ρ

M2
ρ +Q2

0.62 γ0

(1 + 0.2
β2
π+β2

ρ
)2

×
(βπβρ)

3
2 β

5
2
ρ̂ (β2

π − β2
ρ)

(β2
π + β2

ρ)
5
2 ξ

5
2

exp(−
p2
γ

4ξ
)

ξ = 2β2
ρ̂ +

1

2
(β2

π + β2
ρ)−

1

2

(β2
π − β2

ρ)
2

β2
π + β2

ρ

(6)

up to a sign. Notice that the pair creation constant γ0 of the 3P0 model enters explicitly in Eq. 6.
This is because the flux–tube model, within the assumptions made for the wave functions, gives a
prediction for the couplings of a hybrid in terms of couplings for mesons in the 3P0 model [10]. We
use γ0 = 0.53 which reproduces conventional meson decay phenomenology [13]. In Eq. 6, β refers to
the inverse radius of the state, the parameter that enters in the wave function. Due to the β2

π − β2
ρ

term, we note that if βπ = βρ the form factor vanishes, which explicitly exforces the selection rule that
hybrid coupling to two S–wave mesons is suppressed [10].

4 Electroproduction results

We utilize the “standard parameters” Mρ̂ = 1.8 GeV, βρ̂ = 0.27 GeV [10], βρ = 0.31 GeV and βπ = 0.54
GeV [14].

All the kinematical variables that the structure functions depend on, introduced in Eqs. 2, 3 and 6,
can be expressed as functions of the Lorentz invariant variables Q2 and W , and θc.m. (see Appendix).

The structure function σT is plotted in Figure 1 for W = 3 GeV. σT is the most dominant structure
function: it peaks strongly at small Q2 and θc.m.. Physically, Q2 = 0 corresponds to the incoming and
outgoing electrons moving in the same direction. θc.m. = 0 corresponds to the photon and the ρ̂
moving in the same direction. Hence σT peaks where the ρ̂ goes in the same direction as the incoming
electron, i.e. towards the beam pipe. This becomes especially critical when there is a sizable “hole”
in the detector, which is the case for the CLAS spectrometer at CEBAF. The other three structure
functions are small when compared to σT , with a suppression factor of about 10−3 for σL and 10−2 for
σLT and σTT . These three structure functions also peak at small Q2 and θc.m.. Experiments should be
optimized to enable detection at small Q2 and θc.m.. According to the Appendix (Eq. 16), θc.m. = 0
corresponds to the minimal value of |t|, so that peaking of cross–sections at small |t| would be a strong
experimental test for the π+ exchange explored here, especially since other exchanges are expected to
be more substantial at larger |t|.
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Figure 1: Structure function σT at W = 3 GeV with standard parameters. Q2 is varied within its
kinematically allowed range for E = 6 GeV.

As we pointed out, the structure function due to longitudinal photons σL is tiny. Correspondingly,
σLT which is due to interference between longitudinal and transverse photons is smaller than σT . The
reason for this is that longitudinal photons give no contribution to the process in a typical case: when
ρ̂ is at rest the amplitude εµναβεγµε

ρ̂∗
ν q

γ
αq

ρ̂
β in Eq. 1 vanishes. The suppression of contributions from

longitudinal photons need not be true for exchanges other than π+ exchange.
In Figure 2 we show the non–zero structure functions for Q2 = 0 corresponding to real (transversely

polarized) photons. Again σT is dominant. Both σT and σTT peak at large W as would be expected
because large W corresponds to an increase of phase space for the production of the ρ̂. We also plot the
photoproduction asymmetry parameter Σ = σTT/σT , which can be accessed by using linearly polarized
photons. Note that Σ = 0 at the reaction threshold.

Figure 3 shows the non–zero structure function for θc.m. = 0, where σT attains its maximum and
the negative value t 6= 0 is nearest to 0.

We define a typical test form factor based on ρ dominance as

Fρ̂γπ ∝
1

M2
ρ +Q2

(7)

We have evaluated the structure functions for the test form factor in Eq. 7. Remarkably, for all values
of Q2,W and θc.m. the form of the structure functions are very similar, even though the form factors
in Eqns. 6 and 7 have different functional dependence on different parameters. This is demonstrated
for the dominant structure function σT in Figure 4, where we see that the difference is a few percent.
Thus the Q2,W and θc.m. dependence of the cross–section in Eq. 2 is very weakly dependent on models
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Table 1: Total electroproduction cross–section in pb for θmine = 12o and E
′
larger than 0.1 GeV, relevant

to the CLAS detector at CEBAF. We utilize the standard parameters.
Electron Energy ρ̂ Mass
(GeV) 1.4 GeV 1.8 GeV 2.2 GeV

5.5 62 29 3.7
6 50 28 6.5
6.5 41 25 7.9
8 21 16 7.8
20 0.6 0.5 0.4

for Fρ̂γπ, so that the kinematic dependence of total cross–sections, and hence many conclusions of this
work, are independent of the details of specific models. This happens because the Lorentz structure
of one π exchange (Eq. 1), and not the form factor, governs kinematical dependence.

We shall now evaluate the total cross–section by integrating over all kinematical variables in their
allowed ranges, except for the following. The electron scattering angle θe is assumed to be larger than
θmine , and E

′
is assumed to be larger than 0.1 GeV. From a theoretical viewpoint, these conditions

ensure that we do not reach θe = 0 and E
′
= 0 where the cross–section in Eq. 2 diverges. Experimen-

tally, the outgoing electron is usually detected for θe > θmine . There are also experimental limits on
detection of small outgoing electron energies.

For the total cross–section, the results are shown in Table 1. The decrease of cross–section for
increased ρ̂ mass is due to the decrease in available phase space. The decrease of cross–section with
increasing electron energy is due to the “hole” in the forward direction through which an ever increasing
number of electrons pass. The qualitative dependence of the cross–section on E is also found for the
test form factor, and is hence mostly model independent. One of the implications of Table 1 is that for
the CLAS detector at CEBAF, an electron beam towards the lower end of the range (e.g. 5.5 GeV)
appears to be preferable. Another implication is that at DESY HERA with a 27.52 GeV proton beam
and 820 GeV electron beam, corresponding to E = 48.1 TeV, 1−+ ρ̂ production should be negligible.

We have also computed the total cross–section for various values of θmine and obtain

θmine Total cross–section (pb)
12o 28
5o 110
1o 360

so that the cross–section increases substantially as the “hole” in the detector becomes smaller. This
implies that improved statistics for ρ̂ should result from the ability to put detectors as near as possible
to the beam pipe in the forward direction.

It is of interest to check the total cross–section as a function of the wave function parameters of
the participating conventional mesons for θmine = 12o.

Total cross–section (pb)
Standard parameters 28
βρ = 0.45 GeV and βπ = 0.75 GeV [15] 15
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We note that the cross–section changed by a factor of two if the two conventional meson wave function
parameters are changed to reasonable values. Also, we chose a value of γ0 towards the upper end of
the range in the literature [13]. In calculations of excited mesons, values of γ2

0 that are 50% lower have
been used. Hence, within this model, revisions in the β’s and γ0 can make the cross–sections ∼ 30%
of the values quoted for electroproduction cross–sections in this section and Table 1. Hence absolute
cross–sections should be regarded with more caution than kinematic dependence.

To summarize this section, we stress that the t-channel π exchange mechanism of 1−+ electropro-
duction leads to dominance of transverse photoabsorption. Therefore a Rosenbluth–type separation of
different structure functions contributing to the cross section would be necessary in order to understand
the ρ̂ electroproduction mechanism.

5 Photoproduction results

The photoproduction cross–section (Q2 = 0) is

dσγ
dΩc.m.

=
α

16π

|qρ̂|
Mp(W 2 −M2

p )
(σT + ε cos 2φσTT), (8)

where φ is the angle defined by the planes of photon linear polarization and ρ̂ production; and the
parameter ε defines the degree of photon linear polarization. The total photoproduction cross–section
may be obtained by integrating the preceding formula over Ωc.m.,

σγ =
α

8

|qρ̂|
Mp(W 2 −M2

p )

∫
σT sin θc.m. dθc.m., (9)

The photoproduction cross–section σγ is shown in Figure 5. The cross–section peaks not far from
the ρ̂ production threshold. The shape of the cross–section as a function of photon energy is very
similar for the test form factor.

The reason for the fall in the photoproduction cross–section with increasing photon energy is firstly
that, as the photon energy increases, the smallest allowed |t| (where the cross–sections peak) decreases,
so that qγα ≈ qρ̂β and the factor εµναβεγµε

ρ̂∗
ν q

γ
αq

ρ̂
β in the amplitude vanishes. Secondly, the γ5 coupling of

the π+ to the proton and neutron is such that it flips the spin of the nucleon. As t → 0 the proton
and neutron 4–momenta become identical and the spin flip would become zero, so that the amplitude
∼ t (as can be seen explicitly in Eq. 3). This means that with increasing photon energy the spin flip
of the nucleon suppresses the cross–section.

We check the total cross–section as a function of the wave function parameters of the participating
conventional mesons for 6 GeV photons and ρ̂ of mass 1.8 GeV.

Total cross–section (nb)
Standard parameters 540
βρ = 0.45 GeV and βπ = 0.75 GeV [15] 250

Hence, within this model revisions in the β’s and γ0 can make the cross–sections ∼ 25% of the values
quoted for photoproduction cross–sections in Figure 5.

We have already suggested that ρ+ electro– and photoproduction can test the ideas in this work.
Unfortunately the relevant data for ρ+ has not yet been taken and only ρ+ inclusive photoproduction
data exist [16]. Photoproduction data is the most likely to be forthcoming, and we show the dominant

7



structure function σT in Figure 6. It may be observed that the structure function is somewhat different
from the ρ̂ structure function in Figure 2. This is mainly due to the fact that the mass of the ρ is very
different from the ρ̂. We find that the ρ structure functions σL, σLT and σTT have similar parameter
dependence to their ρ̂ analogues.

6 Summary

• We found that the electroproduction cross–section peaks at small Q2, θc.m. and large W , with
the consequence that it is strongly enhanced for small–angle electron scattering.
• The kinematical dependence of cross–sections only weakly depends on the model–dependent

form factor of the γπ → 1−+ transition. The conclusions drawn can also be tested in ρ+ electro– and
photoproduction.
•A Rosenbluth–type separation of electroproduction cross section and Σ–asymmetry measurements

in photoproduction are necessary to verify the ρ̂ production mechanism.
• The 1−+ photoproduction cross–section peaks at energies near to the reaction threshold and

reaches values around 0.3 to 0.8 µb depending on model parameters and the assumed mass of the ρ̂
meson.

7 Conclusion

We conclude that electro- and photoproduction of 1−+ exotic mesons from a proton target has high
enough cross sections to be observed in forthcoming Jefferson Lab experiments. Optimal conditions
to study ρ̂ photoproduction would require a high intensity beam of real (or quasi–real) photons with
variable energies between 2.5 and 10 GeV, assuming that the (still unknown) ρ̂ mass is within the
range of 1.4 to 2.2 GeV.

Acknowledgements

Helpful discussions with G. Adams, A. Donnachie and S. Stepanyan are acknowledged. We specifi-
cally thank Nathan Isgur for encouragement. The work of A.A. was supported by the US Department
of Energy under contract DE–AC05–84ER40150. P.R.P. acknowledges a Lindemann Fellowship from
the English Speaking Union.

A Appendix: Relationships between kinematical variables

Q2 and W are related to E
′

and θe by

Q2 = 2EE
′
(1− cos θe) W 2 = −2EE

′
(1− cos θe) + 2Mp(E − E

′
) +M2

p (10)

where 0 ≤ Q2 ≤ Q2
max and Mn + Mρ̂ ≤ W ≤

√
Mp(Mp + 2E); and 0 ≤ θe ≤ π and 0 ≤ E

′ ≤ E
′
max,

with

Q2
max =

2E

Mp + 2E
(M2

p + 2MpE −W 2) (11)
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E
′
max =

MpE + 1
2
M2

p − 1
2
(Mn +Mρ̂)2

E(1− cos θe) +Mp
(12)

The variables qρ̂0 , |qρ̂| and qγ0 , |qγ| are defined in terms of W and Q2 by

qρ̂0 =
√
|qρ̂|2 +M2

ρ̂ =
W 2 +M2

ρ̂ −M2
n

2W
(13)

qγ0 =
√
|qγ|2 −Q2 =

−Q2 +W 2 −M2
p

2W
(14)

pγ can be written in terms of Q2, W amd t as

p2
γ =

M4
ρ̂ +Q4 + t2 + 2M2

ρ̂Q
2 − 2M2

ρ̂ t+ 2Q2t

4M2
ρ̂

(15)

where

t = (−qγ0 + qρ̂0)2 − (|qγ|2 + |qρ̂|2 − 2|qγ||qρ̂| cos θc.m.) (16)

For photoproduction, the photon energy is

Eγ =
W 2 −M2

p

2Mp
(17)
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Figure 5: Photoproduction cross–section in nb as a function of photon energy (in GeV) for various ρ̂
masses for standard parameters. From top to bottom on the vertical axis this corresponds to ρ̂ masses
of 1.4, 1.8 and 2.2 GeV.
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Figure 6: The W and θc.m. dependence of the structure function σT for ρ+ production at Q2 = 0. We
vary W within its kinematically allowed range for E = 6 GeV. Within the framework of VDM, γ∗

couples to an ω, and the ω couples to the ρ+ and π+ via G-parity allowed OZI allowed couplings. The
structure functions are those of Eq. 3 with all references to ρ̂ replaced by ρ. The flux–tube model
form factor for ρ+ production is proportional to the form factor in Eq. 6 with the understanding
that all reference to ρ is replaced by ω, and all reference to ρ̂ is replaced with ρ. We use Eq. 6 with
βρ = βω = 0.31 GeV and βπ = 0.54 GeV. The normalization of the structure function has hence
been chosen to coincide with its analogue in Figure 2 to facilitate comparison; and has no physical
significance.
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