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Abstract

Recent results obtained from the manifestly covariant spectator theory are sum-
marized. A recent unpublished best fit to NN scattering using 13 OBE parame-
ters gives x? = 2.25 and a triton binding energy of —8.491 MeV. This agreement
is possible because of the existence of off-shell coupling of the phenomenological,
intermediate range effective scalar exchanges (both isoscalar and isovector). The
previously published results for the deuteron form factors are reviewed, and new,
preliminary results for electrodisintegration of the deuteron are presented.

*Invited talk presented at the Workshop on Electronuclear Physics with internal
targets and the BLAST detector, May 28-30, 1998, MIT.



I. THEORETICAL INTRODUCTION

I will begin this talk by outlining some of the various relativistic methods
it can be used to describe the few body system relativistically. The rest of
: talk will describe the theory and applications of the relativistic spectator
ory (a manifestly covariant method) to few body systems. I will describe fits
NN scattering using the OBE model, deuteron wave functions, calculations
the three body binding energy, and applications to both elastic and inelastic
ttering of electrons from deuterons.

A. Why should few-body calculations be done relativistically?

In my opinion relativistic methods should be used whenever possible, but in
ne circumstances relativistic effects are particularly important and we really
ist include them. Relativistic methods are essential when we wish

e to study light quarks (with a mass of a few MeV) and to understand the
origin of dynamical quark mass,

e to go beyond phenomenology and relate currents and interactions to un-
derlying fields,

o to study reactions at relativistic energies where (for example) the recoil
velocity of a deuteron scattered elastically by a virtual photon with Q% = 4
GeV? is close to 70% of the speed of light,

e to study magnetic moments and spin dependent effects which are often of
relativistic origin, or constrained by relativity,

e to be precise, even at low energies, where (for example) the small nuclear
binding energies are a delicate balance between huge kinetic and poten-
tial energy terms, which transform differently under relativistic transfor-
mations, and

e to eliminate one unnecessary approximation.

A decision to do calculations relativistically is only the first step. There
: many relativistic methods to choose from and unfortunately these different
thods have very different properties and use very different language. Some-
1es experts from different “schools” are unable to compare their results easily.
ur choice of method strongly influences your world view.

Relativity
t
l ! .
suppress negative energy states choose locality and manifest covariance
loose locality and manifest covariance live with negative energy states
retain conventional quantum mechanics construct a new quantum mechanics
]
Instant form Front form Point form Bethe Spectator Blankenbecler Wallace
Salpeter Sugar Mandelzweig
or
Salpeter
One channel Two channel
(non-identical  (identical particles)
particles)

FIG. 1. The relativistic decision tree.

B. What relativistic method should be chosen?

Fig. 1 outlines these different approaches as a “decision tree”. The first (and
most profound) choice is between “Hamiltonian dynamics” (the left-hand branch)
and “manifestly covariant dynamics” (on the right). If you use Hamiltonian dy-
namics you will be working with a conventional quantum mechanics in which the
states span a Hilbert space with a positive definite norm. The infamous negative
energy states are excluded from this space, and any effects from virtual negative
energy intermediate states (the famous Z diagrams) must be put into the inter-
actions or currents by hand. Since it uses conventional quantum mechanics, this
method has the great advantage that the theoretical framework is well known
and understood. Its only disadvantage is that some of the Lorentz transforma-
tions include the interaction, and therefore cannot be evaluated without doing
additional dynamical calculations. For a review of this method see the article by
Keister and Polyzou [1].

If you are willing to include negative energy states in your dynamics, it is
possible to construct a formalism where all Lorentz transformations are “kine-
matic”, i.e., they depend only on the momenta and spin of the particles and not
on the interactions. In this case all Lorentz transformations (both rotations and
boosts) can be carried out exactly, and all calculations are “manifestly covari-
ant”. This is a very nice way to handle relativity, but it has the disadvantage



1at the unphysical negative energy states are part of your Hilbert space, and the
1eory is no longer a conventional quantum mechanics (for example, one encoun-
rs negative norm states when dealing with spin zero particles). This problem
not always apparent because these methods use field theory for guidance, but
1ey are not strictly field theories and their systematic formulation is still under
avelopment.

These differences often lead to empty arguments at conferences. One theo-
st may assert that a state cannot be boosted exactly, while another will assert
1at the boosts are exact. The first theorist is correct if he is using Hamiltonian
ynamics, and the second is correct if she is using manifestly covariant dynam-
s. Such profound differences in point of view make comparisons of practical
ilculations difficult.

As Fig. 1 illustrates, there are several different choices of method even within
ach of the broad approaches described above. In the context of Hamiltonian
ynamics, one may use either the instant form, in which rotations are kinematic,
t the front form, in which one boost is kinematic but rotational invariance is no
mger independent of the dynamics. Similarly, there are several manifestly co-
ariant approaches involving the use of different covariant equations. The studies
y Fleisher and Tjon [2] use the famous Bethe-Salpeter equation, and there are
jual time equations developed by Salpeter [3], Blankenbecler and Sugar [4] and
Vallace and Mandelzweig [5]. In this talk I will describe results obtained with
1e spectator equation [6].

C. Properties of the spectator model

The spectator model has the following properties and features:

e All boosts and rotations are kinematic so that all Lorentz transformations
can be evaluated ezactly. Partial wave expansions can be used and all
boosts are known.

o One of the nucleons in intermediate states is off-shell. This requires that it
be described by both u (positive energy) and v (negative energy) spinors.
For convenience, this degree of freedom is sometimes referred to as p-spin,
with p = + for positive energy states and p = — for negative energies.

o In the description of NN scattering, the virtual contributions from negative
p-spin states produce a strong repulsion at short distances sufficient to
explain much of the repulsive core, and also make important contributions
to the spin dependent parts of the interaction.

e When applying the spectator equations to the n-body system, n — 1 parti-
cles are on-shell and only one particle is off-shell. When treating identical
particles the progagator must be explicitly symmetrized, so that there are
configurations in which any one of the n particles is off-shell.

o Total energy is conserved (in addition to the three-momentum) and this
restriction together with the mass shell constraints reduces the number of
continuous degrees of freedom to 3(n — 1), as in nonrelativistic physics.

o If one of the particle masses goes to infinity, the two body equation reduces
to a relativistic equation for the light particle moving in an instantaneous
potential created by the heavy particle. This is referred to as the “one body
limit”, and it assures a smooth nonrelativistic limit with a simple physi-
cal interpretation. In this limit there are also some cancellations between
ladders and crossed ladders to all orders. For theories involving scalar ex-
change, this cancellation is exact and one boson exchange (OBE) gives the
exact result in the one body limit.

e The theory permits a close connection to field theory, so that electroweak
currents are constrained by the dynamics.

e The explicit symmetrization required for identical particles may lead to
kernels with spurious singularities.

All of these features are very desirable except for the last. Fortunately, these
spurious singularities do not introduce singularities in any physical observables
and their numerical effect is rather small. They may be removed by making
small changes in the definitions of the kernels, so they are more a nuisance that
a serious problem. Still, they are an unesthetic feature of this approach and it
would be useful to find a way to eliminate them from the start. This is currently
under investigation.

II. NN SCATTERING AND PROPERTIES OF OBE MODELS

The spectator equation for NN scattering is shown diagramatically in Fig. 2
and for the bound state (deuteron) in Fig. 3. It can be shown that the bound
state equation follows automatically from the scattering equation without any
additional assumptions. The kernels for the two equations are identical, and must
be explicitly symmetrized to satisfy the Pauli principle. As discussed above, one
of the two particles in on-shell, which means mathematically that its propagator
is replaced by a delta function and an on-shell projection operator:

[éa
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“1G. 2. Diagramatic representation of the spectator equations for N N scattering with
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7IG. 3. Diagramatic representation of the spectator equations for the deuteron vertex
iction. The kernel is identical to the one shown in Fig. 2, and the equations can be
‘ived from the scattering equation without additional assumptions.

rticle| spin/ | isospin| mass g*/4r off-shell Ky form factor| # of

parity parameter mass parms
T 0~ 1 134.98 13.34 0 - Ax~ 2000 1
n 0~ 0 548.8 1 3.0 £ 0.25 0 - Ay, ~1300| 2
o ot 0 [~500|50+05 Vo - =A, 2
6 ot 1 |~500]| 06+0.4 vs - = Ay 2
w 1~ 0 7828 |15.0+£1.0 1.0 ~ 0.2 =A, 2
P 1~ 1 760.0 | 0.8+0.21.55+04|7.0+05 = Ay 3
N 3 3 | 936.8 - - - AN~ 1800] 1

FABLE I. OBE parameters. The 13 shown in bold face were varied during the fits.
family of models with v, = —0.75v and vs = 2.6 v are discussed in the text.

OBE 1B W00 WO05 W10 W15 W16 W18 w19 W20 W22 W26
para (rev.)
v 0 0.0 0.5 1.0 15 1.6 1.8 1.9 7.0 2.2 2.6
Gr 13.15 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34
Gy 3.023 3.350 2.714 2.455 2.849 2.969 3.193 3.322 3.437 3.639 3.949
G, 5.30275 5.84067 5.59454 550753 5.09315]4.99887|4.80199 4.67948 4.56381 4.36852 4.05718
me 522 525 519 515 507 506 503 501 499 496 491
Ve 0.0 0.0 -0.375 -0.75 -1.125 -1.2 -1.35 -1.425 -1.5 -1.65 -1.95
Gs  0.33136 0.14812 0.34622 0.69046 0.68120[0.62818[0.52659 0.47598 0.43276 0.35656 0.25045
me 484 390 472 540 524 512 488 474 462 439 399
vg 0.0 0.0 1.3 2.6 3.9 4.16 4.68 4.94 5.2 5.72 6.76
G, 10.087 12801 13.430 14.767 15.028 | 14.879 | 14.617 14.439 14.267 13.932 13.361
Ko 0.095 0.207 0.150 0.119 0.177 0.195 0.227 0.247 0.264 0.298 0.356
G, 0.443 0.561 0.645 0.807 0.901 0.899 0.878 0.870 0.852 0.814 0.733
Ky 6.651 6.929 6.661 6.245 6.210 6.267 6.441 6.516 6.628 6.872 7.418
Ap 0.863 1.533 1.499 1.520 1.553 1.556 1.557 1.559 1.558 1.555 1.548
Ar 2034 2304 2235 2203 2106 2075 2027 1992 1972 1935 1883
Ay 2034 1473 1394 1283 1213 1206 1195 1189 1185 1178 1165
AN 1725 1629 1690 1759 1813 1822 1837 1847 1854 1867 1887
[ x> 253 300 271 245 226 | 2.25 | 2.26 227 231 244 2.56 |
[—ET ~ 6.0 6.217 6.706 7.412 8.301 I 8.491 ] 8.871 9.074 9.266 9.662 10.535 |
D/S 0.0247 0.0252 0.0253 0.0254 0.0255 | 0.0255 [ 0.0255 0.0255 0.0255 0.0255 0.0255
Py 5.0 5.3 5.6 6.0 6.4 6.4 6.5 6.5 6.6 6.6 6.7
pP,, 0.048 0.015 0.011 0.005 0.002 0.002 0.002 0.002 0.002 0.002 0.003
P,, 0.009 0.007 0.003 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.004
(v 20 2.6 1.6 0.3 -1.0 -1.2 -1.6 -1.7 -1.9 -2.2 -2.8
TABLE II. Deuteron properties and OBE parameters for the models discussed in the

text. The couplings are all dimensionless, with G, = g2 /4w, and Er is in MeV. The x?
is for the 1994 np data set up to 350 MeV. The last four rows are probabilities.

m+ g

PR — — 2mi 64 (m? — p?) (m+ P) . (2.1)

A. New v dependent fits to the NN data

The spectator equation with a one boson exchange (OBE) kernel has been
used to fit the NN phases shifts successfully [7,8]. Six boson exchanges are used,
as summarized in Table 1. The detailed values of the parameters are given in
Table II. The masses of the two effective “bosons” ¢ and § and the form factor
masses are varied during the fit. The remaining parameters are couplings defined
as follows:
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'he k., are the familiar f/g ratios for vector mesons, and, for historical reasons,
1e off-shell parameters are denoted by A for the pseudoscalar and vector mesons,
nd by v for the scalar mesons, and Eq. (2.2) shows that they are all proportional
5> the off-shell nucleon projection operators. They allow for the possibility of an
idependent coupling to the negative energy states. The family shown in Table
[ all have v, = ~0.75v and vs = 2.6 v. In all cases Ay = A, = 1 and v is fixed
s shown. In the fit IIB, the pion coupling G, was varied, but the constraint
» = A, was imposed, leaving 13 free parameters. For the other fits G, was
xed at 13.34, a value in agreement with the latest analyses, but A, and A, were
‘ee to vary independently, so these models also have 13 free parameters.

Please note that these results for the W family of models were just obtained
. week before the completion of this report, and are not the same as the ones
eported to the Workshop, or summarized in Ref. [8]. They were obtained after
ur minimization routine was corrected, and they produce significantly better fits
o the two-body data. We now also have a spectacular prediction for the three
ody binding energy as will be reported below.

B. Deuteron wave functions

The mathematical connection between the covariant deuteron wave function,
¥, and the dN N vertex with one N off-shell was developed many years ago [9]:

Vo r(Pp) = “EM_Z@W Sas(P — p) [N(P,p)Cl,, T (P, N)

= YA (P,P) ua(P=p, ) + ¥3,,(P, p) va(p—P, X)

vhere S is the nucleon propagator, C is the Dirac charge conjugation matrix,
ind u(p, A) are Dirac spinors with threc-momentum p and spin projection A. In
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FIG. 4. The four relativistic wave functions for models IIB (solid lines) and W16
(dotted lines). The boxed region in the upper panel is shown in the lower panel.



: deuteron rest frame the nucleon propagator for the off-shell particle 2 can be
sanded in terms of the spinors u(—p, \') and v(p, \'), reflecting the separation
the propagator into a sum of terms with positive and negative energy poles.
en the relativistic wave function can be expressed in terms of four scalar wave
1ctions, two required for ¥+ and two for ¥~

m_ u(-p,)I(P,p)Cu" (p, )

+ _
Yaa(0,P) = 2M4(27)3 E,(2E, — My)

= \/% [U(P)Ui oy — % (301 -po2-p -0y '02)] X1M
by (0,p) = —— 7(p, )L (P, p)CT" (p, A)

2My4(2m)3 E, My

_\/g [vs(p)% (01— 02) P+ ”i%’) (01 + 02) 'ﬁ} Xim

ie functions u and w are the familiar S and D-state wave functions, while v,
d v, are the spin triplet and singlet P-state wave functions. The normalization
ndition satisfied by these wave functions is

I

1=/o°p2dp u? + w? + v + 2 +(—QY—> (2.3)
0 t s aMd ’ ’

rere (9V/OMy,) is a term arising from the energy dependence of the kernel (see
of. [7]).

The four wave functions, u, w, vy, and v, are shown in Fig. 4 for the two models
greatest interest: Model IIB for which successful results for the deuteron form
stors have been obtained, and model W16 which gives the best fit to the two-
dy data and the three-body binding energy.

I1II. COVARIANT CALCULATION OF THE THREE BODY WAVE
FUNCTION

The three-body spectator equations restrict two of the three particles to their
ass shell [10,11]. This fixes both of the relative energies covariantly and leaves
uations that depend on only two three-momentum variables, as in the nonrela-
7istic case. The resulting equations have a Faddeev-like structure as illustrated

Fig. 5. The two-body amplitudes that drive the equations are precisely the
les calculated from the two-body equations (shown in Fig. 2). There are no

10

FIG. 5. Diagramatic representation of the summation of all two body interactions
for three-body scattering, which leads to the three-body bound state equation for the
triton. The amplitudes are properly anti-symmetrized and two of the three particles
(labeled with an x) are on-shell.

new parameters and the triton binding energy can be predicted uniquely from
any two-body force model.

However, to obtain the three-body solutions the two-body amplitudes must
be boosted from the overall three-body rest frame to the two-body rest frame
where they were originally calculated. The size of this boost depends on the
three momentum of the third non-interacting particle (the spectator). Because
the spectator momentum is one of the internal integration variables, an exact
covariant solution cannot be obtained unless we know how to boost the two-
body amplitude to any velocity, and one of the real advantages of the spectator
formalism is that this is both possible and practical {12].

Model IIB [7] which has been found to give an excellent description of the
deuteron form factors {as shown below [13]) was found to give much too small a
result; the binding energy was in the vicinity of —6.0 MeV, much less that the
experimental result of —8.48 MeV. This model has no off-shell ¢ or 6 couplings.
After considerable study it was found that the binding energy could be improved
by allowing the the off-shell parameters v, and vs to be non-zero. We found [8]
that scaling v, and vs by the relations

Ve = —0.75v

Vs 26v,

1l

11



1d varying v from 0 to 2.6 gives a triton binding encrgy that varies smoothly
om about —6.0 MeV (for v = 0) to —10.0 MeV (for the largest v = 2.6).
| each case all other parameters, except the pion coupling constant and the
asses of the non-scalar mesons, were varied to give the best fit to the two body
ta before the three body binding energy was calculated. These results were
iginally published in Ref. [8].

Recently (at the end of August after this talk was given), I discovered that
ie fits originally published [8] were not optimal; there was an error in our mini-
ization code which did not allow the best fit to be found. New results for all the
.odels, denoted by Wn where n= 10 v, were obtained, and these results together
ith the original results for Model IIB are given in Table II. Note that some of
1e meson parameters (especially gs, g, and g,) are sensitive to the value of v,
hile others (including the scalar meson masses, the cutoff masses, and k,) are
ss sensitive. All of the new models give an excellent value for the deuteron D/S
itio, and varying percentages for the D and P state probabilities. Note that the
erivative term in the normalization condition (2.3), (V') = (0V/OM,), varies
gnificantly with v. Alfred Stadler recalculated the trition binding energies for
1ese models, and the variation of the triton binding energy for this family of
iodels is shown graphically in the upper panel of Fig. 6. This variation is quali-
itively similar to the result we published [8], but all of the x? are lower and the
ew mintmum s very close to v = 1.6 instead of in the region v ~ 1.8 — 1.9 as
riginally published. Furthermore, the new binding energies are slightly smaller
1an those of Ref. [8]. Note the remarkable feature of the new results: the same
due of v = 1.6 gives the best triton binding energy and also the best two body
L.

I conclude this section by noting that the relativistic calculations presented
ere include mechanisms which would be regarded as three-body forces in a non-
slativistic context. These include single Z diagram contributions which arise
om the negative energy part of the propagation of the off-shell nucleon. They
lso include contributions from the off-shell couplings outlined in Table II. For
<ample, consider the sequential interaction of two & mesons on one nucleon line.
/e could have the sequence of interactions:

2o = ) () 90 = 22 (31)

2m m— g 2m

1 this example the coupling of two sigmas collapses to a single four-point coa NN
»ntact interaction. In a similar fashion, off-shell couplings can induce contact
iteractions of arbitrarily large order involving any of the mesons in the OBE
1odel. We conclude that an OBE model with off-shell couplings is equivalent to

12

another OBE model with no off-shell couplings but with multiple meson exchange
contributions which induce three body forces. It is clear that off-shell couplings
provide a way to include many body forces.

IV. ELECTROMAGNETIC CURRENT OPERATOR

In the OBE models discussed above, the effective propagator for the off-shell
nucleon is
. R2(p*) _ h?
S = = 4-1

where h = h{(p?) is the strong nucleon form factor. This propagator can be
used in the presence of electromagnetic interactions if we introduce a reduced
clectromagnetic nucleon current operator j#. Current will be conserved in the

general case if the reduced nucleon electromagnetic current operator satisfies the
Ward-Takahashi identity

0.3t = {570 - 5@}, (42)

where we use the convention that the charge e is omitted from the definition of
the current.

A current which satisfies this condition can be determined phenomenologically
using the method of Gross and Riska [14]. Dropping terms proportional to ¢* =
p'* — p*, one choice for the off-shell current is

1oty
2m

*(\p) = Fo {Fw“ LB } + GoFs A_(p')y*A_(p) (4.3)

where Fj is taken to be equal to Gg(Q?), Fy and F5(Q?) are the usual nucleon
on-shell form factors, and

= 1 m2__pl2 lmZ_p2
O_h_/‘zpz_prz K2 p? - p?
1 1 4m?
Go= (Wuﬁ) p?—p*’ (4

with A/ = h(p'?). When the final nucleon is on shell, p’2 = m? and h’ = 1, and
the current reduces to

13
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FIG. 6. The three body binding energy, Er, and x* for the fit to the two body data
a function of the off-shell mixing parameter v. The solid dots are the data from Table
fitted by the smooth curves shown in the figures. The value v = 1.6 is marked by the
rtical line and the short dashed line in the lower panel shows that the minimum x?
very near v = 1.6.
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(b) )

CIiA

IAC

FIG. 7. Feynman diagrams that give the exact result of the deuteron form factors
when the hadron interaction is described by an OBE model. As before, the x denotes
particles which are on-shell.

*@,p) = (Fw“ + Fy (4.5)

ioMq,\ 1

2m hZ~
If both nucleons are on shell, h = 1 and it reduces to the usual result. The
current (4.3) was used in the calculations reported below.

V. DEUTERON FORM FACTORS

Calculation of the deuteron form factors requires the evaluation of the four
diagrams shown in Fig. 7. The top three diagrams are the complete impulse
approximation (CIA) and the last is the interaction current (IAC) contribution.
The two diagrams (b) and (c) each have singularities, but their sum is finite and,
for identical particles, well approximated by the contribution from diagram (a),
so the CIA can be approximated by 2 x diagram (a). If, in addition, the off-shell
single nucleon current (4.3) is replaced by its on-shell form, this approximation
is referred to as the relativistic impulse approximation (RIA), and this was used
in earlier calculations [15].

Some recent results [13] for the deuteron structure functions obtained using
Model IIB are shown in Figs. 8 and 9. Here I show A, B, and Ty defined by

15
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FIG. 8. The B structure function for Model 1IB. Left panel: The CIA contribution
scussed in the text. Right panel: The full calculations (including exchange currents)
r various models discussed in the text.

AQ?) = GH(QY) + 51 Gh (@) + 577 GH(@)
B(Q?) = 501 +7) Gi(@)

4_Go(@)Ga(Q) + §1GH(Q7)

2y -

here n = Q%/(4M2) and G¢, Gu, and Gg are the charge, magnetic, and
1adrupole form factors of the deuteron [15].

The B structure function turns out to be very sensitive to the details of the
mamics. The left panel of Fig. 8 compares our CIA calculation of B with
wrious RIA approximations, including the one of Hummel and Tjon (HT) [16].
ote that our CIA gives a very good description of the data, leaving very little
om for exchange currents. The major numerical difference between the new
IA (solid line) and the old RIA (short dashed line) is the use of the off-shell
irrent operator; if the off-shell operator is used in the RIA (dashed-dotted line)
is indistinguishable from the CIA over the entire region of Q2. The remaining
ifference between our RIA and the HT result is due to the small relativistic P-
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FIG. 9. The left panel shows A and the right panel T2 for the cases shown in Fig. 8.

state components included in our calculation. If we change the sign of the small
component, vy, the RIA (labeled RIA, —v, in the figure) is not very different
from the HT result, and far from the data.

This last observation is very surprising, because the probability of the v, state
is only 0.009%! The reason such a small component can have such a large effect
is illustrated in Fig. 10. The effect is due to a “double” interference between the
small P states and the larger S and D-state components. The magnetic form
factor can be decomposed into electric and magnetic parts,

Gm(Q%) = Gps(Q%) Dy (Q%) + Gums(Q%) D (Q?)

where Ggs; and Gy are the isoscalar electric and magnetic form factors of the
nucleon. Expanding the body form factors to order (v/c)? gives

DY@ = [ dr {{22() ~ w0 () + [VEUY(r) + () ()

/0 Y ar {%w%) + —%mr (vt(r) [%u(r} - w(r)]
—uu(r) [u) + 5] )} L) + ).

Dy (Q%)
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FIG. 10. The integrand of D (0).

here 7 = Qr/2 [15]. Note the additional terms in D, where the small compo-
:nts of the deuteron wave function interfere with the large components, enhanc-
g the overall effect of the small components. A “second” interference will occur
"the sign of the v; component is opposite to v;. In this case the two separate
terference terms, which are individually small, will add coherently giving the
rge effect. This is the case for Model IIB, where the effect of this double inter-
rence is shown in Fig. 10. In this figure the curve with the large peak at ~0.07 is
ie integrand of D5 (Q?) (when @ = 0), while the curves with the smaller peaks
e the w? term only and the integrand with the sign of v, changed. The figure
ows that, due to the double interference, a larger value of D% (Q?) is obtained
. the critical value of Q? when the leading term D31 (Q?) is small, accounting
r the large shift in the position of the minimum. In is interesting that the same
rm gives a relativistic correction to the deuteron magnetic moment sufficient
» give the correct value when the D state probability is 7% [17]:

Apia = 72_5771 /0 " rdr {vt(r) [\iﬁu(r) - w(r)] g [u(r) + \%w(r)] } .

The right panel of Fig. 8 and the two panels of Fig. 9 show that the results
r all three structure functions when exchange currents are included. The curves
beled “CIA + pmy” are our full calculation using the nucleon form factors of
lergell, Meissner, and Drechsel [18] and including the pmy exchange current
raluated with a pmy form factor calculated by Mitchell and Tandy [19]. Note
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that this gives only a small contribution to the B and 1% observables, but that its
contribution to A is larger. Unfortunately, until the neutron charge form factor
is known, we are unable to draw definitive conclusions from A. The figures also
show the calculations of Hummel and Tjon [16}, who used large form factors for
the pmy exchange current (see the discussion in Ref. [20]) and also included an
woy exchange current, and Schiavilla and Riska [21], who use a nonrelativistic
model with exchange currents and relativistic corrections to lowest order.
Our study of the deuteron from factors leads to the following conclusions:

e In the neighborhood of the zero the B structure fiinction is very sensitive
to the small relativistic P-state components of the deuteron wave function.
This is a surprising result.

o There is evidence for the existence of small isoscalar pry exchange currents,
but no evidence for other interaction currents (except the Z diagram con-
tributions which are not interaction currents in the covariant formalism).

e These observations would have been impossible without the use of a covari-
ant model.

However, before we can draw definitive conclusions about the physics of the
deuteron form factors, we must examine the results predicted by the models
with non-zero values of v. These models tend to have very tiny P-states, but
also generate a new family of isoscalar exchange currents arising from the energy
dependence of the off-shell couplings proportional to v. It remains to be seen
whether or not these new exchange currents will play the role played previously
by the P-states.

VI. INELASTIC SCATTERING FROM THE DEUTERON

Electrodisintegration of the deuteron and the three body bound states has
been studied extensively by many groups (see, for example, Tjon [22]). Recently,
Arenhével, Beck, and Wilbois [23] have pointed out that the relativistic effects
in inelastic scattering can be very large. In this section I will report on some
very recent work by Adam, Ulmer, Van Orden, and me [24] which confirms the
observations made in Ref. [23] and by others. This work is preliminary and will
be followed by more extensive calculations in the near future.

Fig. 11 shows the kinematics for the process e + d — €’ + p + n (we use
the notation of Ref. [25]). The coincidence unpolarized scattering cross section
depends on four covariant structure functions
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FIG. 11. The kinematics of electron scattering when the initial hadronic state is
sken into two fragments with momenta p; and pa.

Q2 (Gevy?

2
2mv (GeV)?

FIG. 12. The region of the v-Q? plane accessible to electron scattering.
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where the kinematic factors are

1
ST=§+§2
1 1
SLT‘—:—‘%(1+§2)2
_lac], @
€= 0 tan2,

with 6 the electron scattering angle and ¢ the out-of-plane angle, as shown in
Fig. 11.

The structure functions are related to the helicity matrix elements of the
current

R = Roo
Rr=Ry; +R__
RTT = 2Re R+_

Rpr = 2Re (Roy — Ro-)

where (for unpolarized targets) the R’s are

2 *
Ry = g—W ,\MZ;/\;</\1A2 |Ix, (@)] Aa) </\1/\2 |JA;((1)|)\4> .

These structure functions depend on three variables: Q?, v, and the angle 6,
between p; and q, where p; is the three-momentum of the particle detected
in coincidence with the final electron. It is convenient to specify 6, in the cm
frame of the outgoing pair, where it always varies between 0 and =, regardless
of the values of Q? and v. The region of allowed values of Q? and v is shown in
Fig. 12. If the scattering is elastic, so that the deuteron remains bound after the
scattering, the Bjorken variable £ = Q2/2mv = 2, and this defines one boundary
of the allowed scattering region. As long as x remains close to 2, the final state
remains below the pion production threshold up to very large values of @2, and
one may try to explain the large Q2 behavior of these inelastic processes using a
theory with no pion rescattering in the final state.

The four unpolarized structure functions are only a small fraction of the struc-
ture functions which can be measured. With polarized electrons, targets, and re-
coiling nucleons many more can be studied [25,26], but these observables tend to
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[G. 13. The covariant plane wave Born approximation to deuteron electrodisinte-
ion. Note that the dnp vertex functions used in these diagrams always have one
icle on shell.

rery sensitive to final state interactions and interaction currents. The calcula-
s presented here are obtained only from the pole diagrams shown in Fig. 13,
hence I limit discussion to the four unpolarized structure functions. After
1 state- interactions and interaction currents have been included, we will be
> to discuss the polarization observables.
Fig. 14 shows that the pole approximation does an excellent job of explaining
180° SLAC data. It also shows that the relativistic effects are very large.
st of the relativistic effects seem to come from the corrections to the current,
there is no sensitivity to the different model wave functions (we compared
results from model IIB and the Paris model, as relativized in Ref. [23]).
Even the low energy Bernheim data [27] shown in Fig. 15 are well fit by the
: terms provided the lowest order v/c relativistic contributions are retained.
;his case there is no evidence for relativistic effects of higher order in v/e,
for model dependencies coming from the difference between the Paris and
del 1IB wave functions. However, under more extreme (but still measurable
ditions) the calculations show great sensitivity to all effects. This is illustrated
"igs. 16 and 17, which show the differential cross section, the ¢ asymmetry

do(¢ = 180°) — do(¢ = 0°)
do (¢ = 180°) + do (¢ = 0°)

Ay =

the four structure functions. The four curves show (i) the v/c approximation,
the exact contribution for Model IIB, (iii) the exact contribution for the Paris
e function (23], and (iv) the result for Model IIB with the P-states set to zero.
see that the results are sensitive to all of these differences, and there are
lcations that these effects are measurably large [24]. Final conclusions await
her analysis and the calculations of the final state and interaction current
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FIG. 14. Comparison of the covariant impulse approximation with the nonrelativistic

and v/c approximations.

Bemheim data for E= 500MeV
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FIG. 15. The Bernheim data at low missing momentum. Note that the relativistic

effects (mostly from the current operator) are significant.
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- G
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he major theoretical tasks for the near future are to

FIG. 17. The four structure functions at “large” Q? and small W. All are sensitive
e complete the covariant calculations of all spin dependent observables for to all effects.

d(e, ep)n for final states with small mass, and look for measurable observ-
ables which are sensitive to short range dynamics, and

e begin covariant calculation of the *H and *He form factors and look at
electrodisintegration of the threc-nucleon bound states.
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