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� Space Cryocooler Historical Overview and
Applications

� Space Cryogenic Cooling System Design and
Sizing

� Space Cryocooler Performance and How It's
Measured

� Cryocooler-Specific Application and Integration
Example: The AIRS Instrument
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� Technical Challenges to Achieving Long-life Cryocoolers

• Operating needs of typical space detectors

•  Space cryocooler technology and reliability challenges

� Space Stirling Cryocooler Developments

• The Oxford cooler and its spinoffs

• Recent long-life space Stirling cooler developments

� Pulse Tube Cryocooler Developments

• Operating principle and integration advantages

•  Recent developments and flight applications

� Closed-cycle J-T Cryocooler Developments

• J-Ts based on mechanical compressors

• J-Ts based on sorption compressors

� Brayton Cryocooler Developments

Session 1—Space Cryocooler
Applications and Historical Overview

Topics
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• Cryocoolers are an enabling technology for space missions
viewing in the Infrared, gamma-ray and x-ray spectrums

• Earth science (weather, atmospheric chemistry, air and ocean
temperature distributions)

• Planetary science (mineral distribution)

• Space Astronomy (star formation, planet detection, origin of the
universe studies, CMB, black holes)

• Reconnaissance and missile defense

AIRS Earth-science instrument SIRTF IR space telescope

Typical Cryogenic Uses in Space
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INTEGRAL

AIRS

HST

SIRTF

Radiation Wavelength Blackbody Detector Detector Oper.
Type (microns) Temp. (K) Technology Temp. (K)

â-rays 10-5 3 ´108 K Ge Diodes 80 K

â-rays 10-4 3 ´107 K Ge Diodes 80 K

x-rays 10-3 3 ´106 K micro 0.050 K

x-rays 10-2 3 ´105 K calorimeters 0.050 K

UV 0.1 30,000 K CCD/CMOS 200-300 K

visible 1 3000 K CCD/CMOS 200-300 K

IR 2 1500 K HgCdTe 80-130 K

IR 5 600 K HgCdTe 80-120 K

LWIR 10 300 K HgCdTe 35-80 K

LWIR 15 200 K HgCdTe 35-60 K

LWIR 20 150 K Si:As 6 -10 K

LWIR 50 60 K Ge:Ga 2.0 K

LWIR/ìwaves 100 30 K Ge:Ga 1.5 K

microwaves 200 15 K Bolometers 0.100 K

microwaves 500 6 K Bolometers 0.100¶K

Detector Technologies
and Temperatures
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Detector Cooling Requirements vs
Cooler Temperature/Power Performance
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Operating Regions of Cryocoolers
vs Detector Cooling Requirements
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Principal Space Cryocooler
Development Challenges
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Principal Reliability Issues
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• Sensitive mechanical construction
- Precision part fit and alignment
- Fragile cold end construction
- Strong sensitivity to leakage of working fluids (Helium)
- Potential for cyclic mechanical fatigue

• High sensitivity to contamination
- Lubricants or rubbing surfaces generate contaminants
- Cold surfaces getter contaminants from all sources

• AC drive generates vibration and EMI

• Complex drive electronics to provide AC waveforms and closed-
loop control of piston motions, vibration, and coldtip temperature

• Difficult failure analysis
- Operation obscured by pressure vessels and vacuum jackets
- Observation and rework require resealing, decontamination,

 and refilling -- generally requiring several weeks

Stirling  and  Pulse Tube Cryocooler
Technology  Drivers
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• 50 Years to Achieve Long-Life Cryocoolers in Space

1955 to 1965 — The Birth of the Space Program,
First Satellites: Sputnik and
Explorer

1965 to 1975 — Man on the Moon; First cryogenics
in space

1975 to 1985 — Launch of the Shuttle; Struggle to
achieve long-life coolers

1985 to 1995 — Great Observatories in Space;
Long-life coolers arrive

1995 to 2005 — Mission to Planet Earth; Long-life
cryocoolers achieve acceptance

Brief History of
Cryocoolers in Space
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• The First Satellites Reach Orbit
• Sputnik launched in October 1957
• Explorer launched in January 1958

• Ranger Moon Shots 1961 to 1965

• First Earth Science Missions
• Nimbus 1 in 1964

• First Planetary Flybys
• Mariner Venus 1962
• Mariner Mars 1964

• Advance Planning for Future Missions
• Fundamental physics (Gravity Probe B)
• Earth science (weather, atmos. chemistry)
• Planetary science (Mercury, Jupiter, etc)
• Space Astronomy (IR¶, â-ray, x-ray)
• Reconnaissance and missile defense

Sputnik 1

Explorer

1955 to 1965
The birth of the space program — 50 years ago
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• To the Moon by 1970
• Surveyor lander in 1967
• Apollo moon orbiter in 1968
• Apollo 11 "Man on the Moon" in 1969
• Apollo 13 to 17 from 1970-72

• First Cryocoolers and Cryostats
• First Stored Cryogen 1968 (Apollo Fuel Cell LH

2
 and LO

2
 Dewars)

• First Cryogenically cooled Instruments

1969—Mariner 6 and 7 to Mars (N
2
/H

2
 22¶K open-cycle J-T cooler)

1971—Malaker Stirling and Hughes VM coolers on DoD flights
1972—Lockheed Solid CO

2
 on DoD's SESP 72-2

1973—Malaker Stirlings on S-191 & S-192 Skylab instruments

1975—Lockheed 2-stage CH
4
/NH

3
 cryogen on Nimbus 6

• 1975 Viking Mars Landing
Viking Lander

on Mars

Apollo
Moon Landing

1965 to 1975
Man on the Moon — First Space Laboratories
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1972
Lockheed
Solid CO

2

(230 mW at 126 K)
(7 month Life)

1971
Malaker
Stirling

(2 W at 100 K)
(1000 hr Life)

1975
Lockheed

Solid CH
4
/NH

3

(52 mW at 65 K)
(91 mW at 152 K)

(7 month Life)

1971
Hughes

2-stage VM

(3.5 W at 60 K +
0.15W at 13K)
(500 hr Life)

First Coolers to Fly in Space
(1971 to 1975 — 40 years ago)
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• Solid cryogen dewars for 50-75 K
• Thermal performance of MLI for dewars

• Long-life 1 and 3-stage Vuilleumier
coolers for NASA and DoD

• 5 W at 75 K
• Input power: Up to 2700 W
• Developers: Garrett AiResearch,

Philips and Hughes

• Long-life turbo and Rotary Reciprocating
Brayton coolers for DoD
• 1.5¶W at 12¶K + 30¶W at 60¶K
• Input power: 2500 to 4000 W
• Developer: General Electric and

A.D. Little
A.D. Little 77 K R3 Brayton

Lockheed
MLI

Testing

Hughes
VM Cooler

Primary R&D Emphasis
1965-1975
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• Continued Earth Science Cryogenic
Missions
• 1978 Nimbus 8 (Lockheed 2-stage cryogen

CH
4
/NH

3
)

• 1978 HEAO (Ball 2-stage cryogen CH
4
/NH

3
)

• 1979 STP 78-1 (Philips rhombic drive
Stirling (0.3W at 90 K + 1.5 W at 140 K ...13,000 hr Life))

• First Space Shuttle Launch (1981)

• First Super Fluid Helium Dewar
• IRAS IR telescope (1983): 190 day life

• Spacelab Launch and Cryogenic
Experiments
• Spacelab 2 (1983): IRT SHe dewar
• Spacelab 3 (1985): ATMOS (CTI Stirling

Cooler (3.5 W at 60 K + 0.15W at 13K (several 7-day flights)

1975 to 1985
Launch of the Shuttle — Struggle for Long-Life Coolers

IRAS SHe Dewar

ATMOS CTI Cooler

Philips Rhombic Drive
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Long-life Stirling Coolers for 60-¶80 K

• Philips magnetic-bearing Stirling (5W at 60K)

• Flexure Stirling coolers at Oxford Univ. and RAL
(0.5 W at 80K)

Large Long-Life Missile Defense Coolers for 10-20 K

• 10K Turbo Brayton (1.5 W at 12K)
• 10K  Rotary Reciprocating Refrigerator (R3)

(1.5¶W at 12K + 40¶W at 60¶K; power < 2500 W)
• 3-stage Vuilleumier (0.3 W at 11.5 K + 10 W at

33 K + 12W at 75K; power: 2700 watts)
• Large Rotary Magnetic Refrigerators

(Bridge cooling between 10 and 20 K)

Long-life Sorption Coolers

• Charcoal/H
2
 sorption refrigerators for 20¶K

• LaNiH sorption refrigerators for 20¶K

Philips Magnetic
Bearing Stirling

Early Oxford Cooler

Garrett Turbo Brayton

Primary R&D Emphasis (1975¶-¶1985)
The Struggle for Long-Life Coolers Continues
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Hubble• Hubble Space Telescope Launched (1990)

• First Long-Life Oxford Coolers in Space
• July 1991: ATSR-1 on ERS-1 (RAL 80K Stirling)
• Sept 1991: ISAMS on UARS (Oxford 80K Stirling)
• 1995: ATSR-2  on ERS-2 (RAL 80K Stirling)

• Shuttle SF Helium Experiments (Lambda Point)

• Continued Large Stored Cryogen Telescopes
• 1989: COBE (Ball SF He dewar)
• 1991: UARS CLAES (Lockheed 15K Ne/CO

2
 cryostat)

• 1995: ESA  ISO (SF He dewar)

Oxford
cooler

COBE CLAES ISO

1985 to 1995
Great Observatories & Long-life Coolers Arrive
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Development Focus Takes a major turn toward smaller coolers

• Large 10-20 K cooler efforts are abandoned

• BMDO starts Standard Spacecraft Cryocooler (SSC) effort
(2W at 65 K)

• NASA prepares for up to 75 coolers needed for its "Mission to
Planet Earth"

Development Items:

• 50-80K Oxford Stirling derivatives at BAe, Lockheed/Lucas, Ball,
TRW, Hughes, Mitsubishi and Fujitsu

• Multi-Stage Oxford Stirling derivatives at RAL and Ball

• High-efficiency Pulse Tubes (TRW)

• 65 K Turbo Brayton and Diaphragm Stirling at Creare

• 65K (PCO) and 10K (LaNiH) Sorption (JPL, Aerojet)

Primary R&D Emphasis (1985¶-¶1995)
A Dramatic Change in R&D Emphasis
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Flexure
Spring

The Oxford Cooler
A Breakthrough Technology
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The Oxford Cooler
Family Tree (1995)
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Ball 2W 60KHughes SSC 2W 60KBAe 50-80K

Lockheed Lockheed SCRS TRW

Oxford Heritage Stirling Cooler
Developments (1985-1995)
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• RAL 30¶K 2-Stage Stirling

• EM level with lifetest unit
• Transferred to BAe for production

• RAL Hybrid Stirling/J-T for 4K cooling

• RAL 30¶K 2-stage Stirling upper stage
• Two-stage Oxford-compressor with

reed valves for 4 K J-T bottom stage
• EM level development with lifetest

unit

• Ball 30 K 2-Stage Stirling
• Re-engineered version of RAL unit
• Targeted for EOS SAFIRE instrument

RAL 4K Brassboard
Cooler

Ball 30K Cooler

Multi-Stage Stirling Cooler
Developments (1985-1995)
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Rapid Development of the Pulse
Tube Occurred in the 1991 Time

Incorporation of
Inertance Tube

at TRW

(TRW Coolers)

Cold Tip Temperature 55 K

TRW 1W-35K
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TRW Mini PT
1W at 80K

TRW 1W 35K

TRW 6020 and 3503
2W at 60K,  0.35W at 35K

TRW AIRS

Oxford-Heritage Pulse Tube Cooler
Developments (1985-1995)
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Closed-Cycle Joule-Thomson
Cooler Schematic
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Closed-Cycle J-T Coolers for with
Temperatures from 3 to 80 K
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RAL 4K Closed-Cycle
J-T Cryocooler
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RAL 4K Breadboard J-T Cryocooler
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Sorption Cryocooler Operation
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Typical Sorption Isotherms
(Praseodymium-Cerium-Oxide/O

2
)
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BETSCE 10K cooler

HIMS
Sorption
Cooler

• HIMS 65K PCO Development cooler
for Hubble IR Camera  (1W at 70K)

• 70K Praseodymium Cerium Oxide
lower stage

• 130K Saran Charcoal upper stage

• EM level development with lifetest
unit

• Brilliant Eyes 10K Sorption Cryocooler
(BETSCE)

(150mW at 10K)

• 10K Hydride lower stage

• 80 K Stirling cooler upper stage

• Test flight in space on shuttle STS-77
in 1996

Sorption Cooler
Developments (1985-1995)
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Creare Turbo BraytonExpander
Turbine

• Creare Turbo-Brayton  (7W at 65K)

• Joint funding from NASA GSFC and DoD

• Engineering Model development with
lifetest unit

• Minimal vibration: 800,000 rpm

300K

65K

Turbo-Brayton
Cooler Developments (1985-1995)
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2005 Jly: Suzaku: XRS GSFC ADR cooled by SHe/solid Ne cryostats

Long-life cryocoolers achieve widespread acceptance

• Over 20 long-life Oxford-class coolers are in orbit by 2005 on a
wide variety of US, ESA, and Japanese space missions

• The longest have been operating full-time for 7-10 years

• Stored cryogen systems continue for applications below 10K
• 1996: MSX (Lockheed 10.5 K solid H

2 
cryostat)

• 1997: NICMOS (Ball 65 K solid N
2 
cryostat)

• 1999: WIRE (Lockheed 7 K solid H
2 
cryostat)

• 2003: SIRTF (Spitzer) (Ball SF He dewar)
• 2003: GPB (Lockheed SF He dewar)
• 2005: XRS (GSFC ADR cooled by SF He/solid Ne cryostats)

• Development is shifted to cryocooler performance optimization
• Vibration and EMI reduction
• Lower mass & size, increased efficiency
• Expanded range of cooling capacities and temperatures
• Hybrid coolers for 4-6 K cooling
• Sub-Kelvin coolers for bolometer and x-ray detectors

1995 to 2005
Long-life cryogenics achieves acceptance
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JPL Planck 18 K Sorption and
RAL 4 K JT Cooler (2009 Launch)

RAL Planck 4K J-T Cooler JPL Planck Sorption Cooler

• Planck mission of the European Space
Agency; Launched May 2009

• Very high resolution mapping of
temperature anisotropy in the CMB

• Two JPL hydrogen sorption cryocoolers
• Cool the LFI detectors to 18 - 20¶K
• Precool RAL 4¶K helium J-T for HFI

• RAL Oxford-style 4 K J-T cooler
• Precool the HFI  dilution cooler to 4.2 K

Planck Spacecraft
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Recent Long-Life Space Cryocooler
Flight Operating Experience (Oct. 2013)
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General Features of Next Generation
Space Observatory Missions

MIRI in its MLI

James Webb Space
Telescope (JWST)

JWST—New infrared space telescope
well beyond the capability of Hubble

• 6½ m telescope at 50 K
• IR imaging and spectrometry (0.6 - 28

ìm)
• 6 K MIRI instrument (100¶kg) is 12-m

separation distance from S/C
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Historical Overview and
Application Summary

• Cryogenics is an enabling technology for space missions
viewing in the infrared, gamma-ray and x-ray spectrums

• Earth science, Planetary science, Space Astronomy

• Reconnaissance and missile defense

• Over the past 50-years enormous progress has been made
in both developing the required cryogenic technologies, and
in using them to further our understanding of Earth and the
heavens

• Since 1991, over 50 long-life cryocoolers have been
launched into space on cryogenic missions— over 30 of
which are still operating in orbit on multi-year missions

• For the future, important new developments are focusing on
the lower temperature range, from 6 to 20¶K, in support of
missions like JWST that study the origin of the Universe


