

Cryocoolers for Space Applications

R.G. Ross, Jr.

Jet Propulsion Laboratory
California Institute of Technology

Topics

- Space Cryocooler Historical Overview and Applications
- Space Cryogenic Cooling System Design and Sizing
- Space Cryocooler Performance and How It's Measured
- Cryocooler-Specific Application and Integration Example: The AIRS Instrument

Session 1—Space Cryocooler Applications and Historical Overview

Topics

- Technical Challenges to Achieving Long-life Cryocoolers
 - Operating needs of typical space detectors
 - Space cryocooler technology and reliability challenges
- Space Stirling Cryocooler Developments
 - The Oxford cooler and its spinoffs
 - Recent long-life space Stirling cooler developments
- Pulse Tube Cryocooler Developments
 - Operating principle and integration advantages
 - Recent developments and flight applications
- Closed-cycle J-T Cryocooler Developments
 - J-Ts based on mechanical compressors
 - J-Ts based on sorption compressors
- Brayton Cryocooler Developments

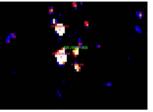
References

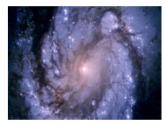

- Ross, R.G., Jr., "Aerospace Coolers: a 50-Year Quest for Long-life Cryogenic Cooling in Space," Chapter 11 of Cryogenic Engineering: Fifty Years of Progress, Ed. by K. Timmerhaus and R. Reed, Springer Publishers, New York, 2007, pp. 225-284 (130 references).
- http://www2.jpl.nasa.gov/adv_tech/ JPL website with 103 JPL cryocooler references as PDFs (R. Ross, webmaster)
- Donabedian, M., Spacecraft Thermal Control Handbook, Vol. II: Cryogenics, The Aerospace Press, El Segundo, CA, (2003). (641 pages)
- Donabedian, M., "Chapter 15: Cooling Systems," The Infrared Handbook, revised edition, IRIA Series in Infrared & Electro-Optics, George J. Zissis (Editor), William L Wolfe (Editor) (1993), pp. 15-1 to 15-85 (good history but dated).

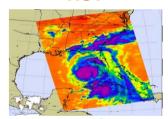
Typical Cryogenic Uses in Space

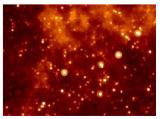
- Cryocoolers are an enabling technology for space missions viewing in the Infrared, gamma-ray and x-ray spectrums
 - Earth science (weather, atmospheric chemistry, air and ocean temperature distributions)
 - Planetary science (mineral distribution)
 - Space Astronomy (star formation, planet detection, origin of the universe studies, CMB, black holes)
 - Reconnaissance and missile defense

AIRS Earth-science instrument


SIRTF IR space telescope


Detector Technologies and Temperatures

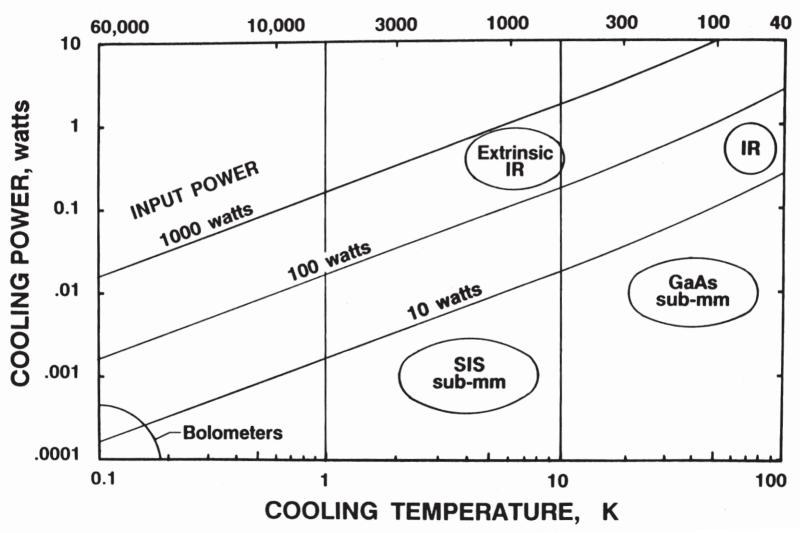

Radiation Type	Wavelength (microns)	Blackbody Temp. (K)	Detector Technology	Detector Oper. Temp. (K)
γ-rays	10 ⁻⁵	3 ×10 ⁸ K	Ge Diodes	80 K
γ-rays	10 ⁻⁴	$3 \times 10^7 \text{ K}$	Ge Diodes	80 K
x-rays	10 ⁻³	$3 \times 10^6 \text{ K}$	micro	0.050 K
x-rays	10 ⁻²	$3 \times 10^5 \text{K}$	calorimeters	0.050 K
UV	0.1	30,000 K	CCD/CMOS	200-300 K
visible	1	3000 K	CCD/CMOS	200-300 K
IR	2	1500 K	HgCdTe	80-130 K
IR	5	600 K	HgCdTe	80-120 K
LWIR	10	300 K	HgCdTe	35-80 K
LWIR	15	200 K	HgCdTe	35-60 K
LWIR	20	150 K	Si:As	6 -10 K
LWIR	50	60 K	Ge:Ga	2.0 K
LWIR/μwav	es 100	30 K	Ge:Ga	1.5 K
microwaves	s 200	15 K	Bolometers	0.100 K
microwaves	s 500	6 K	Bolometers	0.100 K


INTEGRAL

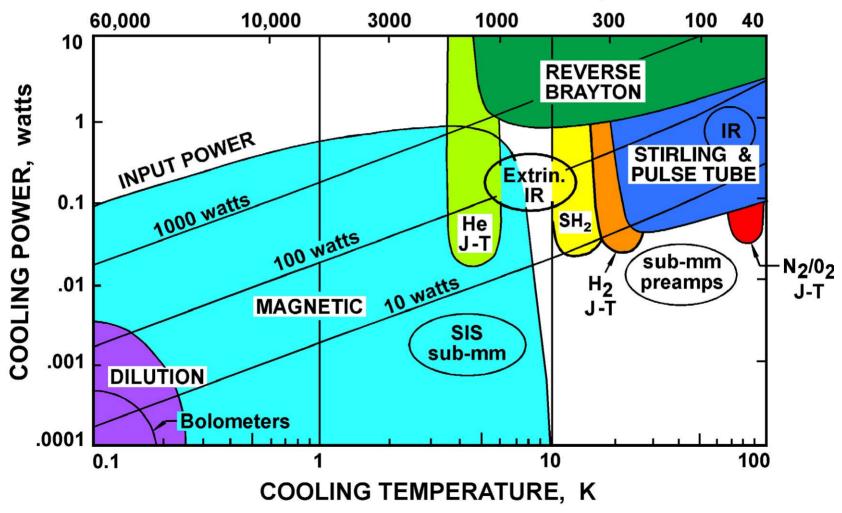
HST

AIRS

SIRTF


- - - -

Detector Cooling Requirements vs Cooler Temperature/Power Performance



Operating Regions of Cryocoolers vs Detector Cooling Requirements

Principal Space Cryocooler Development Challenges

- 5 to 10 YEAR LIFE with 0.95 RELIABILITY
 - This corresponds to 2,000,000 miles for an automobile with no breakdowns or servicing

- MINIMAL VIBRATION and EMI
 - Imaging instruments demand low levels of vibration and EMI
 - Goals are for induced vibratory forces to be below 0.05 lbs

EFFICIENT THERMAL PERFORMANCE

Principal Reliability Issues

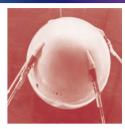
- Contamination and plugging of the cold-end by condensables
 - Contaminants in the as-filled working fluid
 - Desorbed gases from interior surfaces
 - Outgassing from polymers and porous materials
 - Products of wear and chemical decomposition
- Fatigue of structural elements
 - Piston and displacer support flexures
 - Electrical power leads to moving motor windings
 - Thin displacer cold-finger walls
- Wear due to misalignment of clearance seals
 - Assembly errors
 - Thermal deformations due to differential temperatures
 - Dynamic structural excursions
 - Structural warping from external loads and residual stresses
- Wear due to particulate contaminants
- Leakage of the working fluid

Stirling and Pulse Tube Cryocooler Technology Drivers

- Sensitive mechanical construction
 - Precision part fit and alignment
 - Fragile cold end construction
 - Strong sensitivity to leakage of working fluids (Helium)
 - Potential for cyclic mechanical fatigue
- High sensitivity to contamination
 - Lubricants or rubbing surfaces generate contaminants
 - Cold surfaces getter contaminants from all sources
- AC drive generates vibration and EMI
- Complex drive electronics to provide AC waveforms and closedloop control of piston motions, vibration, and coldtip temperature
- Difficult failure analysis
 - Operation obscured by pressure vessels and vacuum jackets
 - Observation and rework require resealing, decontamination, and refilling -- generally requiring several weeks

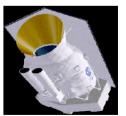
Brief History of Cryocoolers in Space

50 Years to Achieve Long-Life Cryocoolers in Space


1955 to 1965 — The Birth of the Space Program,
First Satellites: Sputnik and
Explorer

1965 to 1975 — Man on the Moon; First cryogenics in space

1975 to 1985 — Launch of the Shuttle; Struggle to achieve long-life coolers


1985 to 1995 — Great Observatories in Space; Long-life coolers arrive

1995 to 2005 — Mission to Planet Earth; Long-life cryocoolers achieve acceptance

1955 to 1965

The birth of the space program — 50 years ago

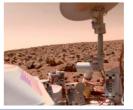
- The First Satellites Reach Orbit
 - Sputnik launched in October 1957
 - Explorer launched in January 1958
- Ranger Moon Shots 1961 to 1965
- First Earth Science Missions
 - Nimbus 1 in 1964
- First Planetary Flybys
 - Mariner Venus 1962
 - Mariner Mars 1964
- Advance Planning for Future Missions
 - Fundamental physics (Gravity Probe B)
 - Earth science (weather, atmos. chemistry)
 - Planetary science (Mercury, Jupiter, etc)
 - Space Astronomy (IR, γ-ray, x-ray)
 - Reconnaissance and missile defense

Explorer

June 2015

1965 to 1975

Man on the Moon — First Space Laboratories



- To the Moon by 1970
 - Surveyor lander in 1967
 - Apollo moon orbiter in 1968
 - Apollo 11 "Man on the Moon" in 1969
 - Apollo 13 to 17 from 1970-72

Apollo Moon Landing

- - **First Cryocoolers and Cryostats**
 - First Stored Cryogen 1968 (Apollo Fuel Cell LH, and LO, Dewars)
 - First Cryogenically cooled Instruments
 - 1969—Mariner 6 and 7 to Mars (N₂/H₂ 22 K open-cycle J-T cooler)
 - 1971—Malaker Stirling and Hughes VM coolers on DoD flights
 - 1972—Lockheed Solid CO, on DoD's SESP 72-2
 - 1973—Malaker Stirlings on S-191 & S-192 Skylab instruments
 - 1975—Lockheed 2-stage CH₄/NH₃ cryogen on Nimbus 6
 - 1975 Viking Mars Landing

Viking Lander on Mars

First Coolers to Fly in Space

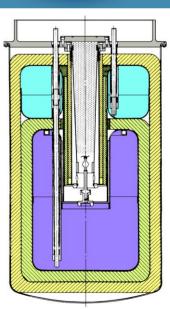
(1971 to 1975 - 40 years ago)

1971 Malaker Stirling

(2 W at 100 K) (1000 hr Life)

1972 Lockheed Solid CO₂

(230 mW at 126 K) (7 month Life)


1971 Hughes 2-stage VM

(3.5 W at 60 K + 0.15W at 13K) (500 hr Life)

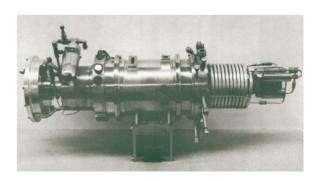
1975 Lockheed Solid CH₄/NH₃

(52 mW at 65 K) (91 mW at 152 K) (7 month Life)

Primary R&D Emphasis 1965-1975

- Solid cryogen dewars for 50-75 K
 - Thermal performance of MLI for dewars

- 5 W at 75 K
- Input power: Up to 2700 W
- Developers: Garrett AiResearch, Philips and Hughes



Lockheed MLI Testing

Hughes VM Cooler

- Long-life turbo and Rotary Reciprocating Brayton coolers for DoD
 - 1.5 W at 12 K + 30 W at 60 K
 - Input power: 2500 to 4000 W
 - Developer: General Electric and A.D. Little

A.D. Little 77 K R³ Brayton

1975 to 1985

Launch of the Shuttle — Struggle for Long-Life Coolers

- Continued Earth Science Cryogenic Missions
 - 1978 Nimbus 8 (Lockheed 2-stage cryogen CH₄/NH₃)
 - 1978 HEAO (Ball 2-stage cryogen CH₄/NH₃)
 - 1979 STP 78-1 (Philips rhombic drive Stirling (0.3W at 90 K + 1.5 W at 140 K ...13,000 hr Life))
- First Space Shuttle Launch (1981)
- First Super Fluid Helium Dewar
 - IRAS IR telescope (1983): 190 day life
- Spacelab Launch and Cryogenic Experiments
 - Spacelab 2 (1983): IRT SHe dewar
 - Spacelab 3 (1985): ATMOS (CTI Stirling Cooler (3.5 W at 60 K + 0.15W at 13K (several 7-day flights)

Philips Rhombic Drive

IRAS SHe Dewar

ATMOS CTI Cooler

Primary R&D Emphasis (1975-1985)

The Struggle for Long-Life Coolers Continues

Long-life Stirling Coolers for 60-80 K

- Philips magnetic-bearing Stirling (5W at 60K)
- Flexure Stirling coolers at Oxford Univ. and RAL (0.5 W at 80K)

Large Long-Life Missile Defense Coolers for 10-20 K

- 10K Turbo Brayton (1.5 W at 12K)
- 10K Rotary Reciprocating Refrigerator (R³) (1.5 W at 12K + 40 W at 60 K; power < 2500 W)
- 3-stage Vuilleumier (0.3 W at 11.5 K + 10 W at 33 K + 12W at 75K; power: 2700 watts)
- Large Rotary Magnetic Refrigerators (Bridge cooling between 10 and 20 K)

Long-life Sorption Coolers

- Charcoal/H₂ sorption refrigerators for 20 K
- LaNiH sorption refrigerators for 20 K

Philips Magnetic Bearing Stirling

Early Oxford Cooler

Garrett Turbo Brayton

1985 to 1995

Great Observatories & Long-life Coolers Arrive

- Hubble Space Telescope Launched (1990)
- First Long-Life Oxford Coolers in Space
 - July 1991: ATSR-1 on ERS-1 (RAL 80K Stirling)
 - Sept 1991: ISAMS on UARS (Oxford 80K Stirling)
 - 1995: ATSR-2 on ERS-2 (RAL 80K Stirling)

• 1989: COBE (Ball SF He dewar)

• 1991: UARS CLAES (Lockheed 15K Ne/CO, cryostat)

• 1995: ESA ISO (SF He dewar)

Hubble

Oxford

COBE

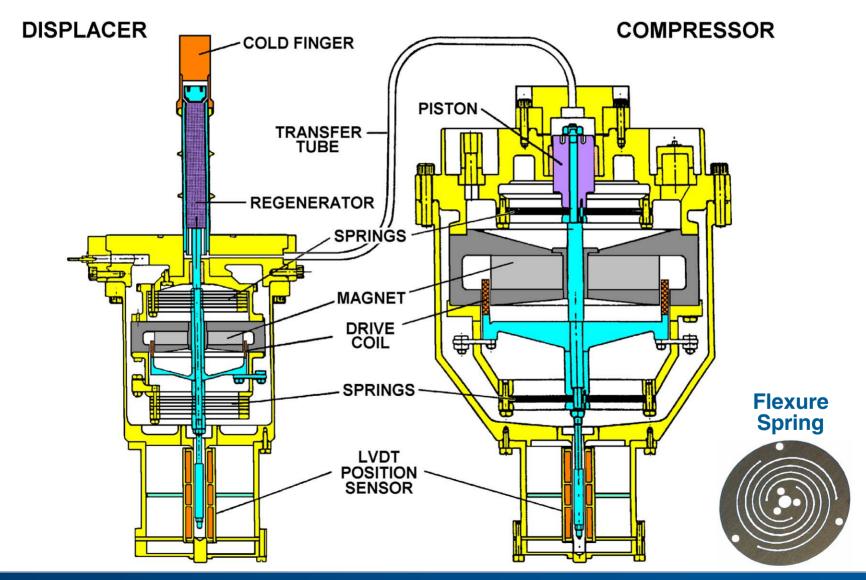
Primary R&D Emphasis (1985 - 1995)

A Dramatic Change in R&D Emphasis

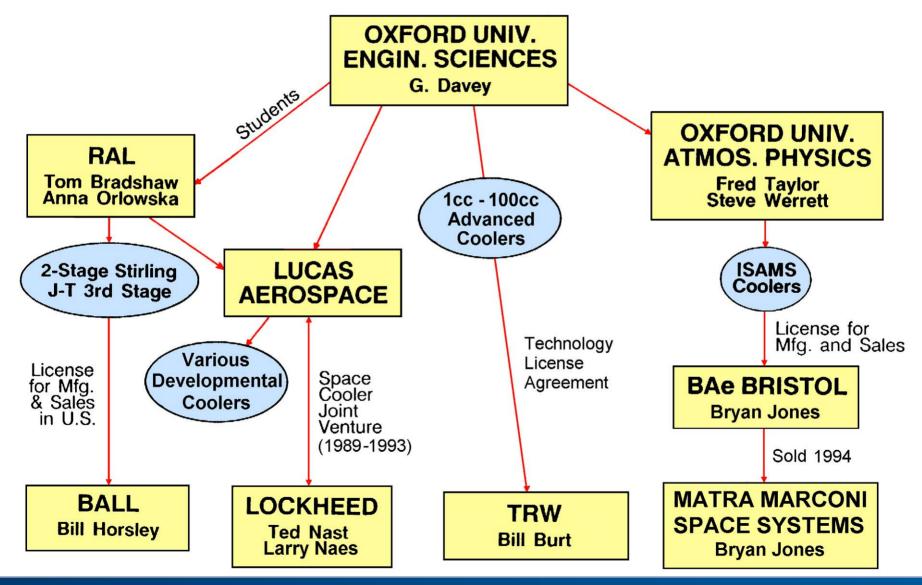
Development Focus Takes a major turn toward smaller coolers

- Large 10-20 K cooler efforts are abandoned
- BMDO starts Standard Spacecraft Cryocooler (SSC) effort (2W at 65 K)
- NASA prepares for up to 75 coolers needed for its "Mission to Planet Earth"

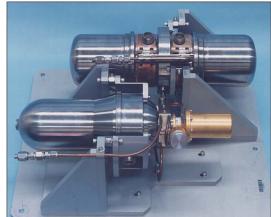
Development Items:


- 50-80K Oxford Stirling derivatives at BAe, Lockheed/Lucas, Ball, TRW, Hughes, Mitsubishi and Fujitsu
- Multi-Stage Oxford Stirling derivatives at RAL and Ball
- High-efficiency Pulse Tubes (TRW)
- 65 K Turbo Brayton and Diaphragm Stirling at Creare
- 65K (PCO) and 10K (LaNiH) Sorption (JPL, Aerojet)

The Oxford Cooler

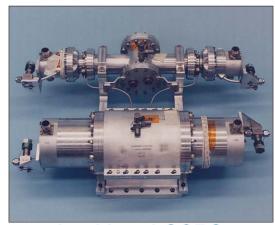


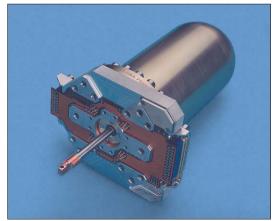
The Oxford Cooler Family Tree (1995)



Oxford Heritage Stirling Cooler Developments (1985-1995)

BAe 50-80K


Hughes SSC 2W 60K


Ball 2W 60K

Lockheed

Lockheed SCRS

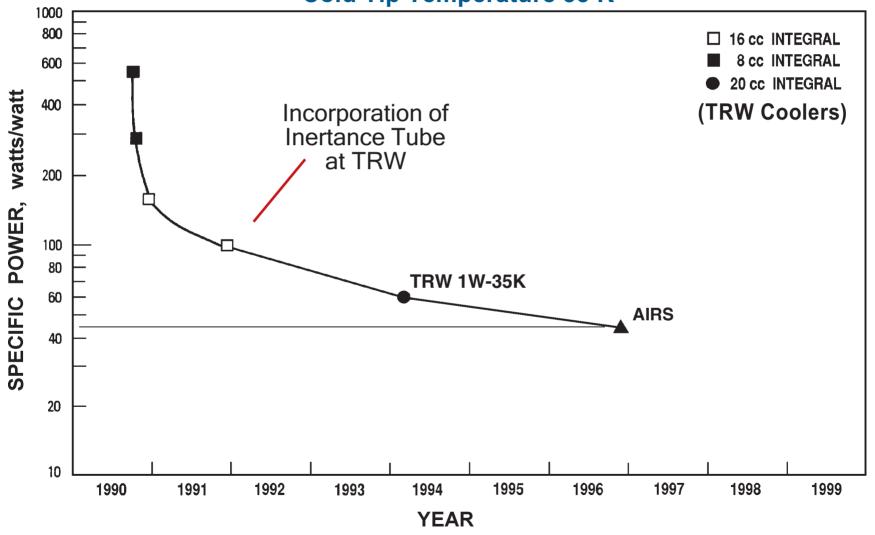
TRW

Multi-Stage Stirling Cooler Developments (1985-1995)



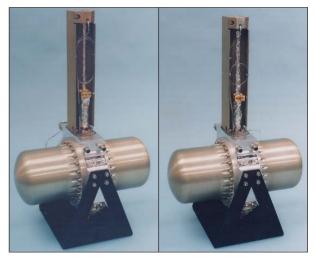
- RAL 30 K 2-Stage Stirling
 - EM level with lifetest unit
 - Transferred to BAe for production
- RAL Hybrid Stirling/J-T for 4K cooling
 - RAL 30 K 2-stage Stirling upper stage
 - Two-stage Oxford-compressor with reed valves for 4 K J-T bottom stage
 - EM level development with lifetest unit
- Ball 30 K 2-Stage Stirling
 - Re-engineered version of RAL unit
 - Targeted for EOS SAFIRE instrument

RAL 4K Brassboard Cooler


Ball 30K Cooler

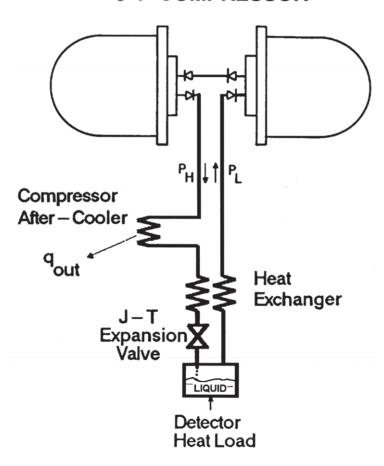
Rapid Development of the Pulse Tube Occurred in the 1991 Time

Oxford-Heritage Pulse Tube Cooler Developments (1985-1995)


TRW Mini PT 1W at 80K

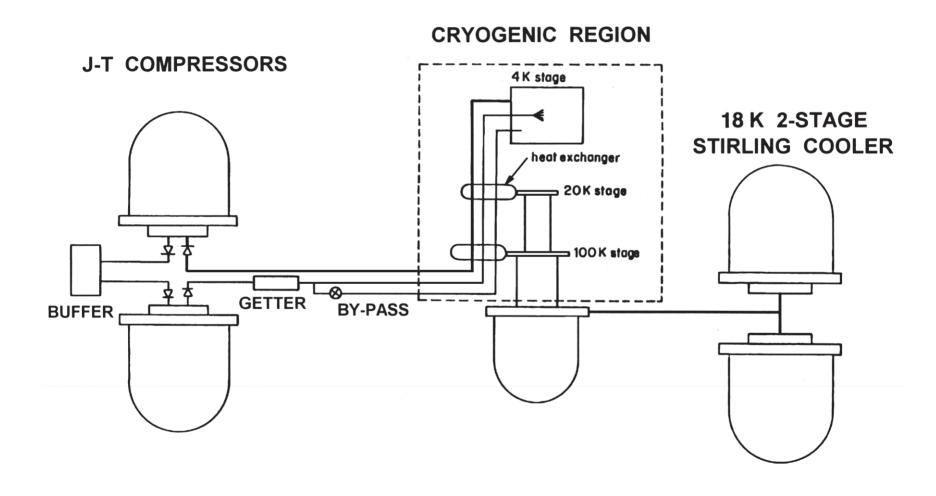
TRW 1W 35K

TRW AIRS


TRW 6020 and 3503 2W at 60K, 0.35W at 35K

Closed-Cycle Joule-Thomson Cooler Schematic

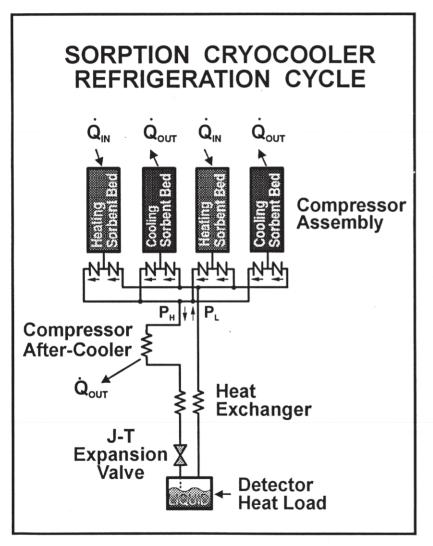
Closed-Cycle J-T Coolers for with Temperatures from 3 to 80 K

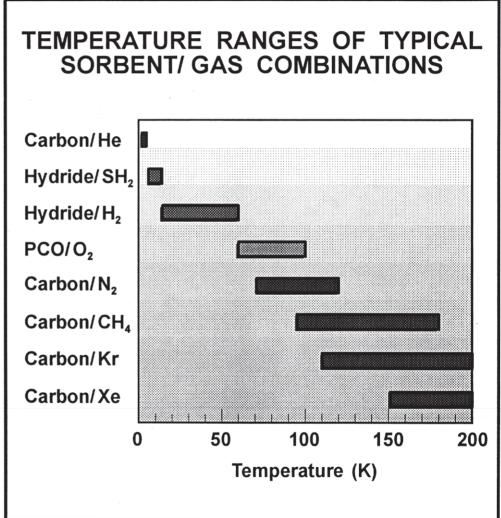


COLD-TIP TEMPERATURE	REFRIGERANT FLUID	COMPRESSOR TYPE
60 - 80 K	 Nitrogen & mixed gases 	Oil lubricated Pistons
18 - 30 K	 Hydrogen 	 Sorption
10 - 14 K	 Solid Hydrogen 	 Sorption
4 - 6 K	 Helium 4 	 Oxford w/ Valves
3 - 4 K	Helium 3	 Oxford w/ Valves

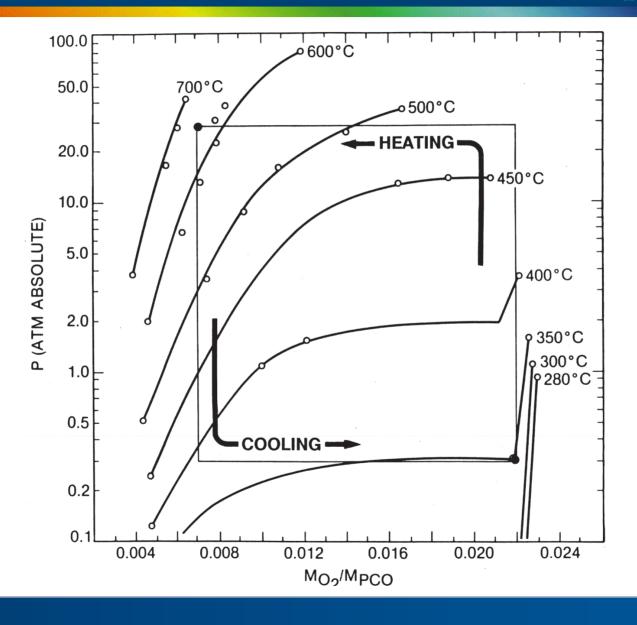
RAL 4K Closed-Cycle J-T Cryocooler

RAL 4K Breadboard J-T Cryocooler



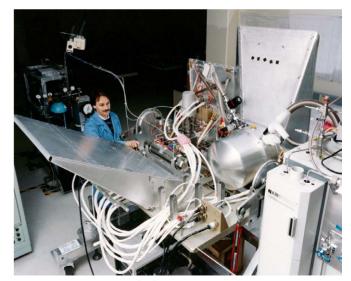


Sorption Cryocooler Operation



Typical Sorption Isotherms (Praseodymium-Cerium-Oxide/O₂)

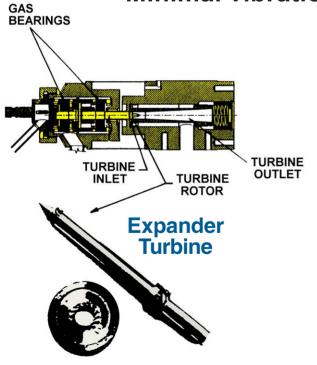
Sorption Cooler Developments (1985-1995)

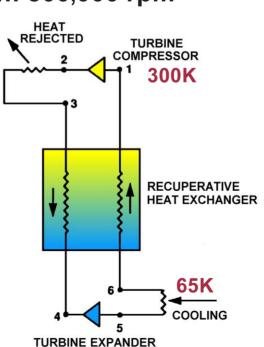

- HIMS 65K PCO Development cooler for Hubble IR Camera (1W at 70K)
 - 70K Praseodymium Cerium Oxide lower stage
 - 130K Saran Charcoal upper stage
 - EM level development with lifetest unit

 Brilliant Eyes 10K Sorption Cryocooler (BETSCE)

(150mW at 10K)

- 10K Hydride lower stage
- 80 K Stirling cooler upper stage
- Test flight in space on shuttle STS-77 in 1996


BETSCE 10K cooler



Turbo-Brayton Cooler Developments (1985-1995)

- Creare Turbo-Brayton (7W at 65K)
 - Joint funding from NASA GSFC and DoD
 - Engineering Model development with lifetest unit
 - Minimal vibration: 800,000 rpm

Creare Turbo Brayton

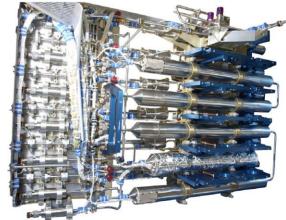
1995 to 2005

Long-life cryogenics achieves acceptance

Long-life cryocoolers achieve widespread acceptance

- Over 20 long-life Oxford-class coolers are in orbit by 2005 on a wide variety of US, ESA, and Japanese space missions
- The longest have been operating full-time for 7-10 years
- Stored cryogen systems continue for applications below 10K
 - 1996: MSX (Lockheed 10.5 K solid H₂ cryostat)
 - 1997: NICMOS (Ball 65 K solid N₂ cryostat)
 - 1999: WIRE (Lockheed 7 K solid H2 cryostat)
 - 2003: SIRTF (Spitzer) (Ball SF He dewar)
 - 2003: GPB (Lockheed SF He dewar)
 - 2005: XRS (GSFC ADR cooled by SF He/solid Ne cryostats)
- Development is shifted to cryocooler performance optimization
 - Vibration and EMI reduction
 - Lower mass & size, increased efficiency
 - Expanded range of cooling capacities and temperatures
 - Hybrid coolers for 4-6 K cooling
 - Sub-Kelvin coolers for bolometer and x-ray detectors

JPL Planck 18 K Sorption and RAL 4 K JT Cooler (2009 Launch)



- Planck mission of the European Space Agency; Launched May 2009
 - Very high resolution mapping of temperature anisotropy in the CMB
- Two JPL hydrogen sorption cryocoolers
 - Cool the LFI detectors to 18 20 K
 - Precool RAL 4 K helium J-T for HFI
- RAL Oxford-style 4 K J-T cooler
 - Precool the HFI dilution cooler to 4.2 K

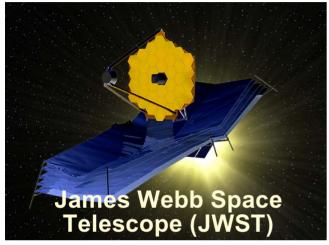
RAL Planck 4K J-T Cooler

JPL Planck Sorption Cooler

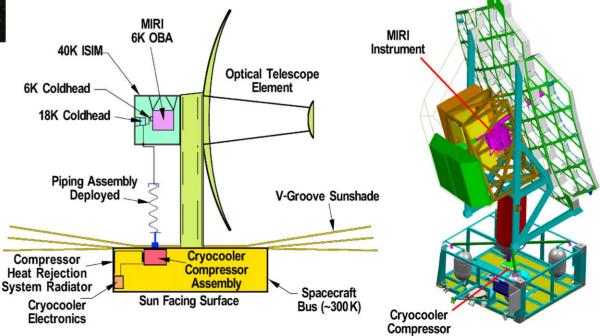
June 2015

Recent Long-Life Space Cryocooler Flight Operating Experience (Oct. 2013)

Cooler / Mission	Hours/Unit	Comments
Air Liquide Turbo Brayton (ISS MELFI 190K)	63,000	Turn on 7/06, Ongoing, No degradation
Ball Aerospace Stirling	,	, 0 0,
HIRDLS (60K 1-stage Stirling)	80,000	Turn on 8/04, Ongoing, No degradation
TIRS cooler (35K two-stage Stirling)	7,000	Turn on 3/6/13, Ongoing, No degradation
Creare Turbo Brayton (77K NICMOS)	57,000	3/02 thru 10/09, Off, Coupling to Load failed
Fujitsu Stirling (ASTER 80K TIR system)	119,400	Turn on 3/00, Ongoing, No degradation
JPL Sorption (PLANCK 18K JT (Prime & Bkup))	27,500	FM1 (8/10-10/13 EOM); FM2 failed at 10,500 h
Mitsubishi Stirling (ASTER 77K SWIR system)	115,200	Turn on 3/00, Ongoing, Load off at 71,000 h
NGAS (TRW) Coolers		
CX (150K Mini PT (2 units))	139,000	Turn on 2/98, Ongoing, No degradation
HTSSE-2 (80K mini Stirling)	24,000	3/99 thru 3/02, Mission End, No degrad.
MTI (60K 6020 10cc PT)	119,000	Turn on 3/00, Ongoing, No degradation
Hyperion (110K Mini PT)	111,000	Turn on 12/00, Ongoing, No degradation
SABER (75K Mini PT)	107,000	Turn on 1/02, Ongoing, No degradation
AIRS (55K 10cc PT (2 units))	99,000	Turn on 6/02, Ongoing, No degradation
TES (60K 10cc PT (2 units))	80,000	Turn on 8/04, Ongoing, No degradation
JAMI (65K HEC PT (2 units))	72,000	Turn on 4/05, Ongoing, No degradation
GOSAŤ/IBUKI (60K HEC PŤ) STSS (Mini PT (4 units))	40,700 30,200	Turn on 2/09, Ongoing, No degradation Turn on 4/10, Ongoing, No degradation
	30,200	rum on 4/10, Ongoing, No degradation
Oxford/BAe/MMS/Astrium Stirling	45 000	40/04 there 7/02 Instrument failed
ISAMS (80 K Oxford) HTSSE-2 (80K BAe)	15,800 24,000	10/91 thru 7/92, Instrument failed 3/99 thru 3/02, Mission End, No degrad.
MOPITT (50-80K BAe (2 units))	114,000	Turn on 3/00, lost one disp. at 10,300 h
ODIN (50-80K Astrium (1 unit))	110,000	Turn on 3/01, Ongoing, No degradation
AATSR on ERS-1 (50-80K Astrium (2 units))	88,200	3/02 to 4/12, No Degrad, Satellite failed
MIPAS on ERS-1 (50-80K Astrium (2 units))	88,200	3/02 to 4/12, No Degrad, Satellite failed
INTEGRAL (50-80K Astrium (4 units))	96,100	Turn on 10/02, Ongoing, No degradation
Helios 2A (50-80K Astrium (2 units))	74,000	Turn on 4/05, Ongoing, No degradation
Helios 2B (50-80K Astrium (2 units))	30,200	Turn on 4/10, Ongoing, No degradation
Raytheon ISSC Stirling (STSS (2 units))	30,200	Turn on 4/10, Ongoing, No degradation
Rutherford Appleton Lab (RAL)		
ATSR 1 on ERS-1 (80K Integral Stirling)	75,300	7/91 thru 3/00, Satellite failed
ATSR 2 on ERS-2 (80K Integral Stirling)	112,000	4/95 thru 2/08, Instrument failed
Planck (4K JT)	38,500	5/09 thru 10/13, Mission End, No Degrad.
Sumitomo Stirling Coolers		-
Suzaku (100K 1-stg)	59,300	7/05 thru 4/12, Mission End, No degradation
Akari (20K 2-stg (2 units))	39,000	2/06 to 11/11 EOM, 1 Degr., 2nd failed at 13 kh
Kaguya GRS (70K 1-stg)	14,600	10/07- 6/09, Mission End, No degradation
JEM/SMILES on ISS (4.5K JT)	4,500	Turn on 10/09, Could not restart at 4,500 h
Sunpower Stirling (75K RHESSI)	102,000	Turn on 2/02, Ongoing, Modest degradation



General Features of Next Generation Space Observatory Missions



MIRI in its MLI

JWST—New infrared space telescope well beyond the capability of Hubble

- 6½ m telescope at 50 K
- IR imaging and spectrometry (0.6 28 μm)
- 6 K MIRI instrument (100 kg) is 12-m separation distance from S/C

Historical Overview and Application Summary

- Cryogenics is an enabling technology for space missions viewing in the infrared, gamma-ray and x-ray spectrums
 - Earth science, Planetary science, Space Astronomy
 - Reconnaissance and missile defense
- Over the past 50-years enormous progress has been made in both developing the required cryogenic technologies, and in using them to further our understanding of Earth and the heavens
- Since 1991, over 50 long-life cryocoolers have been launched into space on cryogenic missions— over 30 of which are still operating in orbit on multi-year missions
- For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of missions like JWST that study the origin of the Universe