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Cryocoolers for Space Applications #3
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Topics

� Space Cryocooler Historical Overview and
Applications

� Space Cryogenic Cooling System Design and
Sizing

� Space Cryocooler Performance and How It's
Measured

� Cryocooler-Specific Application and Integration
Example: The AIRS Instrument
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� Cryocooler Technical Performance Data Requirements
• Operating needs of typical space detectors

•  Space cryocooler technology and reliability challenges

� Thermal Performance Measurements
• Example performance & parameter dependencies

• Spatial distribution of power dissipation

� Effect of Pulse Tube Gravity Orientation on Performance

� Generated Vibration and Vibration Suppression Techniques

� Launch Survivability

� Electrical Interface Compatibility
• Magnetic and electric fields

•  Inrush and reflected ripple current

Topics

Session 3—Space Cryocooler
Performance and How It's Measured
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• THERMAL PERFORMANCE
• Complete parametric thermal performance map including

compressor stroke, expander stroke, coldtip temperature, input
power, coldtip load, and compressor and expander reject
temperature

• Compressor and expander heat dissipation fractions and
thermal resistances from source to heat sink

• Cooler electronics input power vs compressor input power

• ALLOWABLE HEATSINK TEMPERATURE RANGE

• EMI PERFORMANCE

• Mil Std 461 AC and DC magnetic and electric fields

• Reflected ripple current

• GENERATED VIBRATION (vs axis and suppression system
mode)

• LAUNCH VIBRATION SURVIVABILITY (with interface mass on
cold finger; with piston motion suppression?)

Typical Cryocooler Performance
Data Requirements
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Functional Schematic

Cryocooler Calorimetric
Thermal-Vacuum Test Facility
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JPL Cryocooler Thermal-Vacuum
Characterization and Lifetest Chambers
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TRW 1W-35K Pulse Tube Cryocooler
during Thermal Testing at JPL
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Heat Sink Temperature = 20°C

TRW 1W-35K Pulse Tube Cooler

No-Load
Temperature

Sensitivity of Thermal Performance
to Compressor Stroke
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BAe 50 to 80 K Stirling Cryocooler

Sensitivity of Thermal Performance
to Compressor Stroke
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Sensitivity of Thermal Performance
to Compressor Stroke

%DRIVE

AIRS 55K Pulse Tube Cryocooler
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TRW 1W-35K Pulse Tube Cooler

Drive
Frequency

Sensitivity of Thermal Performance
to Drive Frequency
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Sensitivity of Thermal Performance
to Fill Pressure

Stirling Technology 80K Stirling Cooler

Fill
Pressure
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Sensitivity of Thermal Performance
to Displacer Stroke

BAe 50 to 80 K Stirling Cryocooler

Displacer
Stroke
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Sensitivity of Thermal Performance
to Heat Sink Temperature

TRW 1W-35K Pulse Tube Cooler

Heat Sink
Temp.
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Algorithm for Predicting Effect of
Heatsink Temperature Change

Ref: Ross, R.G., Jr. and Johnson, D.L., “Effect of Heat Rejection Conditions on Cryocooler
Operational Stability,” Advances in Cryogenic Engineering, Vol. 43B (1998), pp. 1745-1752.
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Thermal Performance Plot for
Direct Mount to Radiator
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The Carnot Refrigeration Cycle
and its Efficiency
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Sensitivity of %Carnot COP
to Compressor Stroke

= 100 × ____________________________

(cooling power @ T
cold
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hot
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Input electrical power × (T
cold

)

%Carnot COP = 100 × ________COP
Cooler

COP
Carnot

TRW 1W-35K Pulse Tube Cooler



RR-20
RGR 3-20June 2015

BAe 80 K Stirling Cryocooler

JPL Cryocooler Calorimetric
Thermal-Vacuum Test Facility
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BAe 80 K Stirling Cryocooler

Stirling Cooler Input Power and
Thermal Dissipation Characteristics
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BAe 80 K Stirling Cryocooler

Effect of Heatsink Temperatures on
Heat Rejection Location
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Effect of Gravity Orientation on
Pulse Tube Thermal Performance
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Pulse Tube

Cold Tip

Pulse Tube

Cold Tip

Warm End

Warm End

Pulse Tube Temperature Regions
 vs Construction Method
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Gamma-Ray 80 K Pulse Tube
Performance vs Power and Load

For 0° Orientation

•

24 watts/watt at 80K



RR-26
RGR 3-26June 2015

•
4 Watt
Added
Load

Gamma-Ray 80 K Pulse Tube
Convective Load vs Angle
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IMAS 55 K Pulse Tube
Performance vs Power and Load

For 0° Orientation

•

22 watts/watt at 80K
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IMAS 55 K Pulse Tube
Convective Load vs Angle

0.6 Watt
Added
Load

•
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Effect of Gravity Orientation on
PT  Performance: Conclusions

� Key Conclusions:

• When the PT hot end is oriented UP (+/- 80 degrees) the PT
performance is normal (reflects the nominal non-convection
conductivity of the PT)

•  When the PT is horizontal or the hot end is tilted down the PT
performance can be impacted by large convection loads internal
to the PT.

• The level of convection loads has been found to be a strong
function of the aspect ratio of the PT geometry.  Long-slim PTs
have minimal effect, whereas short squat PTs can have very
large effects

• Gravity Orientation can be an important constraint during
cryogenic system ground testing
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6-DOF Vibration-Force Dynamometer

JPL Exported Vibration
Characterization Facility
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Typical Generated Vibration
from Oxford-Style Compressor
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BAe 50-80K Cryocooler

Vibration Force Spectrum for
Single Piston Oxford Cooler
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Vibration Spectrum for
Integral Dual-Piston Cooler
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Cryocooler Drive Electronics

• Adaptive feed forward algorithms used to null measured
acceleration or vibration force by tailoring individual harmonic
amplitude and phase on one of the two compressor halves

• Generally implemented digitally in cryocooler drive
electronics, some nulling as many as 16 harmonics

Accelerometer
or load cell

Approach to Cryocooler
Active Vibration Suppression
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2005 Jly: Suzaku: XRS GSFC ADR cooled by SHe/solid Ne cryostats

Dual Compressor Vibration Force
Spectra with Harmonic Nulling
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Cryocooler-Generated Vibration
 Conclusions

�  Large quantities of exported vibration data have been acquired
on a broad cross-section of Oxford-style coolers.  The data
reflect a high degree of similarity between machines

� Key Conclusions:

• Head-to-head mounting of coolers can do a good job a
cancelling the fundamental and 2nd harmonic (100x reduction)

•  Higher harmonics are typically not improved with head-to-head
mounting unless active vibration suppression is used

• With active vibration suppression, cross-axis harmonics
generally create the worst case exported vibration levels



RR-37
RGR 3-37June 2015

Fragile Cold Finger

Unconstrained Pistons

Another Challenge —
Surviving Launch Vibration
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• REQUIREMENTS

• Random Vibration on the order of 0.16 G2/Hz from 50 to 800 Hz

• Sinusoidal Vibration from 10 to 100 Hz (3 to 8 G, mission specific)

• CHALLENGES

• Most Oxford-style compressors have little trouble passing the
random vibration requirement

• Stirling and PT coldfingers are quite vulnerable to Random Vibe

• The low-frequency sinusoidal environment can be troublesome
for integral back-to-back Oxford-style compressors because of
their very low frequency piston slosh mode

• The low-frequency sinusoidal environment can also be
troublesome for Stirling displacers and counter-balancers

• TEST METHODS

• Typical aerospace vibration test facilities

• Piston/displacer/balancer stroke measurement during test runs
via supplementary electronics

Launch Vibration Requirements,
Challenges, and Test Methods
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Typical Space Launch Vibration
Requirements (from GEVS)

0.16 g2/Hz

50
Hz

Design Limit Loads = Use Mass Acceleration Curve (MAC)
Flight Acceptance Levels =  1 minute per axis at (Qual Levels/two)

Protoflight Levels =  1 minutes per axis at Qual Levels
Qualification Levels = 2 minutes per axis at Qual Levels

Typically, Lowest Resonant Frequency > 50 Hz (hard for coolers to meet)
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BAe 55 K Cooler Undergoing
Launch Vibration Testing at JPL
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Compressor Stroke during Sine Vibe
Test vs Coil-Shorting Resistance

Single-Piston Compressor ( BAe 50-80K Cryocooler)

(3-g Sine sweep at 2 Octaves/minute)
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TRW  1W-35K Pulse Tube Cryocooler

Drive Coils

• Inphase piston response is
very high Q and well
coupled to launch
excitation

• Vibration suppression
involves shorting the drive
coils to provide
electrodynamic braking

Piston Slosh Mode

Example Resonant Response of
Integral Two-Piston Compressor
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Example Cryocooler Coldfinger
Bumper Assembly

80K

(300K)



RR-44
RGR 3-44June 2015

Lead or
Tungsten Shot

Displacer
Body

Cryocooler
Coldtip

Factor of 4 Vibration Reduction
Achieved with Particle Damper

Example Cryocooler Coldfinger
Particle Damper
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Cryocooler Launch Vibration Testing
 Conclusions

�  A significant number of cryocoolers have been tested for
robustness with respect to launch vibration tolerance

� Key Conclusions:

• Most compressors have little difficulty passing typical launch
random vibration Qual test levels

•  However, most coldfingers and pulse tubes are marginal at
typical launch random vibration Qual test levels.  Most require
add-on supports (bumper ass'y) or added damping

• Most compressors have difficulty passing typical low-frequency
launch sine vibration Qual test levels (20 to 40 Hz).  Most require
additional piston restraint such as by shorting motor windings
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Cryocooler EMI Requirements,
Challenges, and Test Methods

• REQUIREMENTS

• Magnetic Fields below Mil Std 461C  RE01 & 462 RE04

• Electric Fields below Mil Std 461C  RE02

• Ripple Currents below Mil Std 461C CE01/03.

• In-Rush Current Limits

• Must pass Susceptibility to External EMI

• CHALLENGES

• Most Oxford-style compressors have very high Magnetic Fields
at their fundamental operating frequency

• Most Oxford-style compressors have very high Ripple Currents
at twice their fundamental operating frequency

• Inrush currents and electric fields need to be managed with
proper circuit design and shielding

• TEST METHODS

• Mil Std 461 in screen room

• Need means (vacuum bonnet) to allow cooler to operate outside
of vacuum chamber



RR-47
RGR 3-47June 2015

Low-Frequency AC Magnetic Field
Test Setup with TRW PT Cooler
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Note typical exceedances

Compared with Mil Std 461  RE01 Requirements

Historical Cryocooler Compressor
AC Magnetic Field Emissions
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High-Frequency AC Electric Field
Test Setup with TRW PT Cooler
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Early Cryocooler Electronics
AC Electric Field Emissions

Note typical exceedances
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AIRS Cryocooler Electronics
Conducted Ripple Current
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• Measurement and test techniques for space cryocoolers are
quite well developed and documented in the literature

• Thermal performance as a function of drive parameters

• Heat dissipation quantities and locations

• Coldhead gravity effects on performance

• Generated vibration as a function of drive parameters

• Launch vibration robustness

• Generated EMI and Susceptibility to External EMI

• Typical test data are also readily available in the literature

• Means of bringing coolers into conformance with typical
space requirements are also documented in the literature

Cryocooler Measurement Summary


