

Cryocoolers for Space Applications #3

R.G. Ross, Jr.

Jet Propulsion Laboratory California Institute of Technology

Topics

- Space Cryocooler Historical Overview and Applications
- Space Cryogenic Cooling System Design and Sizing
- Space Cryocooler Performance and How It's Measured
- Cryocooler-Specific Application and Integration Example: The AIRS Instrument

Session 3—Space Cryocooler Performance and How It's Measured

Topics

- Cryocooler Technical Performance Data Requirements
 - Operating needs of typical space detectors
 - Space cryocooler technology and reliability challenges
- Thermal Performance Measurements
 - Example performance & parameter dependencies
 - Spatial distribution of power dissipation
- Effect of Pulse Tube Gravity Orientation on Performance
- Generated Vibration and Vibration Suppression Techniques
- Launch Survivability
- Electrical Interface Compatibility
 - Magnetic and electric fields
 - Inrush and reflected ripple current

- Ross, R.G., Jr., "Chapter 11: Cryocooler Performance Characterization," *Spacecraft Thermal Control Handbook, Vol. II: Cryogenics*, The Aerospace Press, El Segundo, CA, (2003) pp. 217-261. (23 references).
- Ross, R.G., Jr. and Johnson, D.L., "Effect of Heat Rejection Conditions on Cryocooler Operational Stability," *Advances in Cryogenic Engineering*, Vol. 43B (1998), pp. 1745-1752.
- Ross, R.G., Jr., Johnson, D.L. and Rodriguez, "Effect of Gravity Orientation on the Thermal Performance of Stirlingtype Pulse Tube Cryocoolers," *Cryogenics*, Vol. 44, Issue: 6-8, June - August, 2004, pp. 403-408.
- Ross, R.G., Jr., "Vibration Suppression of Advanced Space Cryocoolers — An Overview," *Proceedings of the International Society of Optical Engineering (SPIE) Conference*, San Diego, CA, March 2-6, 2003.

- Johnson, D.L., Collins, S.A. and Ross, R.G., Jr., "EMI Performance of the AIRS Cooler and Electronics," *Cryocoolers 10*, Plenum Publishing Corp., New York, 1999, pp. 771-780.
- Ross, R.G., Jr., "Chapter 6: Refrigeration Systems for Achieving Cryogenic Temperatures," *Low Temperature Materials and Mechanisms*, Y. Bar-Cohen (Ed.), CRC Press, Boca Raton, FL (Scheduled to be published in Nov. 2015). (79 references)
- Ross, R.G., Jr., "Appendix A: Constructing a Cryocooler Multiparameter Plot," *Spacecraft Thermal Control Handbook, Vol. II: Cryogenics*, The Aerospace Press, El Segundo, CA, (2003) pp. 605-608.
- http://www2.jpl.nasa.gov/adv_tech/ JPL website with 103 JPL cryocooler references as PDFs (R. Ross, webmaster)

• THERMAL PERFORMANCE

- Complete parametric thermal performance map including compressor stroke, expander stroke, coldtip temperature, input power, coldtip load, and compressor and expander reject temperature
- Compressor and expander heat dissipation fractions and thermal resistances from source to heat sink
- Cooler electronics input power vs compressor input power
- ALLOWABLE HEATSINK TEMPERATURE RANGE
- EMI PERFORMANCE
 - Mil Std 461 AC and DC magnetic and electric fields
 - Reflected ripple current
- GENERATED VIBRATION (vs axis and suppression system mode)
- LAUNCH VIBRATION SURVIVABILITY (with interface mass on cold finger; with piston motion suppression?)

AGA

Cryocooler Calorimetric Thermal-Vacuum Test Facility

Functional Schematic

JPL Cryocooler Thermal-Vacuum Characterization and Lifetest Chambers

TRW 1W-35K Pulse Tube Cryocooler during Thermal Testing at JPL

Sensitivity of Thermal Performance to Compressor Stroke

TRW 1W-35K Pulse Tube Cooler

Sensitivity of Thermal Performance to Compressor Stroke

BAe 50 to 80 K Stirling Cryocooler

Sensitivity of Thermal Performance to Compressor Stroke

AIRS 55K Pulse Tube Cryocooler

Sensitivity of Thermal Performance to Drive Frequency

TRW 1W-35K Pulse Tube Cooler

Sensitivity of Thermal Performance to Fill Pressure

Stirling Technology 80K Stirling Cooler

Sensitivity of Thermal Performance to Displacer Stroke

VA SA

Sensitivity of Thermal Performance to Heat Sink Temperature

Based on the empirically derived findings, one can derive the cooling power P (T_A , Θ_A) at heatsink temperature $T_{A \text{ and}}$ coldend temperature Θ_A and as equal to the cooling power P (T_0 , Θ_B) at the baseline heatsink temperature $T_{0 \text{ and}}$ coldend temperature Θ_B , i.e.

$$P(T_A, \Theta_A) = P(T_0, \Theta_B); \text{ where } \Theta_B = \Theta_A - (T_A - T_0)/\Re$$

where

- **T**_A = Operating heatsink temperature (°C)
- Θ_{A} = Operating Coldtip temperature (K)
- **T**₀ = Reference heatsink temperature (°C)
- $\Theta_{\rm B}$ = Effective Coldtip temperature (K) at Ref heatsink temp (T₀)
- \Re = Measured change in heatsink temperature required to shift the coldend performance by 1 K. $\Re \approx 5$ to 7 for many coolers

Ref: Ross, R.G., Jr. and Johnson, D.L., "Effect of Heat Rejection Conditions on Cryocooler Operational Stability," *Advances in Cryogenic Engineering*, Vol. 43B (1998), pp. 1745-1752.

Thermal Performance Plot for Direct Mount to Radiator

The Carnot Refrigeration Cycle and its Efficiency

Sensitivity of %Carnot COP to Compressor Stroke

TRW 1W-35K Pulse Tube Cooler 14 12 10 $\mathbf{COP}_{\mathsf{Cooler}}$ –**–**– 9.0 mm % CARNOT COP %Carnot COP = $100 \times -$ →-8.0 mm 8 COP_{Carnot} →-7.0 mm 6 Input electrical power \times (T_{cold}) = 100 × — (cooling power @ T_{cold}) (T_{hot} -T_{cold}) 4 2 0 0 20 40 60 80 100 120 140 160

JPL Cryocooler Calorimetric Thermal-Vacuum Test Facility

BAe 80 K Stirling Cryocooler

Stirling Cooler Input Power and Thermal Dissipation Characteristics

BAe 80 K Stirling Cryocooler

Effect of Heatsink Temperatures on Heat Rejection Location

Effect of Gravity Orientation on Pulse Tube Thermal Performance

Gamma-Ray 80 K Pulse Tube Performance vs Power and Load

Gamma-Ray 80 K Pulse Tube Convective Load vs Angle

A SA

IMAS 55 K Pulse Tube Performance vs Power and Load

IMAS 55 K Pulse Tube Convective Load vs Angle

• Key Conclusions:

- When the PT hot end is oriented UP (+/- 80 degrees) the PT performance is normal (reflects the nominal non-convection conductivity of the PT)
- When the PT is horizontal or the hot end is tilted down the PT performance can be impacted by large convection loads internal to the PT.
- The level of convection loads has been found to be a strong function of the aspect ratio of the PT geometry. Long-slim PTs have minimal effect, whereas short squat PTs can have very large effects
- Gravity Orientation can be an important constraint during cryogenic system ground testing

JPL Exported Vibration Characterization Facility

6-DOF Vibration-Force Dynamometer

Typical Generated Vibration from Oxford-Style Compressor

Vibration Force Spectrum for Single Piston Oxford Cooler

BAe 50-80K Cryocooler

Vibration Spectrum for Integral Dual-Piston Cooler

Approach to Cryocooler Active Vibration Suppression

- Adaptive feed forward algorithms used to null measured acceleration or vibration force by tailoring individual harmonic amplitude and phase on one of the two compressor halves
- Generally implemented digitally in cryocooler drive electronics, some nulling as many as 16 harmonics

Dual Compressor Vibration Force Spectra with Harmonic Nulling

Cryocooler-Generated Vibration Conclusions

- Large quantities of exported vibration data have been acquired on a broad cross-section of Oxford-style coolers. The data reflect a high degree of similarity between machines
- Key Conclusions:
 - Head-to-head mounting of coolers can do a good job a cancelling the fundamental and 2nd harmonic (100x reduction)
 - Higher harmonics are typically not improved with head-to-head mounting unless active vibration suppression is used
 - With active vibration suppression, cross-axis harmonics generally create the worst case exported vibration levels

Launch Vibration Requirements, Challenges, and Test Methods

REQUIREMENTS

- Random Vibration on the order of 0.16 G²/Hz from 50 to 800 Hz
- Sinusoidal Vibration from 10 to 100 Hz (3 to 8 G, mission specific)

• CHALLENGES

- Most Oxford-style compressors have little trouble passing the random vibration requirement
- Stirling and PT coldfingers are quite vulnerable to Random Vibe
- The low-frequency sinusoidal environment can be troublesome for integral back-to-back Oxford-style compressors because of their very low frequency piston slosh mode
- The low-frequency sinusoidal environment can also be troublesome for Stirling displacers and counter-balancers

• TEST METHODS

- Typical aerospace vibration test facilities
- Piston/displacer/balancer stroke measurement during test runs via supplementary electronics

NASA

Typical Space Launch Vibration Requirements (from GEVS)

Design Limit Loads = Use Mass Acceleration Curve (MAC) Flight Acceptance Levels = 1 minute per axis at (Qual Levels/two) Protoflight Levels = 1 minutes per axis at Qual Levels Qualification Levels = 2 minutes per axis at Qual Levels Typically, Lowest Resonant Frequency > 50 Hz (hard for coolers to meet)

BAe 55 K Cooler Undergoing Launch Vibration Testing at JPL

NASA

Compressor Stroke during Sine Vibe Test vs Coil-Shorting Resistance

(3-g Sine sweep at 2 Octaves/minute)

Single-Piston Compressor (BAe 50-80K Cryocooler)

Example Resonant Response of Integral Two-Piston Compressor

TRW 1W-35K Pulse Tube Cryocooler

Piston Slosh Mode

- Inphase piston response is very high Q and well coupled to launch
- Vibration suppression involves shorting the drive coils to provide electrodynamic braking

Example Cryocooler Coldfinger Bumper Assembly

Example Cryocooler Coldfinger Particle Damper

- A significant number of cryocoolers have been tested for robustness with respect to launch vibration tolerance
- Key Conclusions:
 - Most compressors have little difficulty passing typical launch random vibration Qual test levels
 - However, most coldfingers and pulse tubes are marginal at typical launch random vibration Qual test levels. Most require add-on supports (bumper ass'y) or added damping
 - Most compressors have difficulty passing typical low-frequency launch sine vibration Qual test levels (20 to 40 Hz). Most require additional piston restraint such as by shorting motor windings

Cryocooler EMI Requirements, Challenges, and Test Methods

- **REQUIREMENTS**
 - Magnetic Fields below Mil Std 461C RE01 & 462 RE04
 - Electric Fields below Mil Std 461C RE02
 - Ripple Currents below Mil Std 461C CE01/03.
 - In-Rush Current Limits
 - Must pass Susceptibility to External EMI
- CHALLENGES
 - Most Oxford-style compressors have very high Magnetic Fields at their fundamental operating frequency
 - Most Oxford-style compressors have very high Ripple Currents at twice their fundamental operating frequency
 - Inrush currents and electric fields need to be managed with proper circuit design and shielding

• TEST METHODS

- Mil Std 461 in screen room
- Need means (vacuum bonnet) to allow cooler to operate outside of vacuum chamber

Historical Cryocooler Compressor AC Magnetic Field Emissions

Compared with Mil Std 461 RE01 Requirements

High-Frequency AC Electric Field Test Setup with TRW PT Cooler

NASA

Early Cryocooler Electronics AC Electric Field Emissions

AIRS Cryocooler Electronics Conducted Ripple Current

- Measurement and test techniques for space cryocoolers are quite well developed and documented in the literature
 - Thermal performance as a function of drive parameters
 - Heat dissipation quantities and locations
 - Coldhead gravity effects on performance
 - Generated vibration as a function of drive parameters
 - Launch vibration robustness
 - Generated EMI and Susceptibility to External EMI
- Typical test data are also readily available in the literature
- Means of bringing coolers into conformance with typical space requirements are also documented in the literature