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8. Session 3—Space Cryocooler

Performance and How It's Measured

Topics

e Cryocooler Technical Performance Data Requirements
® Operating needs of typical space detectors
® Space cryocooler technology and reliability challenges

e Thermal Performance Measurements
e Example performance & parameter dependencies
e Spatial distribution of power dissipation

e Effect of Pulse Tube Gravity Orientation on Performance
e Generated Vibration and Vibration Suppression Techniques
e Launch Survivability

e Electrical Interface Compatibility
e Magnetic and electric fields
® Inrush and reflected ripple current
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& Typical Cryocooler Performance
A5

Data Requlrements

e THERMAL PERFORMANCE

e Complete parametric thermal performance map including
compressor stroke, expander stroke, coldtip temperature, input
power, coldtip load, and compressor and expander reject
temperature

e Compressor and expander heat dissipation fractions and
thermal resistances from source to heat sink

e Cooler electronics input power vs compressor input power
e ALLOWABLE HEATSINK TEMPERATURE RANGE

e EMI PERFORMANCE
e Mil Std 461 AC and DC magnetic and electric fields
e Reflected ripple current

e GENERATED VIBRATION (vs axis and suppression system
mode)

e LAUNCH VIBRATION SURVIVABILITY (with interface mass on
cold finger; with piston motion suppression?)
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S Cryocooler Calorimetric

Thermal-Vacuum Test Facility

Functional Schematic
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8. JPL Cryocooler Thermal-Vacuum
77 Characterization and Lifetest Chambers
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A TRW 1W-35K Pulse Tube Cryocooler
s during Thermal Testing at JPL
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Sensitivity of Thermal Performance

to Compressor Stroke

e TS

TRW 1W-35K Pulse Tube Cooler
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Sensitivity of Thermal Performance

to Compressor Stroke

il TS

BAe 50 to 80 K Stirling Cryodboler

SPECIFIC POWER, watts/watts
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COLDTIP LOAD, watts
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Sensitivity of Thermal Performance

to Compressor Stroke

il TS
AIRS 55K Pulse Tube Cryocooler
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Sensitivity of Thermal Performance

to Drive Frequency

T £
TRW 1W-35K Pulse Tube Coole
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#.. Sensitivity of Thermal Performance

to Fill Pressure

i T

Stirling Technology 80K Stirling Cooler
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Sensitivity of Thermal Performance

to Displacer Stroke

BAe 50 to 80 K Stirling Cryocooler

SPECIFIC POWER, watts/watts
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HEAT SINK TEMPERATURE = 20°C . 32'
COMPRESSOR STROKE = 6.0 mm p-p |-
| FREQUENCY = 45 Hz
| PHASE = 65°
@ 5 30
(]
=
- 4 28
W - Displacer '
S Stro ke
O BES
b
2
> 124
|22
S I N Y B B S S A B AR R AP |
0 0.5 1 15

COLDTIP LOAD, watts

June 2015 RGR 3-14



Sensitivity of Thermal Performance

to Heat Sink Temperature

i B 22 e
TRW 1W-35K Pulse Tube Cooler
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S Algorithm for Predicting Effect of

Heatsink Temperature Change

T

Based on the empirically derived findings, one can derive the
cooling power P(T,, ©,) at heatsink temperature T, __ coldend
temperature ©, and as equal to the cooling power P (T ,0,) at
the baseline heatsink temperature T, __ coldend temperature O,
i.e.

P(T, 0, =P(T,0,); whereO_=0,- (TA-TO)/SK
where
T, = Operating heatsink temperature (°C)
©, = Operating Coldtip temperature (K)
T, = Reference heatsink temperature (°C)

0, = Effective Coldtip temperature (K) at Ref heatsink temp (T )

R = Measured change in heatsink temperature required to shift the
coldend performance by 1 K. R = 5 to 7 for many coolers

>

>

mw ©

Ref: Ross, R.G., Jr. and Johnson, D.L., “Effect of Heat Rejection Conditions on Cryocooler
Operational Stability,” Advances in Cryogenic Engineering, Vol. 43B (1998), pp. 1745-1752.
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Thermal Performance Plot for

Direct Mount to Radiaor
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S The Carnot Refrigeration Cycle

. and its Efficiency

Heat rejected
AQ =AS~T,
““““ 2 = Az_ ===~ Thot
-
@
S | Expansion Compression
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[<}]
£ v
_____________ T

- 4 Heat absorbed ’, 1 eal
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: |

| |

| |

Sa Sh >

Entropy, S
COP_ . = cooling power/input power
COP, = heat absorb / (heat reject - heat absorb)
ooler

COPCarnot = Tcold/(Thot ) Tcold)



S Sensitivity of %Carnot COP

to Compressor Stroke

L

TRW 1W-35K Pulse Tube Cooler
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JPL Cryocooler Calorimetric
Thermal-Vacuum Test Facility

BAe 80 K Stirling Cryocooler
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S Stirling Cooler Input Power and

Thermal Dissipation Characteristics

B

BAe 80 K Stirling Cryocooier
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.. Effect of Heatsink Temperatures on

Heat Rejection Location

il TS

BAe 80 K Stirling Cryoco-oler
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Effect of Gravity Orientation on
Pulse Tube Thermal Performance
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S Pulse Tube Temperature Regions

vs Construction Method

Cold Tip Warm End

Pulse Tube
Pulse Tube
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Gamma-Ray 80 K Pulse Tube

Performance vs Power and Load

st ili.
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Gamma-Ray 80 K Pulse Tube

Convective Load vs Angle
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IMAS 55 K Pulse Tube

Performance vs Power and Load
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- IMAS 55 K Pulse Tube
Rea

Convective Load vs Angle
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8. Effect of Gravity Orientation on

PT Performance: Conclusions

e Key Conclusions:

® When the PT hot end is oriented UP (+/- 80 degrees) the PT
performance is normal (reflects the nominal non-convection
conductivity of the PT)

® When the PT is horizontal or the hot end is tilted down the PT
performance can be impacted by large convection loads internal
to the PT.

® The level of convection loads has been found to be a strong
function of the aspect ratio of the PT geometry. Long-slim PTs
have minimal effect, whereas short squat PTs can have very
large effects

e Gravity Orientation can be an important constraint during
cryogenic system ground testing

June 2015 RGR 3-29



JPL Exported Vibration

Characterization Facility

6-DOF Vibration-Force Dynamometer
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£ Typical Generated Vibration

Sl from Oxford-Style Compressor
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FORCE, N

FORCE, N

Vibration Spectrum for

Integral Dual-Piston Cooler
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S Approach to Cryocooler

3 Active Vibration Suppression

Cryocooler Drive Electronics Accelerometer
e or load cell

e Adaptive feed forward algorithms used to null measured
acceleration or vibration force by tailoring individual harmonic
amplitude and phase on one of the two compressor halves

e Generally implemented digitally in cryocooler drive
electronics, some nulling as many as 16 harmonics
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Dual Compressor Vibration Force

]

Spectra with Harmonic Nulling
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8. Cryocooler-Generated Vibration

5 Conclusions

e Large quantities of exported vibration data have been acquired
on a broad cross-section of Oxford-style coolers. The data
reflect a high degree of similarity between machines

e Key Conclusions:

e Head-to-head mounting of coolers can do a good job a
cancelling the fundamental and 2nd harmonic (100x reduction)

e Higher harmonics are typically not improved with head-to-head
mounting unless active vibration suppression is used

e With active vibration suppression, cross-axis harmonics
generally create the worst case exported vibration levels
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m A Another Challenge —

: Surviving Launch Vibration

Fragile Cold Finger
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S Launch Vibration Requirements,

Challenges, and Test Methods

e REQUIREMENTS

e Random Vibration on the order of 0.16 G?/Hz from 50 to 800 Hz
e Sinusoidal Vibration from 10 to 100 Hz (3 to 8 G, mission specific)

e CHALLENGES
e Most Oxford-style compressors have little trouble passing the
random vibration requirement
e Stirling and PT coldfingers are quite vulnerable to Random Vibe

e The low-frequency sinusoidal environment can be troublesome
for integral back-to-back Oxford-style compressors because of
their very low frequency piston slosh mode

* The low-frequency sinusoidal environment can also be
troublesome for Stirling displacers and counter-balancers

e TEST METHODS
* Typical aerospace vibration test facilities

e Piston/displacer/balancer stroke measurement during test runs
via supplementary electronics
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8. Typical Space Launch Vibration

¢ Requirements (from GEVS)

Design Limit Loads = Use Mass Acceleration Curve (MAC)

Flight Acceptance Levels = 1 minute per axis at (Qual Levels/two)
Protoflight Levels = 1 minutes per axis at Qual Levels
Qualification Levels = 2 minutes per axis at Qual Levels
Typically, Lowest Resonant Frequency > 50 Hz (hard for coolers to meet)
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2. BAe 55 K Cooler Undergoing
i Launch Vibration Testing at JPL
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S Compressor Stroke during Sine Vibe

2 Test vs Coil-Shorting Resistance

(3-g Sine sweep at 2 Octaves/minute)

Single-Piston Compressor ( BAe 50-80K Cryocooler)
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8. Example Resonant Response of

Integral Two-Piston Compressor

Jil TS
TRW 1W-35K Pulse Tube Cryocooler
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Example Cryocooler Coldfinger
Bumper Assembly

CRYOCOOLER ‘§§ -

COLDTIP

*

DISPLACER
BODY

2

A — n'r

_L BUMPER GAP

COLDFINGER
FIBERGLASS
| SUPPORT TUBE

L (300K)

‘\
m\\\\\\/

ANNARNNNNR

June 2015

RGR 3-43



& Example Cryocooler Coldfinger

Particle Damper

Cryocooler Factor of 4 Vibration Reduction
Coldtip Achieved with Particle Damper
100 .
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c 03
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#., Cryocooler Launch Vibration Testing

Conclusions

e A significant number of cryocoolers have been tested for
robustness with respect to launch vibration tolerance

e Key Conclusions:

® Most compressors have little difficulty passing typical launch
random vibration Qual test levels

e However, most coldfingers and pulse tubes are marginal at
typical launch random vibration Qual test levels. Most require
add-on supports (bumper ass'y) or added damping

® Most compressors have difficulty passing typical low-frequency
launch sine vibration Qual test levels (20 to 40 Hz). Most require
additional piston restraint such as by shorting motor windings
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Cryocooler EMI Requirements,

m‘”‘ Challenges, and Test Methods

e REQUIREMENTS
e Magnetic Fields below Mil Std 461C RE01 & 462 RE04
e Electric Fields below Mil Std 461C RE02
e Ripple Currents below Mil Std 461C CE01/03.
* In-Rush Current Limits
e Must pass Susceptibility to External EMI

e CHALLENGES

e Most Oxford-style compressors have very high Magnetic Fields
at their fundamental operating frequency

e Most Oxford-style compressors have very high Ripple Currents
at twice their fundamental operating frequency

e Inrush currents and electric fields need to be managed with
proper circuit design and shielding

e TEST METHODS
e Mil Std 461 in screen room

e Need means (vacuum bonnet) to allow cooler to operate outside
of vacuum chamber
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Low-Frequency AC Magnetic Field
Test Setup with TRW PT Cooler
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= Historical Cryocooler Compressor

AC Magnetic Field Emissions
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High-Frequency AC Electric Field
Test Setup with TRW PT Cooler
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= Early Cryocooler Electronics
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AIRS Cryocooler Electronics

Conducted Ripple Current
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M2 Cryocooler Measurement Summary

® Measurement and test techniques for space cryocoolers are
quite well developed and documented in the literature

e Thermal performance as a function of drive parameters
® Heat dissipation quantities and locations

e Coldhead gravity effects on performance

® Generated vibration as a function of drive parameters
e Launch vibration robustness

® Generated EMI and Susceptibility to External EMI

e Typical test data are also readily available in the literature

® Means of bringing coolers into conformance with typical
space requirements are also documented in the literature
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