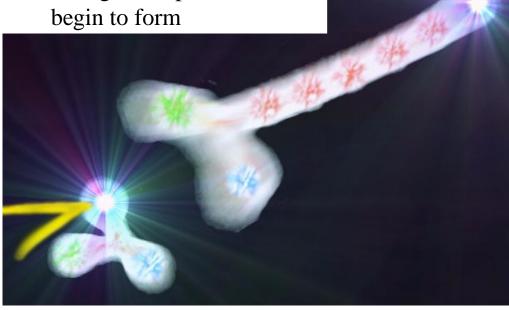
Space-Time Characteristics of Nuclear Hadronization

Will Brooks, Jefferson Lab

A program of measurements to experimentally characterize multi-variable **hadronization length scales** and **transverse momentum broadening**. These measurements will elucidate the nature of real-time color field restoration through gluon emission, and clarify the role of partonic multiple scattering within the nuclear medium. The program relies on the large acceptance and multi-particle reconstruction capabilities of CLAS⁺⁺ in Hall B, the MAD in Hall A, and the SHMS in Hall C, with an 11 GeV electron beam.

Topics Addressed by Hadronization Studies


- The fundamental process of gluon emission
 - ➡ The rate and momentum spectrum of gluon emission is closely connected to the experimental observables
 - ➡ Produces a substantial partonic energy loss (dE/dx) which may exhibit exotic in-medium coherence effects
 - → The connection between gluon emission and hadron formation
- Color field restoration
 - Struck quark's color field is temporarily truncated, is restored in real time via hadron formation over distance scales of several fm.
 - → Analog in QED is well-known and understood

Experimental data addressing these topics are very limited

Conceptual Pictures of Hadronization in Vacuum

- Initial hard interaction of virtual photon with quark occurs in small space-time volume
- Struck quark separates; in region of high energy density, propagating quarks emit gluons, proto-hadrons begin to form

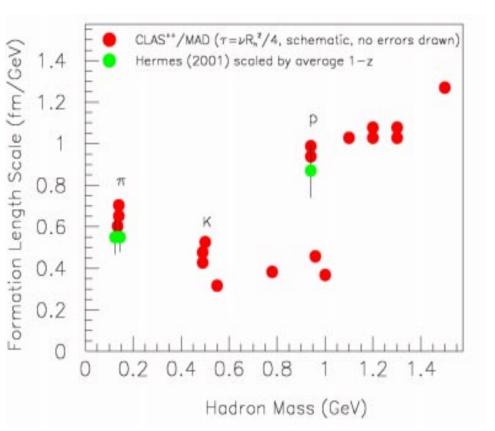
- The leading hadron containing the struck quark builds its local color field
- A fully formed leading hadron emerges

Hadronization in the Nuclear Medium

Essentially the same process as in vacuum, with minor variations:

- While the propagating quark and its subsequent proto-hadron pass 'transparently' through the medium, the fully formed hadron interacts strongly
- The strongly interacting hadrons 'disappear' (shift to lower momentum/higher multiplicity/ larger angles)
- The propagating quark multiple scatters through the medium

The space-time interval required to form the hadron can be 'measured' using target nuclei of varying diameters

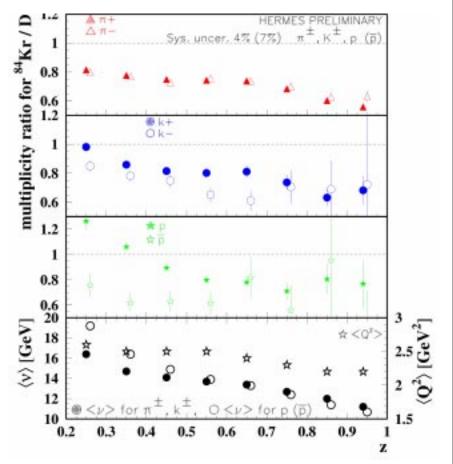

Observables and Kinematic Variables

- Virtual photon energy $v = E_e E_{e'}$ assumed to be the initial energy of the struck quark, and the four-momentum transferred by the electron Q^2
- The fraction of the virtual photon's energy carried by the final hadron: $z = \frac{E_{hadron}}{v}$ and the momentum component of the hadron transverse to the virtual photon's direction: p_T
- Hadronic multiplicity ratio: the ratio of the number of hadrons produced in deep inelastic kinematics on nucleus A compared to deuterium, normalized to the number of DIS electrons (closely related to fragmentation function ratios):

$$R_{M}^{h}(z, \mathbf{v}) = \frac{\left\{\frac{N_{h}(z, \mathbf{v})}{N_{e}^{DIS}(\mathbf{v})}\right\}_{A}}{\left\{\frac{N_{h}(z, \mathbf{v})}{N_{e}^{DIS}(\mathbf{v})}\right\}_{D}}$$

Hadronic Formation Lengths

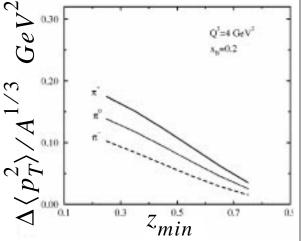
- Can make simplistic predictions of formation length. (Many have been made.)
- Can take radius R of hadron being formed, boost to lab frame, get $\tau \sim R^2 v$.
- HERMES nitrogen target analysis^{*} for π^+ , π^- , p, found good fit to data at Q²~1-2 GeV² using $\tau = c_h(1-z)v$.



$\Rightarrow \Rightarrow JLAB$ data could add much more information to this picture by measuring many more hadrons and out to much higher Q^2 .

*Hermes also has data for K^+ , \bar{K} , \bar{p} for a krypton target for which formation length analyses have not yet been published.

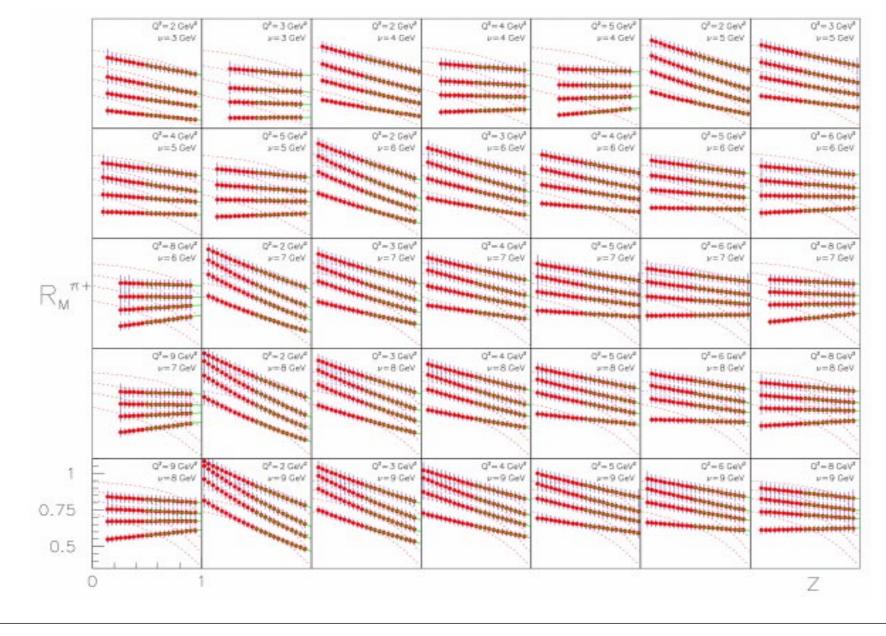
Multi-Variable Formation Lengths

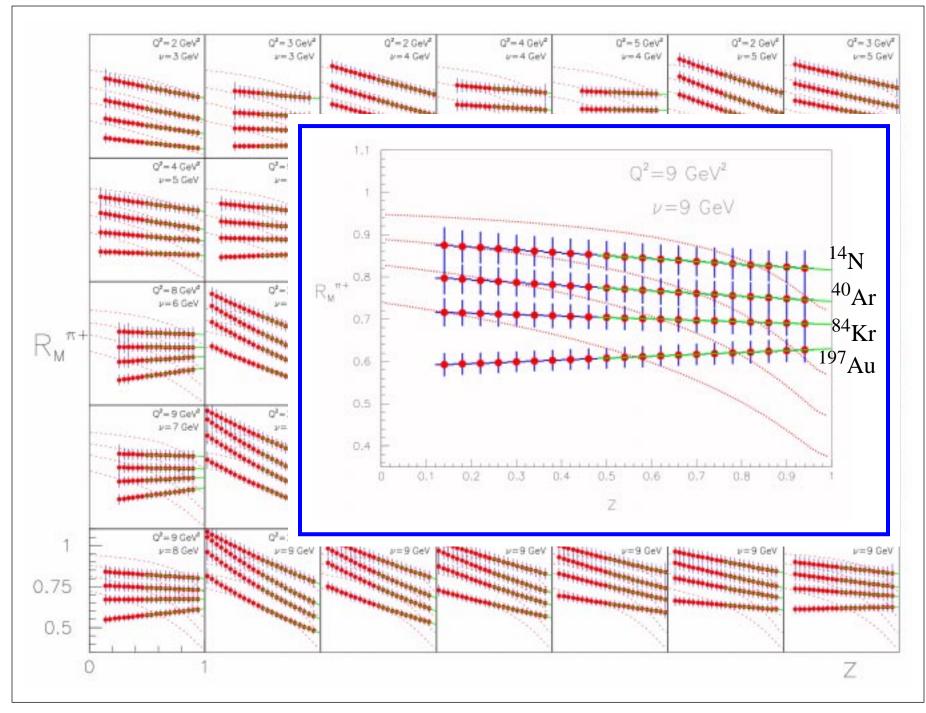

- Realistic formation lengths are functions of multiple variables (HERMES used v, z)
- At JLAB we can experimentally determine the dependencies on v, z, Q², p_T, hadron mass, helicity, and quark flavor.
- Sophisticated theories predict more complex variable dependencies:
 - → Gluon bremsstrahlung model
 - → Twist-four pQCD model
 - ➡ Lattice

Complete characterization of the multi-variable properties of the formation length is crucial for unambiguous interpretation.

Transverse Momentum Broadening

- Partons traversing the nuclear medium multiple scatter. This induces additional gluon radiation.
- The additional gluon radiation can be related to a quark energy loss (dE/dx) which has been estimated to be at the 1 GeV/fm scale in particular calculations.
- The p_T distribution of the outgoing hadrons consequently broadens for larger nuclei, ~ $A^{1/3}$.
- Calculations indicate that a quark-gluon correlation function can be directly inferred from transverse momentum broadening (PRD 61 096003).

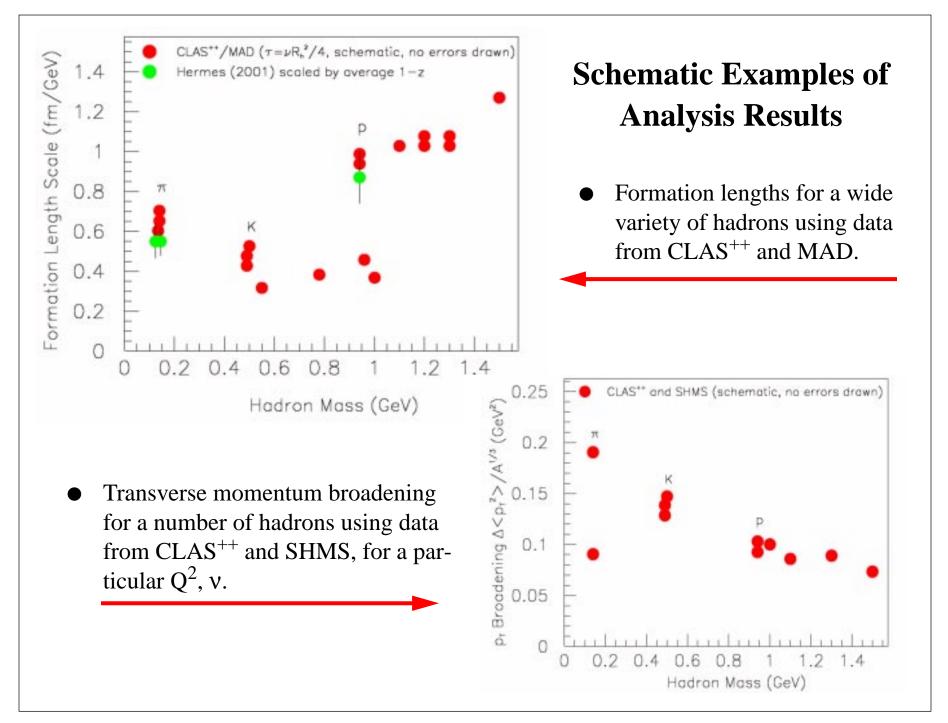



⇔ CLAS⁺⁺ can access this quantity for approximately 10 hadron species; the SHMS in Hall C can access it to the highest momenta and best resolution for several hadron species

Measurement Method

- Measure semi-exclusive hadron production in DIS kinematics on five nuclear targets, e.g. ²H, ¹⁴N, ⁴⁰Ar, ⁸⁴Kr, ¹⁹⁷Au with 11 GeV electron beam.
- Identify the hadronic final state.
- Measure R_M^h and $\Delta \langle p_T^2 \rangle$.
- For each hadron, divide the data into multi-dimensional bins in subsets of Q^2 , v or x, p_T, z, ϕ , A, etc. as statistics permit.
- The primary experimental results are the dependence of R_M^h and $\Delta \langle p_T^2 \rangle$ on the above variables.
- Higher level analysis: will have to test factorization assumptions, test isolation of current fragmentation, understand radiative corrections, extract formation lengths for all hadrons in a unified framework.

Examples of Experimental Data and Theoretical Predictions



Accessible hadrons

- Select hadrons with $c\tau >$ nuclear diameter.
- The sum total of the experimental information consists of plots such as the preceding for each hadron in the table - a very large data set.
- Hadrons detected in charged particle channels can also be studied for transverse momentum broadening.
- Several possible analysis divisions into multiple experiments

hadron	channel	number / 1000 DIS events
π^0	γγ	1100
π^+	direct	1000
π-	direct	1000
η	γγ	120
ω	$\pi^+\pi^-\pi^0$	170
η'	π ⁺ π⁻η	27
φ	K ⁺ K ⁻	0.8
K ⁺	direct	75
K-	direct	25
K ⁰	π ⁺ π ⁻	42
р	direct	1100
$\overline{\mathbf{p}}$	direct	3
Λ	рπ ⁻	72
Λ(1520)	рπ ⁻	-
Σ^+	$p\pi^0$	6
Σ^{0}	Λγ	11
Ξ^{0}	$\Lambda \pi^0$	0.6
Ξ^+	Λπ-	0.9

Scientific Goals: Summary

- Space-time description of the hadronization process *color field restoration*
- The *fundamental process of gluon emission* and its connection to hadronization
- *Partonic energy loss* (dE/dx), and potential exotic in-medium coherence effects
- Quark-gluon correlations

Conclusions

- The capability for a new class of measurement:
 - → physics of color field of hadrons in space-time domain
 - → a bridge to understanding high-energy properties of nuclei
 - → connects to investigations at several other major laboratories
- JLab at 12 GeV is an excellent place to carry out these measurements:
 - ➡ appropriate energy range
 - → high luminosity → can study lower-rate processes
 - → solid target capability → can use largest nuclei

→ *Outstanding opportunity to discover a wealth of new physics*