
1

Proposal to Upgrade the Experimental Physics and Industrial Control System’s Graphical User
Interface to Control System Studio Phoebus

Brian Eng, Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, George Jacobs, Mindy Leffel,
Tyler Lemon, Marc McMullen, and Amrit Yegneswaran

Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
November 1, 2021

This note presents factors considered in selecting Control System Studio (CSS) Phoebus as the framework of choice for developing new
graphical user interfaces (GUIs) that allow users to interact with Experimental Physics and Industrial Control System (EPICS).

DSG Note 2021-31

An advantage of using EPICS for controls and monitoring
is its modularity—libraries can be swapped, e.g. alarming is
independent of the logging which is independent of the inter-
face. The EPICS operator interface (OPI) allows several types
of GUIs to interact with the system, each of which can run
concurrently with other GUIs, e.g. Extensible Display Man-
ager, Best OPI, Yet (BOY), and recently, Phoebus.

Both BOY and Phoebus are OPIs developed by CSS. CSS
BOY is based on Eclipse—an integrated development envi-
ronment that uses the Java Standard Widget Toolkit (SWT)
for GUI development. Since 2016, various parts of CSS have
been migrating from SWT to JavaFX for GUI development.
JavaFX has been included as part of the Java Development
Kit since Java 11. All components of Phoebus are developed
with JavaFX, not SWT and Eclipse.

Eclipse and SWT-based CSS BOY code is sluggish. For
example, it takes ~30 minutes to compile BOY vs ~3 minutes
to compile Phoebus. The lines of code (LOC) for the Channel
Finder application, a common bundled application with CSS
BOY and Phoebus used to find/list PVs, is 11.2 kLOC in BOY
compared to 4.5 kLOC in Phoebus.

Along with compile time and LOC being less for Phoebus
compared to BOY, Phoebus has less CPU and memory usage.
The Phoebus Heater Demo, an example screen available in both
CSS BOY and Phoebus, uses a quarter of the CPU and half the
memory used by the CSS BOY Heater Demo, enabling Phoe-
bus to load faster and have more screens open concurrently.

Another reason to migrate to Phoebus is that most of the
BOY developers are actively developing Phoebus and as such,
it has new features and widgets that are not available in BOY.

For developers, Phoebus has the ability to open and run
most BOY screens without any changes, except scripts. While
most scripts only require changing the import path, changes
required are script-dependent.

Two methods to develop Phoebus screens are by using the
built-in Display Editor, Fig. 1, or by using a separate pro-
gramming language to output Phoebus files, which are simply
eXtensible Markup Language (XML) files.

The Display Editor allows developers to drag-and-drop
widgets and edit their properties with an easy-to-use inter-
face. This built-in tool is a good choice for creating or editing
files and is useful for fixed layout screens that are small to
moderate in size.

Python is the separate programming language most often
used by DSG when creating dynamic screens, whose layout is

dependent on other factors, such as detector configuration or
large displays (thousands of indicators). Python allows quick
modifications to the script, which can then generate the Phoe-
bus screen.

Because of its increased performance and lower resource
requirements, Phoebus has been selected for EPICS screens
development. Work has started on implementing screens in
Phoebus for Hall A detector high voltage, Fig. 2, with plans to
expand to other Halls as new detector and magnet systems are
instrumented and brought online.

FIG. 1. Phoebus Display Editor.

FIG. 2. Example of Phoebus screen for Hall A – Main Menu.

