
1

Debugging the Phoebus Alarm System Annunciator

Peter Bonneau, Mary Ann Antonioli, Aaron Brown, Pablo Campero, Brian Eng, George Jacobs, Mindy Leffel,
Tyler Lemon, Marc McMullen, and Amrit Yegneswaran

Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
May 4, 2023

After an upgrade of the Control System-Studio (CS-Studio) Phoebus alarm system development computer, the alarm system annunciator
application failed. This note presents debugging of the failure, which required the development of a program that can read the alarm system
inter-process communication messages.

DSG Note 2023-18

The alarm annunciator failed after an upgrade [1] of the
Linux computer being used for the development of the CS-
Studio Phoebus alarm system [2]. To debug the failure, each
section of code, controls, and monitoring that contributes to
the operation of the alarm annunciator was checked.

The Phoebus alarm annunciator is started via the alarm ap-
plications menu within the Phoebus alarm user interface (UI),
Fig. 1. Upon start of the application, the UI window for the
annunciator indicated that it had started, however it would not
announce the occurring alarms.

To test the annunciator, the Phoebus alarm test system soft-
IOC [3] was used to generate EPICS process variables (PVs)
to test the annunciator. To verify the alarm system annuncia-
tor configuration settings were correct for the monitored PVs,
the PV alarm configuration menu, Fig. 2, was checked. The
readback indicated the annunciator and the PV alarm configu-
ration settings were set correctly. Additionally, the alarm_
preferences.properties file that determines how the annun-
ciator responds to multiple and frequent alarms was checked.
The settings in the file were correct.

Phoebus alarm system applications use Apache Kafka
Zookeeper and Apache Kafka Server for inter-process com-
munication. There are three Kafka message streams in the
alarm system that communicate with the applications, Fig. 3.
The first stream, Hall-C-NPS, is used by the alarm system ap-
plications to report the alarm status of PVs and to configure
the alarm server. The second stream, Hall-C-NPSCommand,
sends command messages originating from the alarm UI.

The third stream, Hall-C-NPSTalk is exclusively used for the
alarm annunciator.

The Phoebus alarm server monitors PVs for alarm condi-
tions. Upon the detection of an alarm, the alarm server sends a
message to the annunciator application via the unidirectional
Kafka message stream Hall-C-NPSTalk. The alarm annuncia-
tor translates the received Kafka message, instructs the com-
puter to play an audible warning, and displays information
regarding the alarm on the annunciator UI.

Though the Kafka streaming messages are text-based,
Phoebus does not have an application that displays the text
of a message stream. To aid the debugging, a monitoring pro-
gram, which can monitor any of the three Phoebus alarm sys-
tem message streams, was written.

FIG. 1. Phoebus alarm applications menu.

FIG. 2. PV alarm configuration menu.

FIG. 3. Phoebus alarm annunciator applications.

https://www.jlab.org/div_dept/physics_division/dsg/notes/2023-13.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2021-37.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2022-06.pdf

2

When starting the Kafka message monitoring program,
written with Kafka version 2.13-3.3.1 script commands, via
a Linux terminal window, the name of the message stream to
be monitored is entered as a program switch. As an option, the
message text can be written to a text file.

The Kafka message monitoring program revealed that the
Hall-C-NPSTalk message stream was present, but no text was
available to be read. Upon further investigation, it was found
that the script used for the upgrade that created the Hall-C-
NPSTalk message stream was incorrect and not compatible
with the new Kafka version 2.13-3.3.1. The script was cor-
rected and the Hall-C-NPSTalk message stream was success-
fully created and retested via the Kafka message monitoring
program. The annunciator’s audible alarm and the UI monitor
screen, Fig. 4, were also correctly reporting the PVs that were
in the alarm state.

In conclusion, debugging the failure of the annunciator
required the development of an alarm message monitoring
program that reads the alarm system inter-process communi-
cation messages; this alarm message monitoring program can
be used for debugging all Phoebus system alarm applications.

[1] P. Bonneau, et al., Upgrade of CS-Studio Phoebus and
Alarm System Core Support Programs, DSG Note 2023-
13, 2023.

[2] P. Bonneau, et al., Proposal to Implement Alarm System
in Control System Studio Phoebus for the Hall C Neutral
Particle Spectrometer, DSG Note 2021-37, 2021.

[3] P. Bonneau, et al., Development of the EPICS Software
Input/Output Controller for Testing the Phoebus Alarm
System of the Hall C Neutral Particle Spectrometer, DSG
Note 2022-06, 2022.

FIG. 4. Phoebus alarm annunciator UI monitor.

https://www.jlab.org/div_dept/physics_division/dsg/notes/2023-13.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2023-13.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2023-13.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2021-37.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2021-37.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2021-37.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2022-06.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2022-06.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2022-06.pdf
https://www.jlab.org/div_dept/physics_division/dsg/notes/2022-06.pdf

