DSG Hall C Projects

Dr. Patrizia Rossi and Aaron Brown
Detector Support Group
March 1, 2022
DSG Projects Overview

Detector Support Group

Hardware

Ansys

NPS

Phoe bus

DSG

RICH

SoLID

ECAL

GEM

Phoe bus

Phoe bus

Ansys

track ing

Ansys

2/10/22
Mary Ann Antonioli

EIC

R&D

FCAL
Neutral Particle Spectrometer

Detector Support Group

- Terminal blocks
- Beamline
- Crystal zone
- Electronics zone
- HV board
- HV cables from CAEN crate to HV board
- SAMTEC to SAMTEC flat twisted pair cables
- HV divider cables to PMTs
- Signal cables
- HV interface board
- Detector Back
- Scintillator Paddles for Cosmic Readings
- Detector Front
• **Testing & Analysis**
 – Testing 34 (A7030TN) CAEN HV modules and two SY4527 crates: COMPLETE
 – Testing HV Supply Cables: COMPLETE

• **Fabrication**
 – HV Divider Cables: 1100 TOT ALL fabricated and labeled
 – Multi-conductor HV supply Cables: COMPLETE
 – Enhanced Specular Reflector (ESR) Films: COMPLETE (part done by DSG)

• **EPICS Controls & Monitoring System** Moving to Phoebus
 – Developed EPICS CSS-BOY screens for 1080 PMT HV (voltage and current readback for each PMT): COMPLETE

• **Environment Monitoring & Interlock System** (on-going)
 – System monitors and interlocks (if needed) humidity, gas flow, temperature, chiller status, and fan speed

• **Ansys thermal Analysis** (on-going)
Shaping of Enhanced Specular Reflector (ESR) Films

Jigs to shape ESR film

- 600+ films shaped

Shaped film
Hardware Interlock System Layout

- NPS
 ~180 sensors

- Keysight measurement unit

In the DSG room

- LabView display
 Hall, Counting house, DSG rooms

- National Instruments

- IOC Software

- Phoebus Software

- Phoebus display
 (nothing on WEDM now)

- Used for readout of temperature, humidity, flow, and pressure signals

- Used for hardware monitoring and interlock system

- Drivers to read the values from Keysight (~ 30 Drivers) work in progress
- Program to process the values (so far done only for the crystal temperature) work in progress
- Display the results (Labview & EPICS/Phoebus) work in progress
- Interlock program work in progress
Device Driver Library Development

- Developing LabVIEW subVIs to communicate with chillers via RS232 for both hardware interlock and hardware monitoring programs

Set chiller temperature subVI

Read chiller temperature subVI
Hardware Monitoring LabVIEW Program

Values shown are randomly generated for testing and debugging

Averages are rolling average of 100 values

Standard deviation calculated for each new average

<table>
<thead>
<tr>
<th>Crystal Zone</th>
<th>Electronics Zone</th>
<th>Chiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Temperatures</td>
<td>Back Temperatures</td>
<td>Cooling Circuit Temperatures</td>
</tr>
</tbody>
</table>

Front Crystal Zone Temperatures [°C]

<table>
<thead>
<tr>
<th>crystal</th>
<th>temp.</th>
<th>avg.</th>
<th>std. dev.</th>
<th>status</th>
<th>crystal</th>
<th>temp.</th>
<th>avg.</th>
<th>std. dev.</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.0</td>
<td>22.5</td>
<td>3.5</td>
<td>Red</td>
<td>540</td>
<td>18.0</td>
<td>21.5</td>
<td>4.9</td>
<td>Red</td>
</tr>
<tr>
<td>5</td>
<td>11.0</td>
<td>17.5</td>
<td>9.2</td>
<td>Yellow</td>
<td>550</td>
<td>22.0</td>
<td>16.5</td>
<td>7.8</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>11.0</td>
<td>14.0</td>
<td>4.2</td>
<td>Green</td>
<td>560</td>
<td>17.0</td>
<td>21.0</td>
<td>5.7</td>
<td>Green</td>
</tr>
<tr>
<td>15</td>
<td>23.0</td>
<td>18.5</td>
<td>6.4</td>
<td>Red</td>
<td>570</td>
<td>16.0</td>
<td>15.5</td>
<td>0.7</td>
<td>Red</td>
</tr>
<tr>
<td>20</td>
<td>25.0</td>
<td>20.5</td>
<td>6.4</td>
<td>Yellow</td>
<td>684</td>
<td>19.0</td>
<td>18.5</td>
<td>0.7</td>
<td>Yellow</td>
</tr>
<tr>
<td>25</td>
<td>15.0</td>
<td>17.0</td>
<td>2.8</td>
<td>Green</td>
<td>689</td>
<td>23.0</td>
<td>24.0</td>
<td>1.4</td>
<td>Green</td>
</tr>
<tr>
<td>30</td>
<td>23.0</td>
<td>22.0</td>
<td>1.4</td>
<td>Red</td>
<td>694</td>
<td>17.0</td>
<td>20.0</td>
<td>4.2</td>
<td>Red</td>
</tr>
<tr>
<td>35</td>
<td>23.0</td>
<td>21.5</td>
<td>2.1</td>
<td>Red</td>
<td>699</td>
<td>16.0</td>
<td>19.0</td>
<td>4.2</td>
<td>Red</td>
</tr>
</tbody>
</table>

Condition

<table>
<thead>
<tr>
<th>Status Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. over high-high limit</td>
</tr>
<tr>
<td>Temp. between high-high and high-low limits</td>
</tr>
<tr>
<td>Temp. in operating range</td>
</tr>
<tr>
<td>Temp. between low-high and low-low limits</td>
</tr>
<tr>
<td>Temp. below low-low limit</td>
</tr>
</tbody>
</table>
• Live plots of front and back crystal zone average temperatures (random numbers)
3. Hardware Monitoring LabVIEW Program

- Blocks show temperatures
- Temperatures randomly generated

<table>
<thead>
<tr>
<th>Condition</th>
<th>Status Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>temp. ≥ high-high limit (20°C)</td>
<td>Red</td>
</tr>
<tr>
<td>high-high (20°C) > temp. ≥ high (18°C)</td>
<td>Yellow</td>
</tr>
<tr>
<td>temp. in operating range (16°C < temp. < 18°C)</td>
<td>Green</td>
</tr>
<tr>
<td>low (16°C) ≥ temp. > low-low (13°C)</td>
<td>Yellow</td>
</tr>
<tr>
<td>temp. ≤ low-low limit (13°C)</td>
<td>Red</td>
</tr>
</tbody>
</table>
Hardware Monitoring LabVIEW Program

- **Electronics zone** tab with temperature limits and averages
- **Random numbers generated** for testing and debugging
CSS Phoebus Temperature Mapping

- EPICS temperature map created using Phoebus
- Temperatures randomly generated via embedded JavaScript
- All EPICS screens will be created using Phoebus
CSS Phoebus Screen Development

Detector Support Group

- **CAEN channel, module, crate ON/OFF screen (for experts only)**

```
<table>
<thead>
<tr>
<th>All Mod. Chs. ON</th>
<th>All Channels On</th>
<th>All Channels Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-35</td>
<td>12-35</td>
<td>13-35</td>
</tr>
<tr>
<td>11-34</td>
<td>12-34</td>
<td>13-34</td>
</tr>
<tr>
<td>11-33</td>
<td>12-33</td>
<td>13-33</td>
</tr>
<tr>
<td>11-32</td>
<td>12-32</td>
<td>13-32</td>
</tr>
<tr>
<td>11-31</td>
<td>12-31</td>
<td>13-31</td>
</tr>
<tr>
<td>11-30</td>
<td>12-30</td>
<td>13-30</td>
</tr>
<tr>
<td>11-29</td>
<td>12-29</td>
<td>13-29</td>
</tr>
<tr>
<td>11-28</td>
<td>12-28</td>
<td>13-28</td>
</tr>
<tr>
<td>11-27</td>
<td>12-27</td>
<td>13-27</td>
</tr>
<tr>
<td>11-26</td>
<td>12-26</td>
<td>13-26</td>
</tr>
<tr>
<td>11-25</td>
<td>12-25</td>
<td>13-25</td>
</tr>
</tbody>
</table>
```
Ansys Thermal Analysis of Crystal Array

Chiller cooling set at 10°C

Red: [22.00°C, 18.50°C]
Light Blue: [18.50°C, 18.25°C]
Green: [18.25°C – 17.25°C]
Yellow: [17.50°C, 17.25°C]
Dark Blue: [17.25°C, 10.00°C]

Crystal array temperature determined by ambient temperature. Need insulated cooled hut like Hall D’s (HallD’s ambient temp ~10°C)
Conclusion

• DSG is contributing to all phases of detector development