HDice, the Polarized Solid HD Target in the Frozen Spin Mode for Experiments with CLAS

Xiangdong Wei Thomas Jefferson National Accelerator Laboratory

The 20th INTERNATIONAL SYMPOSIUM on Spin Physics (SPIN2012) JINR, Dubna, Russia September 17 - 22, 2012

Collaborators

Jefferson Lab

X. Wei, C. Bass, A. Deur, G. Dezern, T. Kageya, D. Kashy, M. Lowry, O. Pastor, A. M. Sandorfi, R. Teachey, and M. Zarecky

• Universita di Roma "Tor Vergata" and INFN-Sezione di Roma2

A. D'Angelo

- University of Virginia
 - C. Hanretty, P. Peng
- Carnegie-Mellon University

D. Ho

- Norfolk State University
 - M. Khandaker
- Blaise Pascal University

V. Laine

- University of Connecticut T. O'Connell
- Catholic University of America
 N. Walford
- and the CLAS Collaboration

- How the HDice target works
- Target Production
- Performance of HDice target
- γ +HDice results with CLAS
- *e+HDice test results*
- Conclusion

• How the HDice target works

- Target Production
- Performance of HDice target
- γ +HDice results with CLAS
- e+HDice test results
- Conclusion

Polarizing HD: the rotational levels of the solid hydrogens

At liquid helium temperature and below, only J=1 and 0 states are occupied, for H_2 and D_2 , and only J=0 is populated for HD

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H₂, HD and D₂ system. The symmetries of the nuclear spin wavefunction, χ_8 , are indicated.

Polarizing HD: cross coupling between H and D, POLARIZING

At J=0 states, protons and deuterons are de-coupled from the lattice. \Rightarrow long relaxation time or non-polarizable

 \Rightarrow help from J=1 H_2 and D_2 through spin-wave is needed for polarizing HD

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H₂, HD and D₂ system. The symmetries of the nuclear spin wavefunction, χ_8 , are indicated.

Polarizing HD: L=1 molecus decay to L=0, AGING

The life time for J=1 H_2 is 6.3 days whiles for J=1 D_2 is 18.6 days. \Rightarrow polarization mechanism disappears after "aging" \Rightarrow Highly polarized frozen spin target

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H₂, HD and D₂ system. The symmetries of the nuclear spin wavefunction, χ_8 , are indicated.

Lab

Heat generation due to L=1 to L=0 Conversion

Heat generation (J=1 to J=0): 2.6mW/mole for H_2 and 0.46mW/mole for D_2 . \Rightarrow For HDice at $c_1 \sim 0.001$, 0.94 μ W/target from H_2 and 0.17 μ W/target from D_2 . \Rightarrow Heat has to be removed from HD in order to polarize HD target

HDice dilution refrigerator cooling power at $10mK : 10\mu W \odot$

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H₂, HD and D₂ system. The symmetries of the nuclear spin wavefunction, χ_s , are indicated.

Polarizing D with RF Transition

Polarizing D with RF Transition

All 6 states are equally populated.

Polarizing D with RF Transition

Polarizing H with brute force.

Polarizing D with RF Transition

Inducing RF transition to polarize D.

Polarizing D with RF Transition

Inducing RF transition to reverse P^H.

• How the HDice target works

• Target Production

- Performance of HDice target
- γ +HDice results with CLAS
- *e+HDice test results*
- Conclusion

Instrumentation: Target Cell

• HDice target cells:

• material in the beam path:

77% HD + 17 % Al + 6% pCTFE (remove with vertex cuts)

HD cells -Oct 11

Jefferson Lab

Instrumentation: Production Dewar

Production Dewar (PD)

- sample space temperature 2K-300K variable
- magnetic field
 2 Tesla
- target injection, transportation and NMR calibration

Instrumentation: Transfer Cryostat

Transfer Cryostat (TC)

- temperature 2K
- magnetic field 0.1 Tesla
- target transfer between dewars

Jefferson Lab

Instrumentation: Dilution Refrigerator

Dilution Fridge (DF)

- sample space temperature ≥8mK
- magnetic field 15 Tesla
- polarization

Instrumentation: Storage Dewar

Storage Dewar (SD)

- sample space temperature 1.6K-300K variable
- magnetic field
 7 Tesla
- storage and/or transportation

Instrumentation: In-Beam Cryostat

In-Beam Cryostat (IBC)

🍘 🤁

Operation: Target transfer

Operation: Target transfer

Operation: Target transfer

Target transfer between PD and DF

Operation: Target transfer

Target transfer between PD and DF

Operation: Target transfer

Target transfer between PD and DF

Operation: Target transfer

Target transfer between DF and SD

Operation: Target transfer

Target transfer between DF and SD

Loading target into IBC and moving IBC inside CLAS

Jefferson Lab

Operation: G-14 Run at Hall-B

JSA

- How the HDice target works
- Target Production
- Performance of HDice target
- γ +HDice results with CLAS
- e+HDice test results
- Conclusion

Target Polarization Calibration for G-14 Run

HD removed from DF after 3 months Aging at high field and low temp

- Frozen-spin NMR compared to thermal equilibrium (TE) calibration **B** field sweep NMR amplitude for H amplitude for D Black H pol. target Black D pol. 10 10 Red H TE target 21a. Pol=1.665E-4 target 21a. Pol=0.685E-Red DJ **P(H) P(D)** 10 NMR 10 10 10 2600 2650 2700 2750 2800 2850 2900 2950 3000 17800 17850 17900 17950 18000 18050 18100 18150 18200 time time
- HD target 20b:

 \Rightarrow P(H) = 61.3 ±1.8%

Tgt 20b NMR

Number of sweeps: 1 for polarized signals and ~250 for TE signals

 $[\]Rightarrow$ P(D) = 15.5 ±0.6%

Target Relaxation Times for H and D during G-14 Run

 $H \vec{D}$ polarization during g14

 \vec{H} D polarization during g14

The HDice targets were in frozen spin mode during G-14 Run. Relaxation times was longer than one year at B=0.9T and T<100mK.

Polarization Manipulation during G-14 Run

Increasing D polarization by spin transfer:

- Brute force (high B/low T) \Rightarrow P_D ~ 15% ($\mu_D / \mu_H \sim 1/3$)
- 1st forbidden adiabatic fast passage (**FAFP**) to invert state populations

Zeeman levels of HD

- requires high RF powers and very uniform fields
- alternative: saturate the FAFP transition \rightarrow equalize { $m_H = +1/2$; $m_D = -1$, 0 } \Leftrightarrow { $m_H = -1/2$; $m_D = 0$, +1 }

Increasing D polarization_Oct'11

Polarization Manipulation with SFP during G-14 Run

Jefferson Lab

In-Beam Cryostat Performance during G-14 Run

- How the HDice target works
- Target Production
- Performance of HDice target
- γ +HDice results with CLAS
- *e+HDice test results*
- Conclusion

Reconstructed Vertex for HDice Target during G-14 Run

Clean empty cell (21a) subtraction from $\gamma n \rightarrow \pi^{-} p$

On-going Analysis for G-14 Run

identified analysis projects:

 $\begin{array}{l} \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \mathrm{K}^{\circ} \Lambda \ (\mathbf{p}) \\ \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \mathrm{K}^{-} \Sigma^{+} \ (\mathbf{p}) \\ \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \pi^{-} \mathbf{p} \ (\mathbf{p}) \\ \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \pi^{-} \mathbf{p} \ (\mathbf{p}) \\ \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \pi^{+} \ \pi^{-} \ \mathbf{n} \ (\mathbf{p}) \ \Leftrightarrow \ \pi^{+} \ \Delta^{-} \ (\mathbf{p}), \quad \pi^{-} \ \Delta^{+} \ (\mathbf{p}), \quad \rho \mathbf{n} \ (\mathbf{p}) \\ \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \pi^{+} \ \pi^{-} \ \pi^{\circ} \ \mathbf{n} \ (\mathbf{p}) \ \Leftrightarrow \ \eta \ \mathbf{n} \ (\mathbf{p}), \quad \omega \ \mathbf{n} \ (\mathbf{p}) \\ \gamma \ \mathbf{n} \ (\mathbf{p}) \rightarrow \ \pi^{\circ} \ \pi^{-} \mathbf{p} \ (\mathbf{p}) \end{array}$

• $\vec{\gamma} \vec{n} (p) \rightarrow \pi^{-} p (p)$

Jefferson Lab

• E beam-target helicity asymmetry from a few % of the g14 data:

SAID extrapolations from proton data

- How the HDice target works
- Target Production
- Performance of HDice target
- γ +HDice results with CLAS
- e+HDice test results
- Conclusion

Electron Beam Tests, e + HD to check radiation damage

🍘 📢

Conclusion

- HDice target has been successfully installed at CLAS.
- Performance of HDice target demonstrated a huge potential for photon experiments.
- Comparing with the conventional target, which polarizes 80% of the 20% usable material, the HDice has 20% polarization of 80% target material.

BUT, WE TOOK THE DATA AT 10 TIMES FASTER RATE BECAUSE OF LOW BACKGROUND.

• Electron beam on HDice test shown the road of improvement.

