NPS Software Updates

Feb 02, 2021

Carlos Yero
Steve Wood

Jeif;gon Lab —E;i\:_ |

OrExploring the Nature of Matter

b

What has been done? NPS SHMS
(Part I: Create NPS SOftware) ster now works ! ' i

NPS.cal.fly.nclust = — - P.cal.fly.nclust
htemp] —— ~ htemp
Entries 10000
Mean 05399
|SWDev 05694 |

< NPS Software is currently under development
(e.g., we have a GitHub repository, NPSApp,
for version control)

3
Pcal fiy.nclust

o

NPS.cal.flyadcPedRaw P.cal.fly.adcPedRaw

¢ The NPS C++ classes that have been adapted from o e i
HCANA to the NPSApp development repository are: saom Sd0w 38
€.g., THcNPSAnalyzer, THcNPSApparatus,

THcNPSCalorimeter, THcNPSArray,
THcNPSShowerHit
i NPS.calfly.e Pcal.flye
< Since NPS does not have tracking detector, tracking information e o e B

Std Dev 0.03424

has been removed and the NPS code has been tested under these
conditions using actual SHMS data.

e.g., these tests show agreement between NPS and SHMS software
codes for variables which do NOT depend on tracking

el radia g el

sdott g : i
NPS calflye Pcal fiye

1 0 1 2 3
oot owpet
- -
NPS cal.fly.adcPulseAmpRaw P.cal.fly.adcPulseAmpRaw
| htemp | { htemp !
Entries 1475 Entries 11475
Mean 7288 Mean 7288
St Dev 186.1) | SdDev _ 186.1

< The NPS replay script has been adapted from that in the
hallc replay repository. The parameters, maps and database

structure have also been adapted from hallc replay to
NPSApp and have been re-named accordingly.

= Lk i | " ! L L i "
500 1000 1500 2000 2500 3000 3500 4000
P.cal fy.adcPulseAmpRaw

500 1000 1500 2000 2500 3000 3500 4000
NPS.cal.fly.adcPulseAmpRaw

What has been done? (Part II: Testing the NPS Software)

Merging events

Higher multiplicities can be simulated by merging several SHMS events.
To do this, use the THcNPSAnalyzer::SetNevMerge method to set the number
of events that should be merged.

AN NN

THcNPSAnalyzerx analyzer = new THcNPSAnalyzer;
analyzer->SetNevMerge(4);

Simulating a larger calorimeter

The SHMS fly's eye calorimter has 16 rows and 14 columns for a total of
224 calorimeter blocks. The NPS calorimter as 36 rows and 30 columns
for a total of 1080 blocks. In order to use SHMS data to simulate a
detector with a number of blocks similar to the the NPS, we can double
the number of rows and columns, making a fake detector with four
quadrants of 16x14 blocks.

To do this we set the row and column count parameters to 32 and 28.
We can then place data into these fake quadrants in two different
ways.

1. One way is to use the map file pcal_nps_projection.map or
pcal_nps_translation.map. These map files map each channel into 4
locations in the fake detector. Then an event with a single cluster
will appear to have four shower clusters.

2. The second way is to set the parameter nps_cal_replicate to one or
two. Then for each event, one of the four quadrants will be chosen
randomly and all the hits will be moved to that quadrant. If this is
used with the event merging described above, multipicites greater than
one can be simulated.

Part II: Testing the NPS Software|

SHMS

Legend: (NPS block)

479) | (447)

+ r1 ight—translation

plane 4

< “Translate” or “Reflect” SHMS “fly’s eye” calorimeter
on four planes to mimic NPS block density
e.g., the corresponding map has already been developed

—
o]
0
4]

~—

—
W
=t

~—

The calorimeter mapping tests have served as
additional checks/tests of the NPS software
currently being developed

t()p—trdnsldtl(m

plane 3

(

|lII%;
&
=}
=
.9
==

¢ How does it work (What was done)?

Beam direction

(463) | (431)
C* 1. Modified the geometry and signal map

central files to include the 3 “fake” calorimeter planes
plane 2 (44g) (a1g) Plane 1 in addition to the existing real plane.

—
—
1

—

| (879)

Lleft—translation

p—

lllljn
>
=Y
|
I
|
I

—

—
Hg
[\

. The calibration/cuts parameter files from
£ADC Slot: 5,6,7,8,9,10,13,14,15,16,17,18,19,20 existing SHMS calorimeter data were copied over

(x3) times to create 896 parameters for the “fake” NPS

(895) @79) | @47

e.g., This was done only for the translation case, as it is the
one we have looked at so far using the map files

—_—
W
—r

—

T,

top—projection

R

right—projection

+

plane 3 3. During the NPS replay (using SHMS data)

the signals from the real calorimeter plane

are either translated or reflected onto the

3 remaining “fake” planes, effectively generating
3 additional shower clusters per each cluster
formed in the real plane.

plane 4

—_—
—
(=2}

et

(432)

(464)

Beam direction

(879) (463) | (a31) %]

Coentra e.g., additional relevant variables, such as the total

plane 1 shower energy deposited or fADC variables will appear
to be made effectively larger as compared to
the original SHMS data, since the hits have been quadrupled

: (880)

—
b
o

L

Llefl—projection

1

plane 2 (448) | (416)

lE’I_‘<=3
o
2
IE’I:§

fADC Slot: 5,6,7,8,9,10,13,14,15,16,17,18,19,20

Part II: Testing the NPS Software|
NPS.cal.fly.adcCounter
| _ htemp
103 g_ . I Entl'iez:lt emp1147‘5
i 0 b e

10?

I T 1

10 —
1 1 1 1 I 1 1 1 1 l 1 ' 1 | | L L 1 1 I 1 L L L I | | | L I 1 L L 1 1 1 L L 1 I 1 L L 1] L L 1
0 100 400 500 600 800 900
NPS.cal.fly.adcCounter
NPS.cal.fly.nclust
= htemp
1 Entries 10000
Mean 2.159
Std Dev 2.277
10° htemp
Entries 10000
- - Mean 0.5399
Std Dev 0.5694
102
10
1
1 1 1 1 l | 1 1 1 I 1 1 L H L 1 1 L L
0 2 6 8 0 12
NPS.cal.fly.nclust

NPS.cal.fly.earray

10*

= - htemp
= 1 standard map (SHMS Cal) |Enties 10000
— . Mean 1.239
B translation map Std Dev 2.182
10° = (“fake” NPS Cal) htemp
= Entries 10000
— Mean 0.3106
= Std Dev 0.5529
102 =
10 =
1= L‘| U
:l 1 1 l - |_Ll|~‘jﬂ | I 1 H 1
15

10°

10?

10

10*

10°

10?

10

1. Mimic NPS Channel Density Using a Map File

20
NPS.cal.fly.earray
NPS.cal.fly.adcPedRaw NPS.cal.fly.adcPulseAmpRaw
htemp htemp
Entries 45900 |[Entries 11475 4l htemp
Il Mean 2172 || Mean 10 = Entri
StdDev 113.9 || Std Dev = ntries
E - Mean
- ﬂ 'L . i Std Dev
- L 10 3 htemp
o Entries
3 ﬂ 1 Il B Mean
- 1 10% & Std Dev
3 10
" H LU UL L :'é[)dlib'obl 1500 2000 2500 '3'0106”55'06 4000
1800 1900 2000 2100 2200 2300 2400
NPS.cal fly.adcPedRaw NPS.cal.fly.adcPulseAmpRaw
NPS.cal.fly.adcPulselntRaw
— y o NPS.cal.fly.adcPulseTimeRaw
= Entries 45900 - htemp
- Mean 1.633e+04 - Entries
= Std Dev 1004 B Mean
B htemp 10 = Std Dev
— Entries 11475 = htemp
- Mean 1.633e+04 - Entries
- Std Dev 1004 3 B Mean
_ 10" = Std Dev
- 10° =
3 10 = J
A | PRI SRS I RIS | DR I MR 1 Y O O A
5000 10000 15000 20000 25000 30000 350(0O 2000 4000 6000 8000 10000

NPS.cal.fly.adcPulselntRaw

NPS.cal.fly.adcPulseTimeRaw

Part II: Testing the NPS Software| 2. Mimic NPS Channel Density Using
“‘nps cal replicate” Option

& S. Wood developed an alternative method to populate
our “fake” NPS calorimeter more realistically, using the
newly added nps cal replictae parameter

< How does it work ?

1. For every trigger (physics event)
detected on the real calorimeter plane,
select one of the four quadrants at random
and move the event to that quadrant either
by “translation” (nps cal replicate=1)
or “reﬂection ” (nps_cal_replicate=2) .

2. Since the signal hits are moved to one of
these quadrants, then the map file requires
ONLY the signal map from the standard SHMS
calorimeter, since the mapping to other quadrants
1s done internally (in NPSApp source code)

I

3. In terms of the calibration/cuts param files, we
still need the 896 elements, as these will be used
depending on which quadrant the event lands 1n.

€ Event Merging Option

In addition to randomly moving an event to a quadrant, one can also “merge” hits
every N events into the hit list. When the Nth event 1s reached, then all of the hits
accumulated from the previous events (including N) are analyzed as if they were from
the Nth event, the hit list is then cleared before analysis of the next N events.

This option 1s used for simulating higher rates (i.e., multiplicities), and can be used concurrently with
the nps cal replicate option described above to generate higher multiplicities
on the “fake” NPS calorimeter.

Part II: Testing the NPS Software|
NPS.cal.fly.adcCounter
4
10 = htemp htemp
= Entries 7053 || Entries 11475
~ Mean 448.8 || Mean 111.4
100 Std Dev 252.7 || Std Dev 42.99
10?
10
1 .

107" =
10—2_IIIlllllllllIIIIllllllllIIIII[llllllllllIlllllll
0 100 200 400 500 600 700 800 900

NPS.cal.fly.adcCounter
NPS.cal.fly.nclust
10° = htemp
I Entries 2500
Mean 1.937
3 _ Std Dev 0.92
10] htemp
M Entries 10000
1 Mean 0.5399
Std Dev 0.5694
102 _
10 I
1
107!
_2 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1
L 0 1 2 3 4

5
NPS.cal.fly.nclust

2. Mimic NPS Channel Density Using
“‘nps cal replicate” Option

NPS.cal.fly.earray
104 =
= - d d 1 htemp
— standar map (SHMS Ca) Entries 2500
— nps_cal replicate=1 (translation) Mean 0.6299
10° = | fNevMerge = 4 (events merged) Std Dev 0.7386
= (“fake” NPS Cal) __htemp
— Entries 10000
— Mean 0.3107
10 = i
- - 1
1E
—1 I 1 | 1 1 1 L | 1 1 1 1 | 1 1 1 1 l 1 1 1 I Il 1 1 1 I 1 1 1 | 1 L
107 0 1 2 3 4 5 6 7
NPS.cal fly.earray
NPS.cal.fly.adcPedRaw NPS.cal.fly.adcPulseAmpRaw
10%* g = h
£ emp htemp temp
| Entries 7053 Entries 11475 3 Entries 7053
| Mean 2174 | | Mean 2172 10° &= Mean 719.2
10° - Std Dev 113.7 | | Std Dev 113.9 a Std Dev 181.5
: i htemp
B Entries 11475
10 10 Mean 728.8
F = Std Dev 186.1
10 & i
E 10 =
1 E
5 i3 M n n
ot bl W e b b L b Lo v a bl vnaliaay P EPEETErS B | PP P |
1800 1900 2000 2100 2200 2300 2400 500 1000 1500 2000 2500 3000 3500 4000
NPS.cal.fly.adcPedRaw NPS.cal.fly.adcPulseAmpRaw
NPS.cal.fly.adcPulselntRaw ~ NPS.cal fly.adcPulseTimeRaw
10° 3 Enmeshtemp 7053 i 5"'"55 - ;ggg
- Mean 1.631e+04 St Dev o
r Std Dev 997.7 103 & o :
i htemp . Entries 11475
102 - Entries 11475 : Mean 3355
E Mean 1.633e+04 Std Dev 173.7
g Std Dev 994 102
10 :
s 10 3
1
b | ”I ” L | L L Il 1 | 1 [I l" L | L L | 1 | L l" - - 1 ﬂ‘ll” 1 1 l 1 1 1 1 ”A 1 Aﬂﬂl "l II-I 1" l“l l—”-ll I] l"
10000 15000 20000 25000 30000 0 2000 4000 6000 8000 10000
NPS.cal.fly.adcPulseIntRaw NPS.cal.fly.adcPulseTimeRaw

NPS Calorimeter Clustering Algorithm: Cellular Automata Method

Definition: A cellular automaton is an array of simple individual processing cells which
evolve iteratively according to a fixed set of instructions or rules.

A cellular automaton evolves iteratively : at
each step, each cell examines its inputs, decides

on the baSl,S of a transition rule .Whether oI ot Y The principle of the calorimeter clustering algorithm
to change]tjs state, fmd S_ends its new output using the cellular automata approach is described in
value to the inputs of its neighbours. At the next Ref. https://doi.org/10.1016/0168-9002 (95)00217-0
step, these new inputs are examined and the cells

evolve simultaneously.

SecwstmmuetilpT

For each trigger, the en-
ergy deposit in each block will be used as the cell
initial state. Only hit cells can evolve. The main
rule of the cellular automaton evolution is that a

@ Hall C NPS calorimeter will follow the Hall A DVCS cell at a given step will take the value of its high-
calorimeter clustering algorithm, as there is already est energy nelghbour. This can easily be under-
experience using the cellular automata approach. stood by drawing a parallel to biology. For a given

trigger, several particles, or at least the one that

fired the trigger, have developed a shower. The

@ We plan to use time information as well as x-y block with the highest energy in these showers is
coordinates of blocks) in cluster identification. oing to act like a virus contaminating the other
(3D clustering) blocks. Iteratively the contamination will spread
over the calorimeter from cell to cell. When the

process stabilizes the clusters in the calorimeter

will be ta§§ed by their respective virus.
“eausetmmmestpT

¢ The cellular automata approach was implemented in
the Hall A DVCS Calorimeter some time ago (2006)

https://doi.org/10.1016/0168-9002(95)00217-0

NPS Calorimeter Clustering Algorithm: Cellular Automata Method

| ~ |

HRU]C—I A given cell is only sensitive to | ¢ “Cellular Automata” rules to follow when forming clusters of hits
. Ref. h : . 10.101 168- 2 217-

| 1ts eight neighbours. A cell i1s a virus (See Re ttps://dol.org/10.1016/0168-9002(935) 00 :

if its value is higher than the value of
each of 1ts neighbours.

Y These rules may be flexible depending on the circumstances.

For example, depending on the energy deposited in a cell of a highly
. . segmented calorimeter, or depending on the location of a cell, one
Rule-IlI At a given step, a cell will take may need to re-define what constitutes neighboring cells

| the value of 1its highest energy neigh-

bour. Y * Need to determine how to treat cells with shared clusters. Do we
w ; apply “Rule-III” or determine how to share the energy between the
lRu]e_]]I A cell already contamined in ‘ two clusters later during the calorimeter reconstruction process?

an carlier stage by a virus is immu-
nized against any other virus (restric-
tion to Rule II)

7ééiliﬁeighborhood cell etched cell*

(hit value o« ADC boundary 11 . (contaminated (shared by
' ce rus \\t d//

pulse amplitude) cell (no hit) (virus) or “ragged”) two clusters)

\ / /
0.310%60.2| * 0.6

1.314.8]1.2(0.7]0.2
0.9 |3.110.7

0.6
0.7]1.2

3.1/0.7

step 0: Per physics event—identify all step 1: Identify the virus, i.e. cells step 2: Virus cell contaminates nearest neighboring
blocks with ADC amplitude > ADC threshold. with a local maxima or larger energy cellg, which are “tagged” with the same color as
Only the hit blocks will form part of deposit than their neighbors. the virus to form clusters. Cells with multiple
the clustering algorithm later on. tags (etched) are shared between their respective
clusters, and a determination of how to handle
Cellular Automata FEvolution these cases must be made. The contamination will

spread iteratively over secondary, tertiary, etc.
> neighbors provided these have not been “tagged”

https://doi.org/10.1016/0168-9002(95)00217-0

NPS Calorimeter Clustering Algorithm: Cellular Automata Method in DVCS

¢ Currently, we are studying the DVCS clustering algorithm code and plan to adapt it to the NPSApp source code

¢ I had some questions regarding the DVCS clustering algorithm code:

// O TR L Nt e Jo T Y ML Vs
Int_t TCaloEvent::DoClustering(Double_t timemin, Double_t timemax, Float_t BlockThreshold)
{

//If a time window is used, blocks with no pulse inside it are excluded
if(timemin>-1000 | | t imemax>-1000){
if (block->GetEnergy(0)>0.&&(block->GetTime (@) <timemin|]|block->GetTime(@)>timemax)
&block->GetEnergy(1)>0.&&(block->GetTime(1)<timemin| |block—>GetTime(1)>timemax)) {

, blocksenergy [block->GetBlockhmber()1=-16; < What is the difference between the two ::DoClustering() methods?
if(! —> >0. - i <ti i —> i >ti . < (95 9
e o ootk T oot Tume(0) <t Inemin| |block->GetTime (8)>tincnax)) (It just seems as if they both do not use the ‘time’)

if (block->GetEnergy(0)>0.&5block->GetTime(0)>=timemin&&block->GetTime(@)<=timemax)

blocksenergy [block->GetBlockNumber()]=block->GetEnergy(0);

if (block->GetEnergy(1)>0.&8block->GetTime(1)>=timemin&&block->GetTime(1)<=timemax
& (TMath::Abs((block->GetTime(1))-((timemax+timemin)/2.)) <
TMath::Abs((block->GetTime(®))-((timemax+timemin)/2.))))
blocksenergy [block->GetBlockNumber()]=block->GetEnergy(1);

if (block->GetEnergy(0)>0.&8&block->GetTime(0)>=timemin&&block->GetTime(0)<=timemax
&Sblock->GetEnergy(1)>0.&8&block->GetTime(1)>=timemin&&block—>GetTime(1)<=timemax) {
returnval++;//If two pulses the energy is set to the closest in time to the middle of thg window

//
Int_t TCaloEvent::DoClustering(Double_t timeminl, Double_t timemax1l, Double_t timemin2, Double_t timemax2, Float_t BlockThreshold)
{

Double_t timemin=timeminl;

Double_t tinemax=tinemax1: | ‘ ¢ Im not clear about what is the functionality of ‘nwindow’
for(IntTt nwindow=0; nwindow<2; nwindow++){//Loop over clustering windows
e min2; here, and how it plays a role in determining whether
 inenaxstinena; to assign a timemin/max 1 or 2 to the generic timemin/max
Int_t NbClusters=0; . . .
for(Int_t i=0; i<fNbBlocks;i++) { | variable. It also seems as if the adc pulse time was not really
TCaloBlockk block = (TCaloBlockx)fCaloBlocks->UncheckedAt(i); . .
b3 =block >GetBlockumber(); used here as well, since the min/max are set to >-1000

blocksenergy [block->GetBlockNumber()]=block->GetBlockEnergy();

//If a time window 1s used, blocks with no pulse inside it are excluded
if(timemin>-1000 | | timemax>-1000){
if(block->GetEnergy(0)>0.&&(block->GetTime(0)<timemin||block->GetTime(0)>timemax)
&block->GetEnergy(1)>0.8&(block->GetTime(1)<timemin||block->GetTime(1)>timemax)) {
blocksenergy [block->GetBlockNumber()]=-10;

}
if(!(block->GetEnergy(1)>0.) &&(block->GetTime(0@)<timemin||block->GetTime(@)>timemax))
blocksenergy [block->GetBlockNunber ()]=-10; ¢ Maybe I can have offline discussion with Carlos M. Camacho

if(block->GetEnergy(0)>0.8&&block->GetTime(0)>=timemin&&block->GetTime (0)<=timemax)

blocksenergy [block->GetBlockNumber ()]=block->GetEnergy(0); tO leam morc abOut thlS meth()d

if(block->GetEnergy(1)>0.&block->GetTime(1)>=timemin&&block->GetTime(1)<=timemax
& (TMath::Abs((block->GetTime(1))-((timemax+timemin)/2.)) <
TMath::Abs((block->GetTime(@))-((timemax+timemin)/2.))))
blocksenergy [block->GetBlockNumber()]=block->GetEnergy(1);

if(block->GetEnergy(0)>0.&Sblock->GetTime(0)>=timemin&&block->GetTime(0)<=timemax
&&block->GetEnergy(1)>0.&8block->GetTime (1)>=timemin&&block->GetTime(1)<=timemax) {
returnval++;//If two pulses the energy is set to the closest in time to the middle of the window

Open Discussion On these Topics?

From Brad’s talk yesterday:
https://wiki.jlab.org/cuawiki/images/a/ac/Sawatzky-DAQ_update 01Feb2021.pdf

We are currently working on this

(The plan is to actually integrate
® Analyzer (Ha” C) mods (Steve?) / DVCS cluster algorithm into hcana)
— Integrate existing DVCS software into
hcana We can work on these if we
,,————”””'b get some information and
— Decoder updates for VTP, F250 mods example data files (S. Wood)
— Solve and Implement “Data Unblocking” We hope someone else does this.

(This might be done in hardware)

issue
— Merge multi-threaded podd with hcana?

/|

We don’t think multi-threaded podd
is ready yet, but we can work on
it when it is ready.

https://wiki.jlab.org/cuawiki/images/a/ac/Sawatzky-DAQ_update_01Feb2021.pdf

Thanks !

