
NPS Software Updates 
NPS Collaboration Meeting 

 

Feb 02, 2021 
 

Carlos Yero 
Steve Wood



 NPS Software is currently under development 
(e.g., we have a GitHub repository, NPSApp,  
for version control)

 The NPS C++ classes that have been adapted from 
HCANA to the  NPSApp development repository are: 
 
e.g.,  THcNPSAnalyzer, THcNPSApparatus,  
THcNPSCalorimeter, THcNPSArray,  
THcNPSShowerHit 

Since NPS does not have tracking detector, tracking information 
has been removed and the NPS code has been tested under these 
conditions using actual SHMS data. 
 
e.g., these tests show agreement between NPS and SHMS software 
codes for variables which do NOT depend on tracking

The NPS replay script has been adapted from that in the  
hallc_replay repository. The parameters, maps and database  
structure have also been  adapted from hallc_replay to  
NPSApp and have been re-named accordingly.  

What has been done?  
(Part I: Create NPS software)

NPS SHMS



What has been done? (Part II: Testing the NPS Software)



Part II: Testing the NPS Software| 1. Mimic NPS Channel Density Using External   
                                      Map File

“Translate” or “Reflect” SHMS “fly’s eye” calorimeter    
on four planes to mimic NPS block density 
e.g., the corresponding map has already been developed 

How does it work (What was done)?  
 
1.  Modified the geometry and signal map 
     files to include the 3 “fake” calorimeter planes  
     in addition to the existing real plane. 
 
2.  The calibration/cuts parameter files from 
     existing SHMS calorimeter data were copied over  
     (x3) times to create 896 parameters for the “fake” NPS 
 
e.g., This was done only for the translation case, as it is the 
one we have looked at so far using the map files 
 
 
3.  During the NPS replay (using SHMS data) 
     the signals from the real calorimeter plane 
     are either translated or reflected onto the 
     3 remaining “fake” planes, effectively generating 
     3 additional shower clusters per each cluster 
     formed in the real plane. 
 
e.g., additional relevant variables, such as the total 
shower energy deposited or  fADC variables will appear  
to be made effectively larger as compared to 
the original SHMS data, since the hits have been quadrupled 
 

The calorimeter mapping tests have served as 
additional checks/tests of the NPS software  
currently being developed

Legend: SHMS 
block (NPS block)

Translation Map

Reflection Map



Part II: Testing the NPS Software| 1. Mimic NPS Channel Density Using a Map File

standard map (SHMS Cal)
translation map  
(“fake” NPS Cal)



Part II: Testing the NPS Software| 2. Mimic NPS Channel Density Using   
                                   “nps_cal_replicate” Option

S. Wood developed an alternative method to populate  
our “fake” NPS calorimeter more realistically, using the  
newly added nps_cal_replictae parameter 

How does it work ?  
 
1.  For every trigger (physics event)  
     detected on the real calorimeter plane, 
     select one of the four quadrants at random 
     and move the event to that quadrant either 
     by “translation” (nps_cal_replicate=1)  
     or “reflection” (nps_cal_replicate=2) . 

 
             2. Since the signal hits are moved to one of 
                  these quadrants, then the map file requires  
                  ONLY the signal map from the standard SHMS 
                  calorimeter, since the mapping to other quadrants 
                  is done internally (in NPSApp source code) 

              3. In terms of the calibration/cuts param files, we 
                  still need the 896 elements, as these will be used  
                  depending on which quadrant the event lands in.

Event Merging Option 
 
  In addition to randomly moving an event to a quadrant,  one can also “merge”  hits  
  every N events into the hit list.  When the Nth event is reached, then all of the hits  
  accumulated from the previous events (including N) are analyzed as if they were from  
  the Nth event, the hit list is then cleared before analysis of the next N events. 
 
  This option is used for simulating higher rates (i.e., multiplicities), and can be used concurrently with 
  the nps_cal_replicate option described above to generate higher multiplicities  
  on the “fake” NPS calorimeter.

??

? ?



Part II: Testing the NPS Software| 2. Mimic NPS Channel Density Using   
                                   “nps_cal_replicate” Option

standard map (SHMS Cal)
nps_cal_replicate=1 (translation) 
fNevMerge = 4 (events merged) 
(“fake” NPS Cal)



NPS Calorimeter Clustering Algorithm: Cellular Automata Method

Definition:  A cellular automaton is an array of simple individual processing cells which 
      evolve iteratively according to a fixed set of instructions or rules.

The principle of the calorimeter clustering algorithm 
using the cellular automata approach is described in 
Ref. https://doi.org/10.1016/0168-9002(95)00217-0

The cellular automata approach was implemented in 
the Hall A DVCS Calorimeter some time ago (2006) 

Hall C NPS calorimeter will follow the Hall A DVCS 
calorimeter clustering algorithm, as there is already 
experience using the cellular automata approach.

We plan to use time information as well as x-y  
coordinates of blocks) in cluster identification.   
(3D clustering)

https://doi.org/10.1016/0168-9002(95)00217-0


0.3 0.6 0.2 0.6
1.3 4.8 1.2 0.7 0.2

0.9 3.1 0.7

NPS Calorimeter Clustering Algorithm: Cellular Automata Method

0.6 0.6

cell(no hit)

cell 
(hit value  ADC 
pulse amplitude)

∝
cell neighborhood 

boundary
cell (virus)

cell  
(contaminated 
or “tagged”)

etched cell*  
(shared by  

two clusters)

* Need to determine how to treat cells with shared clusters. Do we 
apply “Rule-III” or determine how to share the energy between the 
two clusters later during the calorimeter reconstruction process?

These rules may be flexible depending on the circumstances.  
For example, depending on the energy deposited in a cell of a highly 
segmented calorimeter, or depending on the location of a cell, one 
may need to re-define what constitutes neighboring cells

step_0: Per physics event——identify all 
blocks with ADC amplitude > ADC_threshold. 
Only the hit blocks will form part of  
the clustering algorithm later on.

step_1: Identify the virus, i.e. cells 
with a local maxima or larger energy 
deposit than their neighbors. 

step_2: Virus cell contaminates nearest neighboring 
cells, which are “tagged” with the same color as 
the virus to form clusters. Cells with multiple 
tags (etched) are shared between their respective 
clusters, and a determination of how to handle 
these cases must be made. The contamination will 
spread iteratively over secondary, tertiary, etc. 
neighbors provided these have not been “tagged” 

Cellular Automata Evolution 

“Cellular Automata” rules to follow when forming clusters of hits 
(See Ref. https://doi.org/10.1016/0168-9002(95)00217-0

https://doi.org/10.1016/0168-9002(95)00217-0


NPS Calorimeter Clustering Algorithm: Cellular Automata Method in DVCS

 Currently, we are studying the DVCS clustering algorithm code and plan to adapt it to the NPSApp source code

 I had some questions regarding the DVCS clustering algorithm code:

What is the difference between the two ::DoClustering() methods? 
(It just seems as if they both do not use the ‘time’  )

Im not clear about what is the functionality of ‘nwindow’ 
here, and how it plays a role in determining whether  
to assign a timemin/max 1 or 2 to the generic timemin/max 
variable.  It also seems as if the adc pulse time was not really 
used here as well, since the min/max are set to >-1000

Maybe I can have offline discussion with Carlos M. Camacho 
to learn more about this method. 



Open Discussion On these Topics?

From Brad’s talk yesterday:  
https://wiki.jlab.org/cuawiki/images/a/ac/Sawatzky-DAQ_update_01Feb2021.pdf

We are currently working on this 
(The plan is to actually integrate 
DVCS cluster algorithm into hcana)

We can work on these if we 
get some information and 

example data files (S. Wood)

We hope someone else does this.  
(This might be done in hardware)

We don’t think multi-threaded podd 
is ready yet, but we can work on 
it when it is ready.

https://wiki.jlab.org/cuawiki/images/a/ac/Sawatzky-DAQ_update_01Feb2021.pdf


Thanks !


