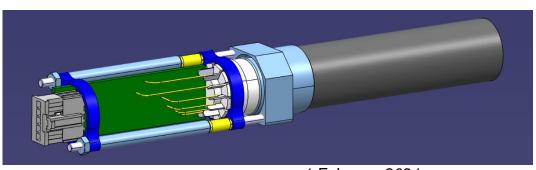


PMT HV Dividers for NPS/CPS

F.J. Barbosa

- 1. Divider Status
- 2. Updated Specifications
- 3. Next Steps

1. Divider Status

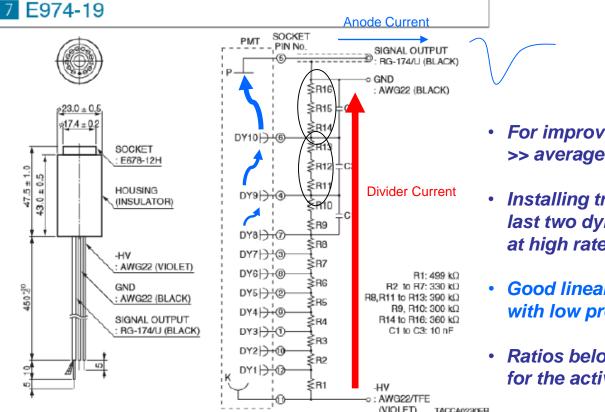

Crystal PMT

Channels: 1156.

- PMT: Hamamatsu R4125 PMT (10 stages)
 - Nominal Anode Current (max) = 100 uA
 - Pulse Linearity = ± 2%
 - $Gain = 10^5 @ 1.1 \text{ kV}.$

- · Active.
- Based on an earlier design by V. Popov, H. Mkrtchyan (2012).
- Updated design for reliability, component and production optimization.
- Production complete with spares.

NPS PMT & Divider Assembly (E. Rindel, IPNO, 1/31/2019)



1 February 2021

New HV Divider (Active)

Hamamatsu R4125 PMT Passive HV Divider

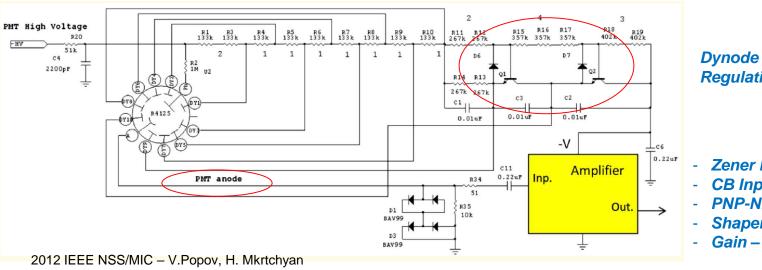

- For improved linearity, divider current >> average anode current.
- Installing transistor regulation on the last two dynodes improves performance at high rates.
- Good linearity in COMCAL at a few % with low preamp gain.
- Ratios below result in half the PMT gain for the active divider.

Table 2: Measured divider ratios

	K-	Dy1-	Dy2-	Dy3-	Dy4-	Dy5-	Dy6-	Dy7-	Dy8-	Dy9-	Dy10-
	Dy1	Dy2	Dy3	Dy4	Dy5	Dy6	Dy7	Dy8	Dy9	Dy10	GND
Active	1.8	1	1	1	1	1	1	1	2	4.3	3.5
Hamamatsu	1.4	1	1	1	1	1	1	1.2	1.8	3.3	3.1
		•						<u> </u>			

Active HV Divider

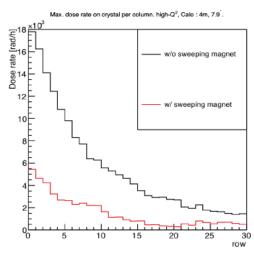
- Regulation on the last two dynodes provides for excellent stability and linearity at high rates, large dynamic range.
- Operating the PMT at lower gain → lower anode current → longer PMT life.

Regulation

- **Zener Regulated**
- **CB** Input
- **PNP-NPN Driver**
- Shaper
- Gain set by 1 resistor
- Preamp is powered from HV supply, eliminating LV supply, connectors, controls, etc.
 - Divider Current: 430 uA (Active) vs. 170 uA (Hamamatsu passive).
 - Divider Ratios & Anode Current: Active = 1/2 Passive.
 - Preamp Gain ~ x25.
- Goal: decrease anode Current, attain good linearity.

Observations from Bench and COMCAL tests:

- fADC250 has three amplitude scales: 0.5 V, 1 V, 2 V.
- Non-linearity increases with decreasing amplitude scale for x3 preamp, likely a result of noise.
- Higher rate capability with lower gain.
- Estimate ~ 1/3 anode current of Hamamatsu passive divider with preamp (x3) and 2 V scale.
- Improved linearity with higher divider current:
 - ~ 2% non-linearity
 - HV = 850 V, 800 uA
 - PMT gain ~ 10⁴ range.


2. Updated Specifications

Recommendations by Bogan Wojtsekhowski:

Anode current considerations

 Actual anode current with the current HV base is too high. The current inside PMT need to be reduced by a factor of 500-1000.

0.1 rad/s => 10^{-6} J/s/g => 10^{-4} J/crystal ⇒ 10^{15} eV/s => 10^{6} GeV/s signal has 15 ph.e./MeV for NPS scintillator ⇒ $1.5 \ 10^{10}$ ph.e./s in PMT gain of 10^{5} ⇒ average anode current 250 uA It is 2 times exceed the specs of R4125

- Lower anode current by a factor 500 – 1000:
 - > 0.25 0.5 uA.
- Lower PMT gain by shorting last few dynodes to anode.
 - **>** 10³
- > Consider External Amp.
- > Noise may be an issue.
- · AC variation between blocks could be reduced by using a filter on PMT.

28/05/20

NPS meeting, May 28

6

3. Next Steps

- We would like to use the units that have already been produced and modify them accordingly.
- Two additional production dividers have been assembled and tested (Chris Stanislav) for further tests. Use one as reference and modify second as needed.
- Request that NPS personnel perform tests, We have the set up ready in EEL 118.
- > Tests:
 - > with production divider
 - → increase divider current to ~ 800 uA for improved linearity.
 - decrease PMT gain by shorting dynodes.