
NPS Collaboration Meeting

Remote due to Covid-19

1-2 February 2021

Tanja Horn

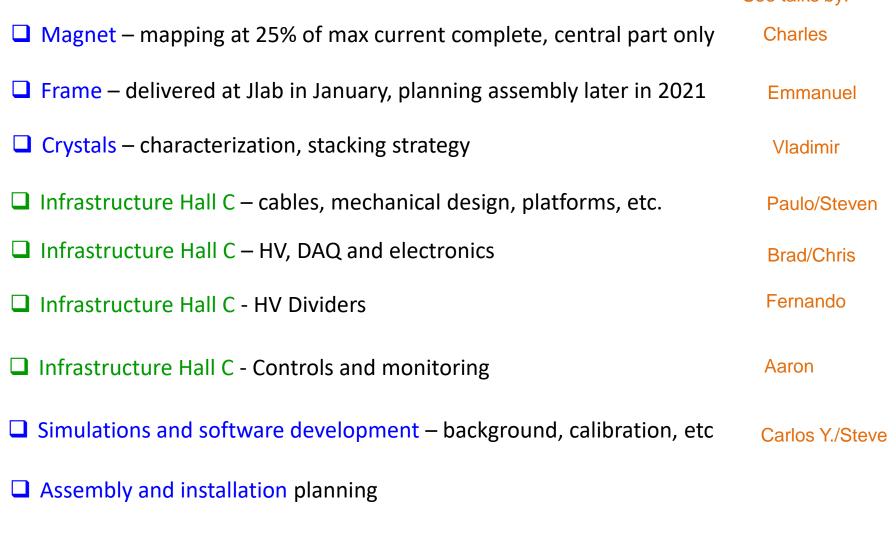
History of NPS Meetings

- □ 10 November 2012: Workshop on Opportunities for DVCS and other physics with NPS (IPN-Orsay)
- □ 14 November 2013: NPS Collaboration Meeting (JLab)
- □ 19 November 2014: NPS Collaboration Meeting (JLab)
 - □ 15-16 June 2015: NPS and PbWO₄ Meeting (JLab)
- □ 21 January 2016: NPS Collaboration Meeting (JLab)
- □ 19 January 2017: NPS Collaboration Meeting (JLab)
 - □ 6-7 February 2017: High-Intensity Photon Sources Workshop (CUA)
- □ 23 January 2018: NPS Collaboration Meeting (JLab)
 - □ 13-15 November 2018: NPS Frame Meeting (JLab)
- □ 1 February 2019: NPS Collaboration Meeting (JLab)
 - □ 25-26 June 2019: NPS Frame Meeting (JLab)
- □ 3 February 2020: NPS Collaboration Meeting (JLab)
 - 1 1-2 February 2021: NPS Collaboration Meeting (Remote due to Covid-19)

Experiments Overview

Experiment	Exp #	Beam	Target	PAC Days	Rating
π ⁰ SIDIS	<u>E12-13-007</u>	<i>ē</i> −	LH ₂	(26)	A-
DVCS and Exclusive π^0	<u>E12-13-010</u>	\vec{e}^-	LH ₂	53	A
Wide Angle Compton Scattering (WACS)	<u>E12-14-003</u>	e ⁻ ,γ	LH ₂	18	A-
Wide Angle Exclusive π^0 photoproduction	E12-14-005	e ⁻ ,γ	LH ₂	(18)	В
DVCS – days moved from Hall A	<u>E12-06-114</u>	ē⁻	LH ₂	35	A
A _{LL} & A _{LS} Polarization Observables in WACS at large s, t, and u	<u>E12-17-008</u>	CPS: γ	$N\vec{H}_3$	46	A-
Timelike Compton Scattering (TCS) off a Transversely Polarized Proton	<u>C12-18-005</u>	CPS: $\vec{\gamma}$	$[N\vec{H}_3]_{T}$	35	C2

□ Scheduling request submitted for E12-13-010/E12-13-007 (NPS Phase-I)


□ Could run as soon as 2023 (Thia's talk from Hall C Collaboration meeting)

Discussion: integrate E12-06-114 in run plan NPS Phase-I? Scheduling request?

NPS Project Status Overview

Prospects glass scintillators

NPS 2020 To Do List (1)

- Mechanical Design This meeting
 - Check and document all kinematics with latest requirements for interferences, e.g. shelf plates on SHMS and new experiment DVCS from Hall A
 - Document time estimate for rotating the magnet, moving the NPS detector and cabling, moving NPS from one side to the other
 - Identify and document items that can be done in advance, e.g. weld plates on SHMS
- Detector Frame (goal: deliver to Jlab August 2020)
 - Finalize quotes, e.g. for quartz and mu metal
 - Implement the new magnetic shielding design includes ordering all parts (honeycomb, mu metal, iron shielding, aluminum plates, supports), assembly, and testing
 - Re-check the center of gravity of the updated design
 - Decide on how to attach the NPS frame to the JLab fixture, e.g. bolts, weld
 - Send temperature control information to Brad to figure out readout (include in alarm handler, but no feedback, no interlock)
 - Determine needs for operating chiller in Hall C, e.g. radiation hardness, shielding, order spares
 - Send crystal wrapping material for pre-shaping to Jlab
 - Check uniformity of fiber transmittance after cut/polish
 - Test for LED system cross talk for adjacent PMTs
 - Should Kapton tape be used around the PMT to insulate it from the mu metal cylinder
 - Determine if there is a way to monitor thickness increase of crystals when adding tape

NPS 2020 To Do List (2)

Crystals/glass

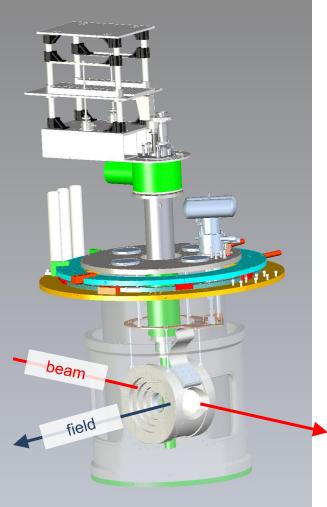
Send 10 CRYTUR crystals and full-size glass to Orsay for irradiation test Ο

- Should have 650 CRYTUR crystals at JLab by August 2020, then 30 per month more. Ο Should have 250 more (900 total) CRYTUR crystals by April 2021.
- Check with CRYTUR if they can expedite outstanding crystal delivery for 250 Ο crystals purchased recently and possible early FY21 procurement for 200 more
- Decide on final stacking configuration current nominal configuration is two outer This meeting Ο layers on top, bottom and 'away-from-beam' side SICCAS, rest CRYTUR (184 and 896 crystals, respectively)
 - NPS Magnet mapping and running
 - Check measurements vs 3D calculations (takes ~1-2 months) Ο
 - Make table of fringe fields vs. current and check simulations for physics impact Ο
 - Decide on what fraction of maximum current to run the magnet for first run group Ο will also determine impact on HMS optics and mitigation needs
 - High voltage dividers complete by summer 2020)
 - Check on the method to measure anode current, e.g. in Hall C Ο
 - Further analyze existing anode current data from Hall D Ο
 - Decide on final HV divider gain Ο
 - Determine need for additional resources and/or funding beyond what was planned to Ο make changes to HV dividers

NPS 2020 To Do List (3)

- DAQ/Electronics/Cabling/LCW
 - Continue procurements (computer hardware, VXS crates, modules, patch panel hardware)
 - HV cabling/connectors: count available channels from, e.g. G0, BigCAL, and decide on type of connectors to procure
 - Decide on patch panel location
 - Work with designers on cable runs and cable motion strategy
 - Check with designers on need for feedthrough cabling, decide on modification of existing roof block or new roof block with penetration
 - Develop DAQ firmware (VTP, F250, TI/TM, CODA ROC driver) FE/DAQ group
 - \circ Develop LED control system (HW interface, firmware+SW) FE/DAQ group
 - Confirm with DSG the development of slow control SW (start from Comcal GUI, HV, temp display, calo protection)
 - Start Analyzer development (multi-block decoding, high level NPS class integration)
 - \circ Double check required magnet current LCW and power supply available for 800A
 - Simulation and software development
 - Include mu metal shielding details in simulation
 - Continue studies of calibration methods
 - Elastics: determine where the proton goes with NPS/electron angle fixed can one place an additional small detector at backward angles?
 - Optimize kinematics if this is possible

NPS 2020 To Do List (4)


• NPS Science – Timelike Compton Scattering

- Determine quantitatively if low energy protons can be measured after the polarized target high magnetic field do they leave the field? Do they leave the scattering chamber?
 - Make a 3D simulation and for selected bins show the trajectories of proton (and electron) and where they hit the detector in t, phi, etc., in particular at low momentum
 - Check the simple example of phi plot correlations: plot phi=0/theta=0, phi=0/theta=45, phi=0/theta=90deg, etc., and see if the correlation, and where the detector is hit, changes
- Show how one can select exclusive TCS events with photon beam energy unknown and detection of positron, electron and proton in area of large background.
- Show how certain particle backgrounds can be reduced in the data analysis (π^0 , γ , $\pi^{+/-}$)
- Quantify the unique impact of TCS with polarized target on hadron imaging studies
- Show how TCS with polarized target complements other approved Compton Scattering experiments (DVCS, TCS, WACS) at JLab.
- See if other group of people is interested to see if small TCS experiment with unpolarized target adds value as compared to approved Hall B and Hall A/SoLID experiments
- □ PAC-48 report: The proposal does not give enough details about what the signal to background ratio is, and which cuts are most effective to suppress it. Also questions on: 1) radiation load; 2) impact of dE/dx (or lack thereof for $P_p > 0.5$ GeV) on physics impact; 3) full GEANT for EMCal e/π ; 4) experiment details (timing, GEM in trigger?)

Transverse Polarized Target Status (C. Keith)

□ Required for E12-17-008 (polarized WACS) and C12-18-005 (TCS)

 Solid NH₃ & ND₃ dynamically polarized at 1 K & 5 T New superconducting 5 T magnet on order 67% larger aperture in transverse orientation (± 25°) Horizontal or vertical field direction 			
Cryogen-free: cooled by one or more cryocoolers			
Existing infrastructure from previous g2p/GEp			
experiments			
1K refrigerator			
vacuum chamber			
microwaves			
New JLab NMR system for polarization			
measurement			
New 12,000 m ³ /h pumping system			
Expected operation in three experimental halls			

- □ Hall C (NPS/CPS)
- □ Hall B (Run Group H)
- □ Hall A (SoLID)

Goals of this meeting

□ Discuss To-Do list for completion and assembly of NPS

Getting Ready for the first NPS run

- Discuss test plans 1) before moving to the hall, 2) in the hall
- Path forward towards commissioning of NPS
- Discuss start of runplan for NPS Phase-I (with or w/o E12-06-114?)
- Discuss what needs to be done for an NPS Phase-2 (scheduling request, ERR, unpolarized WACS only, with CPS?).
 - □ Transverse Polarized Target magnet ordered, at lab late 2021

□ Formulate 2021 action items for NPS installation and science