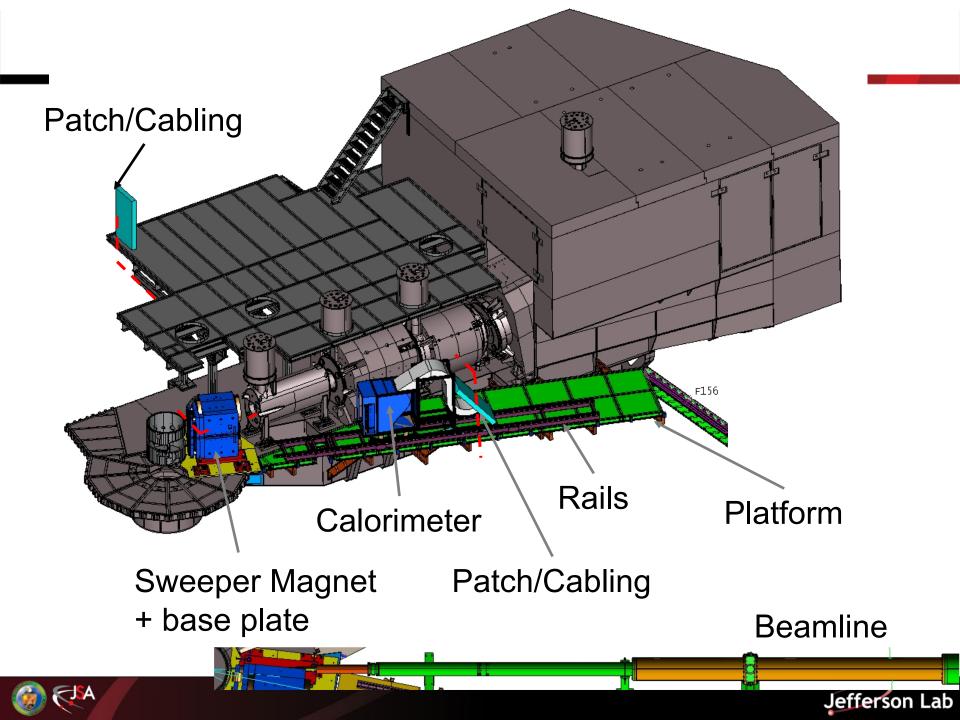
# NPS ERR


# "Apparatus ownership, maintenance and control, safety documentation, radiation levels"

## Charge items covered:

- 4. Has the entire beam line, spectrometers, detector configuration been defined, including ownership, maintenance and control during beam operations?
- 5. Are the responsibilities for carrying out each job identified, and are the manpower and other resources necessary to complete them on time in place?
- 7. Are the radiation levels expected to be generated in the hall acceptable? Is any local shielding required to minimize the effects of radiation in the hall equipment?
- 9. What is the status of the specific documentation and procedures (COO, ESAD, RSAD, ERG, OSP's, operation manuals, etc.) to run the experiments?







# Charge Items 4, 5 – Scope (1)

#### Infrastructure: (See S. Lassiter talk)

SHMS HB removal Sweeper magnet support Extended platform + stairs for small angle running Calorimeter support and rail system Beamline modifications Radiator (for Wide Angle experiments:E12-14-003/E12-14-005) Cable patches

## Sweeper magnet: (See C. Hyde talk)

Assembly

Testing and mapping Power supply and LCW





# Charge Items 4, 5 – Scope (2)

#### Calorimeter: (See C. Munoz-Camacho talk)

Crystal Procurements Crystal testing and selection Detector frame PMTs, sockets, dividers, preamps Signal distribution cards, cabling, LED fibers

## DAQ, controls, analysis software (See. B. Sawatkzy talk)

Trigger, data acquisition, firmware updates Controls (HV, LED, temperature)

#### Software (See G. Niculescu talk)

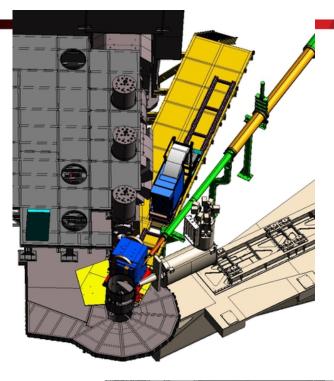
Simulations Low level software (unblocking, decoding) High level software (calorimeter, physics)

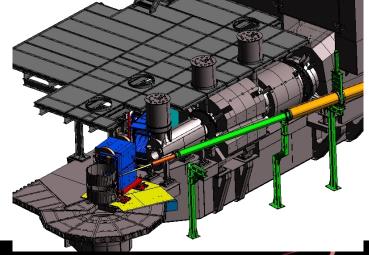




# Infrastructure

Infrastructure (HB removal, platform, supports, beamline, cable runs) fully defined (according to experiment requirements) with detailed 3D CAD models. (Well beyond conceptual.)


Most items will be ready for procurement in FY20.


JLab Hall C technical groups are "owners" and are responsible for design, procurement, installation and maintenance.

HB removal and installation of infrastructure, detector and magnet - 2 months.

Radiator exists (Used for LHCb pentaquark). "Owned" by JLab target group.

Cable patches "owned" by Hall A/C spectrometer support group.





Jefferson Lab



# Sweeper magnet

Sweeper magnet funded by CUA/ODU (MRI).

At JLab and fully assembled in Test Lab (Hall C technical groups.)

ODU responsible for testing and mapping.

Spectrometer Support group responsible for power, water and controls.

Several Hall A/C supplies compatible with magnet. Hypernuclear spectrometer supply used for testing. Two supplies needed for operation of main coil and compensation coil. Will choose from inventory of Hall A/C supplies.

During run, OSP authorizes users to operate magnet







# Calorimeter - 1

Overall, detector is defined, owned, maintained and operated by the collaboration. Various institutions are responsible for acquisition/construction of various parts.

**Concept:** Yerevan

Crystals: JLab procuring for benefit of NPS and Hall D. Enough (of varying quality) in hand, but more higher quality crystals being procured to optimize NPS performance. (By summer 2020)

Crystal Testing and Selection: CUA and Orsay

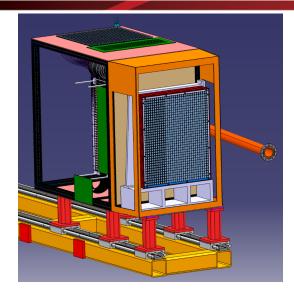
PMTs: On order by JLab. Several hundred on hand. Delivery summer 2019.

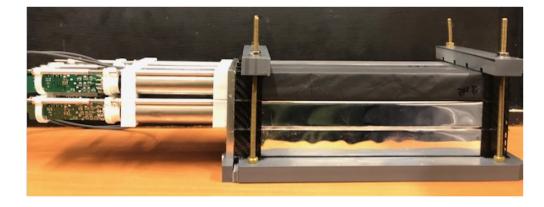
Voltage dividers (bases): In fabricated at Ohio U. 80% made and testing in progress.

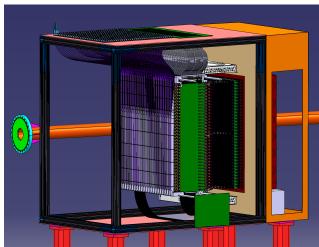










# Calorimeter - 2


Detector frame: Hold crystals/base assemblies, preamps, signal routing boards, cables, fibers for LED light distribution. Design and fabrication at Orsay.

Distribution boards, first article in May.

Frame delivery to JLab by summer 2020.












# DAQ, Controls

DAQ is modernization and modification of standard Hall C DAQ. Hall AC Physics staff is responsible for DAQ.

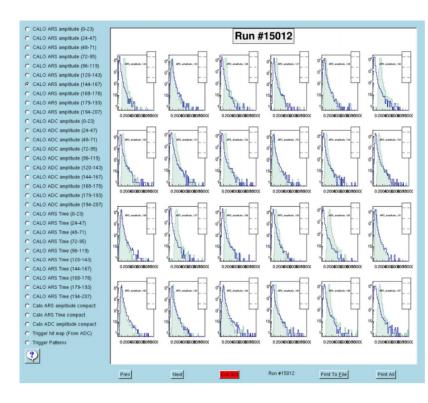
DAQ needs some modest firmware changes of JLab modules. (FADC, VTP, ...). Fast electronic group committed to support this.

DAQ and HV hardware is Hall C responsibility. Hall has been steadily making procurements to support NPS and as part of normal modernization.

Hall C is "owner" of controls, but will get help from detector support group (physics div), spectrometer support group (Hall AC) and build on controls used for DVCS/COMCAL.








# Software

Simulation software is well developed. Was used in development of detector design. Used in estimates of radiation damage to crystals.

Analysis software is "owned" by collaboration. Led by Ohio, input from Yerevan. Merging DVCS calorimeter into Hall C analyzer hcana. (hcana is built on Hall A software.)

Low level software (event unblocking, module decoding) is Hall AC physics staff responsibility. May request help from DAQ group.







# Radiation Estimates – E12-13-007/E12-13-010

| Hall:         | III: C RADIATION BUDGET FORM                   |                          |                 |         |       |      |                        |      |      |      |           | page: 1 of 1 |      |         |
|---------------|------------------------------------------------|--------------------------|-----------------|---------|-------|------|------------------------|------|------|------|-----------|--------------|------|---------|
| Exp. #        | <b>Run group</b><br>E12-13-007, E <sup>2</sup> | <b>rev:</b><br>12-13-010 | run dates: 2020 |         |       |      |                        |      |      |      | nan       | S. Wood      |      |         |
| S             | etup number                                    |                          | 1               | 2       | 3     | 4    | 5                      | 6    | 7    | 8    | 9         | 10           | 11   |         |
| beam          | energy                                         | GeV                      | 11.00           | 11.00   | 11.00 | 6.60 | 6.60                   | 8.80 | 8.80 | 8.80 | 11.00     | 6.60         | 8.80 | totals: |
|               | current                                        | uA(CW)                   | 28.0            | 50.0    | 11.0  | 28.0 | 11.0                   | 28.0 | 5.0  | 50.0 | 40.0      | 40.0         | 40.0 |         |
| exp't         | element                                        | •                        | Н               | Н       | Н     | Н    | Н                      | Н    | Н    | Н    | Al        | Al           | Al   |         |
| target        | thickness                                      | mg/cm2                   | 710             | 710     | 710   | 710  | 710                    | 710  | 710  | 710  | 536       | 536          | 536  |         |
|               | dist. to pivot                                 | m                        | 0.0             | 0.0     | 0.0   | 0.0  | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0       | 0.0          | 0.0  |         |
|               | Ζ                                              | •                        | 1               | 1       | 1     | 1    | 1                      | 1    | 1    | 1    | 13        | 13           | 13   |         |
|               | A                                              |                          | 1               | 1       | 1     | 1    | 1                      | 1    | 1    | 1    | 27        | 27           | 27   |         |
| cryo tgt      | element                                        |                          | Al              | Al      | Al    | Al   | Al                     | Al   | Al   | Al   |           |              |      |         |
| window        | thickness                                      | mg/cm2                   | 137             | 137     | 137   | 137  | 137                    | 137  | 137  | 137  |           |              |      |         |
|               | dist. to pivot                                 | m                        | 0.0             | 0.0     | 0.0   | 0.0  | 0.0                    | 0.0  | 0.0  | 0.0  |           |              |      |         |
|               | Ζ                                              | •                        | 13              | 13      | 13    | 13   | 13                     | 13   | 13   | 13   | 0         | 0            | 0    |         |
|               | A                                              |                          | 27              | 27      | 27    | 27   | 27                     | 27   | 27   | 27   | 0         | 0            | 0    |         |
| critical      | radius                                         | cm                       | 2.06            | 2.06    | 2.06  | 2.06 | 2.06                   | 2.06 | 2.06 | 2.06 | 2.06      | 2.06         | 2.06 |         |
| window        | dist. to pivot                                 | m                        | 2.58            | 2.58    | 2.58  | 2.58 | 2.58                   | 2.58 | 2.58 | 2.58 | 2.58      | 2.58         | 2.58 |         |
| cattering wei | ghting factor                                  |                          | 0.50            | 0.50    | 0.50  | 0.50 | 0.50                   | 0.50 | 0.50 | 0.50 | 0.50      | 0.50         | 0.50 |         |
|               | run time                                       | hours                    | 480             | 264     | 24    | 144  | 24                     | 144  | 24   | 24   | 96        | 24           | 24   | 1272    |
| time          | (100% eff.)                                    | days                     | 20.0            | 11.0    | 1.0   | 6.0  | 1.0                    | 6.0  | 1.0  | 1.0  | 4.0       | 1.0          | 1.0  | 53.0    |
|               | installation                                   | hours                    |                 |         |       |      |                        |      |      |      |           |              |      |         |
|               | time                                           | days                     | 0.0             | 0.0     | 0.0   | 0.0  | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0       | 0.0          | 0.0  | 0.0     |
| ose rate at   | method 1                                       | urem/hr                  | 0.57            | 1.02    | 0.23  | 0.72 | 0.28                   | 0.63 | 0.11 | 1.13 | 1.53      | 1.63         | 1.57 |         |
| ne fence post | method 2                                       | urem/hr                  |                 |         |       |      |                        |      |      |      |           |              |      |         |
| run time)     | conservative                                   | urem/hr                  | 0.57            | 1.02    | 0.23  | 0.72 | 0.28                   | 0.63 | 0.11 | 1.13 | 1.53      | 1.63         | 1.57 |         |
| ose per setup |                                                | urem                     | 275             | 270     | 5     | 104  | 7                      | 91   | 3    | 27   | 147       | 39           | 38   |         |
| of annual do  | se budget                                      | %                        | 2.8             | 2.7     | 0.1   | 1.0  |                        | 0.9  |      | 0.3  | 1.5       | 0.4          | 0.4  |         |
|               |                                                |                          |                 |         |       |      | llowed d               |      |      |      |           |              |      | 69.2    |
|               |                                                |                          |                 |         |       |      | owed dos<br>scuss resu |      |      | 2    | H&S offic | er           |      | 69.25   |
|               | date fo                                        | orm issued:              |                 | April 3 | 0     |      |                        |      |      |      | tiarenk   |              |      |         |



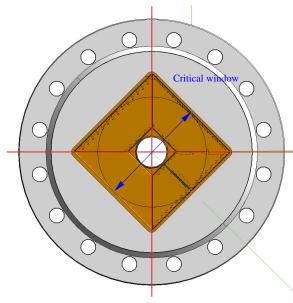


# Radiation Estimates – E12-14-003/E12-14-005

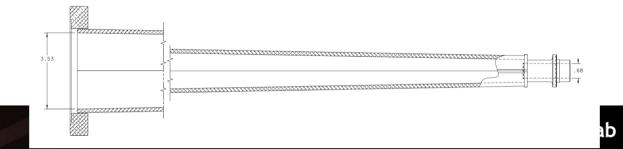
| Hall:<br>Exp. #                   | E12-14-003     | rev:        |           |                 | run       | dates:    |            | 1011              | DU        | DGE       | <u>TF</u><br>nan      |          |              | B. Wo    | page: 1 of 1<br>j <b>tsekhowski</b> |
|-----------------------------------|----------------|-------------|-----------|-----------------|-----------|-----------|------------|-------------------|-----------|-----------|-----------------------|----------|--------------|----------|-------------------------------------|
| S                                 | etup number    |             | 1         | 2               | 3         | 4         | 5          | 6                 | 7         | 8         | 9                     | 10       | 11           | 12       |                                     |
| beam                              | energy         | GeV         | 8.80      | 8.80            | 8.80      | 8.80      |            |                   | 11.00     | 11.00     | 11.00                 | 11.00    | 11.00        | 11.00    | totals:                             |
|                                   | current        | uA(CW)      | 5.0       | 15.0            | 45.0      | 45.0      | 60.0       | 60.0              | 20.0      | 20.0      | 30.0                  | 30.0     | 60.0         | 60.0     |                                     |
| radiator                          | element        | •           | Cu        |                 | Cu        |           | Cu         |                   | Cu        |           | Cu                    |          | Cu           |          | 6% Dedictor 100                     |
|                                   | thickness      | mg/cm2      | 772       |                 | 772       |           | 772        |                   | 772       |           | 772                   |          | 772          |          | 6% Radiator 100                     |
|                                   | dist. to pivot | m           | -1.00     |                 | -1.00     |           | -1.00      |                   | -1.00     |           | -1.00                 |          | -1.00        |          | cm upstream of                      |
|                                   | Ζ              |             | 29        | 0               | 29        | 0         |            | 0                 |           | 0         | 29                    | 0        | -            | 0        | •                                   |
|                                   | Α              |             | 64        | 0               | 64        | 0         | 64         | 0                 | ۰.        | 0         | 64                    | 0        | 64           | 0        | target                              |
| exp't                             | element        |             |           |                 | H         | H         |            | Н                 | H         | Н         |                       |          |              | H        | 9                                   |
| target                            | thickness      | mg/cm2      | 710       | 710             | 710       | 710       | 710        | 710               | 710       | 710       | 710                   | 710      | 710          | 710      |                                     |
|                                   | dist. to pivot | m           | 0.0       | 0.0             | 0.0       | 0.0       | 0.0        | 0.0               | 0.0       | 0.0       | 0.0                   | 0.0      | 0.0          | 0.0      |                                     |
|                                   | Z              |             | 1         | 1               | 1         | 1         | 1          | 1                 | 1         | 1         | 1                     | 1        | 1            | 1        |                                     |
|                                   | Α              |             | 1         | 1               | 1         | 1         | 1          | -                 | -         | 1         | 1                     | 1        | 1            | 1        |                                     |
| cryo tgt                          | element        |             | Al        |                 | Al        | Al        | Al         | Al                | Al        | Al        | Al                    |          | Al           | Al       |                                     |
| window                            | thickness      | mg/cm2      | 80        | 80              | 80        | 80        |            |                   |           | 80        |                       | 80       | 80           | 80       |                                     |
|                                   | dist. to pivot | m           | 0.0       | 0.0             | 0.0       | 0.0       |            |                   |           | 0.0       |                       | 0.0      | 0.0          | 0.0      |                                     |
|                                   | Z              |             | 13        | 13              | 13        | 13        |            |                   | 13        | 13        |                       | 13       | 13           | 13       |                                     |
|                                   | A              |             | 27        | 27              | 27        | 27        | 27         | 27                | 27        | 27        |                       | 27       | 27           | 27       |                                     |
| critical                          | radius         | cm          | 3.175     | 3.175           | 3.175     | 3.175     |            | 3.175             |           | 3.175     |                       | 3.175    | 3.175        | 3.175    |                                     |
|                                   | dist. to pivot | m           | 2.30      | 2.30            | 2.30      | 2.30      | 2.30       |                   | 2.30      | 2.30      |                       | 2.30     | 2.30         | 2.30     |                                     |
| cattering weig                    |                |             | 0.50      | 0.50            | 0.50      | 0.50      |            |                   | 0.50      | 0.50      |                       | 0.50     | 0.50         | 0.50     |                                     |
|                                   | run time       | hours       | 20        | 5               | 20        | 5         |            |                   |           | 5         |                       | 5        | 180          | 15       | 38                                  |
| time                              | (100% eff.)    | days        | 0.8       | 0.2             | 0.8       | 0.2       | 3.3        | 0.4               | 0.6       | 0.2       | 0.8                   | 0.2      | 7.5          | 0.6      | 15.                                 |
|                                   | installation   | hours       |           | 0.0             |           | 0.0       |            |                   |           | 0.0       |                       | 0.0      | 0.0          |          |                                     |
|                                   | time           | days        | 0.0       | 0.0             | 0.0       | 0.0       | 0.0        |                   | 0.0       | 0.0       |                       | 0.0      | 0.0          | 0.0      | 0.0                                 |
| lose rate at                      | method 1       | urem/hr     | 0.54      | 0.16            | 4.90      | 0.47      | 6.53       | 0.62              | 2.15      | 0.20      | 3.22                  | 0.30     | 6.45         | 0.60     |                                     |
| he fence post                     | method 2       | urem/hr     | 0.54      | 0.1.6           |           |           | <u> </u>   |                   |           |           |                       |          | < 1 <b>-</b> | 0.60     |                                     |
| run time)                         | conservative   | urem/hr     | 0.54      | 0.16            | 4.90      | 0.47      | 6.53       |                   | 2.15      | 0.20      |                       | 0.30     | 6.45         | 0.60     | 1000                                |
| lose per setup<br>6 of annual dos | <br>a budget   | urem<br>%   | 11<br>0.1 | <u>1</u><br>0.0 | 98<br>1.0 | 2<br>0.0  | 522<br>5.2 | <u>6</u><br>0.1   | 32<br>0.3 | 0.0       | 64<br>0.6             | <u> </u> | 1161<br>11.6 | 9<br>0.1 | <del>1909.</del><br>19.094          |
|                                   | se buuget      | 70          | 0.1       | 0.0             | 1.0       |           |            | 0.1<br>lose for t |           |           | 0.0                   | 0.0      | 11.0         | 0.1      | 440.1                               |
|                                   |                |             |           |                 | (         |           |            | se for the        |           |           |                       |          |              |          | 440.1                               |
|                                   |                | orm issued: |           | April 26        | If $> 2$  | 200%, dis |            | lt with Pi        | hysics Re | search El | H&S offic<br>gtiarenk |          |              |          |                                     |






# Radiation - E12-14-003/E12-14-005

"Wide Angle" experiments use 6% radiator.


Pipe for sweeper region (trapezoidal) defined critical radius as larger pipe can be used downstream. Radiation estimates assume circle instead of diamond critical window.

Instantaneous site boundary backgrounds high, but less than recent J/Psi experiment in Hall C. J/Psi was 25% of annual dose budget over 11 PAC days. WACS (with radiator 1m in front) is 19% over 16 PAC days.

J/Psi experience: DAQ crashes ( <~ 1/week) Some SHMS control system crashes. Less of issue as SHMS magnets not used.







# **Other Radiation Issues**

## Activation preventing maintenance of detector?

Hall A DVCS experience is that detector maintenance could happen without a formal RWP. (Close coordination with RadCon sufficient.)

## Radiation damage to sweeper water hoses?

Hoses for compensation coil are close to target. Will evaluate if metal hoses should be used.

(SOS hoses did suffer damage, but lifetime was years.)

Radiation damage to detector crystals.

Crystals can be cured in place with LED curing system.





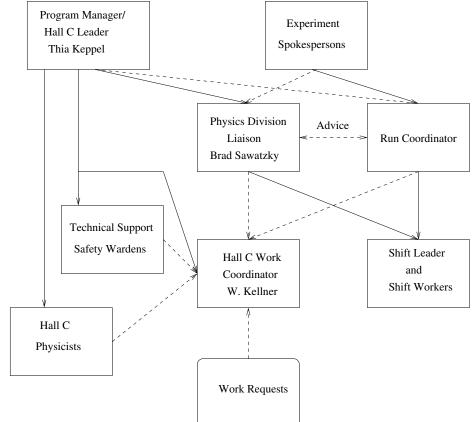


# **Standard Documentation**

#### Conduct of Operations (COO)

No change to text Update experiment numbers Update contact info and liaison

Experimental Safety Assessment Document (ESAD) No changes


#### **Emergency Response Guidelines**

Update Hall layout diagram (Show NPS platform extension)

#### **Standard Equipment Manual**

Include radiator description (currently an OSP)

(See links to current versions of these documents in Wiki.)







# **OSPs – Previous Examples**

Physics Division requires new equipment documented through Operational Safety Procedures. (Independent of risk factor.) These OSPs allow for Subject Matter Expert review of new equipment.

Radiator – ENP-16-81840-OSP

Pivot Area access – ENP-16-61900-OSP

Drift Chamber Gas and Mixing System – ENP-16-47415-OSP

HMS Drift Chambers – ENP-16-71689-OSP

Hall C Fast Raster - ENP-16-59937-OSP





# New OSPs

#### Sweeper magnet testing and mapping

TOSP Under development for Test Lab magnet testing.

#### Testing and User operation of sweeper magnet in Hall

Authorizes full current testing and routine use by shift crews.

#### **NPS Platform access**

Document procedures and limitations to access of detector and magnet. May need to amend or merge with existing Pivot access OSP

#### NPS detector

Covers User operation Document which tasks (e.g. repair/maintenance) are expert only List experts





# Checklists

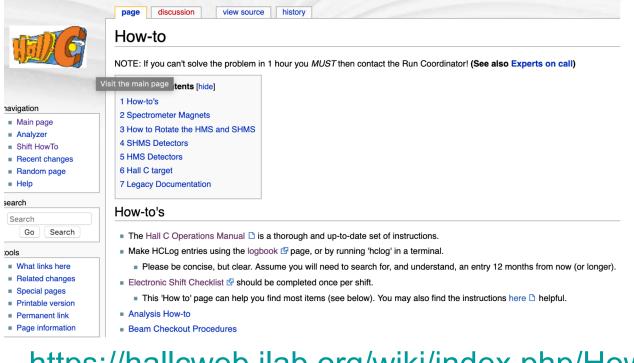
#### Existing checklists:

Detectors – Use for just HMS Upstream Beamline – OK Technician – OK HMS Magnet – OK SHMS Magnet – Modify. Insure power supplies off, cryo in standby Spectrometer Rotation – OK Target – OK

#### New checklists:

Sweeper magnet - PS, LCW OK, sinage, controls, area clear, ... NPS detector – HV, DAQ crates, cooling, controls






# Howtos

Extensive set of "Howtos" developed in Wiki for use by shift crews.

Reuse HMS, Controls and DAQ howtos

Add Howtos for NPS operation and experiment specific procedures.









## END



