NPS anode current studies Status update

V. Berdnikov and C. Yero

In collaboration with T. Horn and F. Barbosa

NPS meeting April 1 2021

Action items:

- Determine the PMT gain reduction value by shortening the dynods
- Measure pulse peak amplitude and pulse charge for different applied HV (800-1000 V) and different versions of PMT HV base
 - Hamamatsu
 - NPS Original
 - NPS Bypassed
 - NPS Dynode 10-A
 - NPS Dynode 9-10-A
 - NPS Dynode 9-10-A + NPS preamp with 3 versions of the gain

Setup configuration:

- LED intensity correspond to ~1 GeV dE/dx in PWO crystal coupled with R4125 PMT
- LED frequency 1kHz
- DAQ using scope

Data analysis:

- Acquired 500 waveforms for each setting, one waveform is average over 512 pulses
- Pulse by pulse pedestal calculation using average over first 50 samples (5ns)
- Pedestal subtracted pulse peak maximum and charge calculated for each waveform
- Average pulse peak and charge calculated by Gauss fit mean value

Dynode-9

Dynode-9+PreAmp_3

- Hamamatsu 1kV correspond to 10^5 gain
- NPS Dynode-10 correspond to 5.78*10^3
 - noise levels tolerable
- NPS Dynode-9 correspond to 0.65*10^3
 - NPS Dynode-9
 - noise levels significant
 - NPS Dynode-9+Amp
 - max achieved Amp gain ~50
 - noise levels very large

	- 5	$\Sigma =$									
	A	В	С	D	E	F	G	Н	1	J	
	Pulse characteristic	HV	Hamamatsu		NPS original		NPS Bypassed		NPS Dynode 10		
			Mean from fit	Error	Mean from fit	Error	Mean from fit	Error	Mean from fit	Error	
	Peak Amplitude (V)	1000	0.3998	0.00299999	2.7365	0.0174999	0.23425	0.00345	0.0230892	0.0004617	
	New York and the State of California	950	0.2597	0.0011	1.806	0.00999999	0.1528	0.000999995	0.0154425	0.0003088	
		900	0.1648	0.000399999	1.155	0.00699997	0.09801	0.000769999	0.0108097	0.0002179	
		850	0.10245	0.00045	0.70095	0.00654998	0.060695	0.000475001	0.0067925	0.0001358	
		800	0.061175	0.000305001	0.411	0.00390001	0.0361	0.00031	0.0041226	8.24E-05	
	Charge (pC)	1000	35.505	0.135	406.5	4	21.4	0.4	2.1375	0.04275	
		950	23.94	0.0100002	260.15	2.35001	14.38	0.22	1.4869	0.029738	
		900	15.7	0.04	168.7	1.4	9.4695	0.1255	1.0265	0.02053	
		850	10.0505	0.000499725	105.35	1.15	6.118	0.059	0.6752	0.013504	
		800	6.26	0.0109999	63.7	0.719999	3.794	0.051	0.4342	0.008684	
		NPS Dynode 9		NPS Dynode 9 + PreAmp(R37=1kOhm)		NPS Dynode 9 + PreAmp(R37=2kOhm)		NPS Dynode 9 + PreAmp(R37=4.75kOhm)			
			Mean from fit	Error	Mean from fit	Error	Mean from fit	Error	Mean from fit	Error	
	Peak Amplitude (V)	1000	0.002635	5.27E-05	0.0288	0.000576	0.0395	0.00079	0.05216	0.0010432	
		950					0.02787	0.00056	0.03776	0.0007552	
		1100	0.004335	8.66E-05							
	Charge (pC)	1000	0.2407	0.004814	4.4502	0.089	7.8265	0.15653	11.836	0.23672	
		950					5.5825	0.11165			
		1100	0.4021	0.008043							
									1		

6

- The PMT gain reduction measured for two configurations:
 - Dynode 10 shortened to Anode (Gain- 5.78*10^3 for 1 kV)
 - Dynode 9 shortened to dynode 10 to Anode (Gain- 6.59*10^2 for 1 kV)
- The amplifier needed to scale PMT signal to one of fADC-250 ranges 0.5, 1.0 or 2.0 V
- For the extremest kinematic settings total integrated anode charge need to be < 100 Coulombs. The R4125 tube response degrading less than 15% for an integrating charge of ~100 C.
- Nonlinearity of the amplifier should be at the level of ~1% to not affect the resolution Note: Hamamatsu rate PMT R4125 at ~2% nonlinearity
- PMTs need to operate above 900 V
- Noise levels need to be considered
- Possible amplifier options:
 - 1) design new linear and low noise amplifier with external power possible solutions for all versions of HV base
 - 2) keep assembled dividers and add external amplifier possible solution for only Dynode-10 v2,v3 and v4, need to be proved
 - **3) keep the present scheme with appropriate modifications of the dividers** possible solution for only Dynode-10 v2,v3 and v4, need to be proved