\contentsline {figure}{\numberline {1}{\ignorespaces QCD predicts a confining flux tube is formed between distant static charges.}}{3} \contentsline {figure}{\numberline {2}{\ignorespaces Evidence for flux tubes and linear potentials from lattice QCD.}}{4} \contentsline {figure}{\numberline {3}{\ignorespaces Model-independent spectrum of the glue (flux tube) of Fig.\nobreakspace {}{\ref {fig:flux_tube}.}}}{5} \contentsline {figure}{\numberline {4}{\ignorespaces The results of a double-blind Monte Carlo simulation of the GlueX experiment.}}{6} \contentsline {figure}{\numberline {5}{\ignorespaces The relative splittings of the $Q \mathaccent "7016\relax d$ states and the $Q \mathaccent "7016\relax Q$ states, both shown from the heaviest to the lightest.}}{7} \contentsline {figure}{\numberline {6}{\ignorespaces A model of the Generalized Parton Distribution (GPD) $H(x,\xi ,t=0)$ in two dimensions.}}{10} \contentsline {figure}{\numberline {7}{\ignorespaces Representations of the proton properties probed in elastic scattering, deeply inelastic scattering, and deeply exclusive scattering.}}{11} \contentsline {figure}{\numberline {8}{\ignorespaces The result of the JLab measurement of $G_E^p/G_M^p$ and the range of the projected measurements, both compared to a variety of theories.}}{12} \contentsline {figure}{\numberline {9}{\ignorespaces A projected measurement of the neutron polarization asymmetry $A^n_1$, determined by the spin structure of the valence quarks, made possible by the proposed 12\nobreakspace {}GeV Upgrade.}}{14} \contentsline {figure}{\numberline {10}{\ignorespaces The ratio of polarized to unpolarized valence down quark distribution functions measured in semi-inclusive deep inelastic scattering}}{14} \contentsline {figure}{\numberline {11}{\ignorespaces A projected measurement of the ratio of momentum distributions of valence $d$ quarks to $u$ quarks made possible by the proposed 12\nobreakspace {}GeV Upgrade}}{14} \contentsline {figure}{\numberline {12}{\ignorespaces The ``handbag" diagrams for deeply virtual Compton scattering and deeply virtual meson production.}}{16} \contentsline {figure}{\numberline {13}{\ignorespaces Projected data for the DVCS beam spin asymmetry from JLab at 11\nobreakspace {}GeV}}{17} \contentsline {figure}{\numberline {14}{\ignorespaces A model $u$-quark phase space charge distribution in 3D coordinate space for three Feynman momentum fractions.}}{18} \contentsline {figure}{\numberline {15}{\ignorespaces The quark spatial and spin distributions in the transverse plane from model calculations.}}{20} \contentsline {figure}{\numberline {16}{\ignorespaces Phase diagram for nuclear matter.}}{25} \contentsline {figure}{\numberline {17}{\ignorespaces Available data projected results for a differential cross-section measurement of deuteron photodisintegration.}}{27} \contentsline {figure}{\numberline {18}{\ignorespaces Projected measurements of the pion elastic form factor}}{29} \contentsline {figure}{\numberline {19}{\ignorespaces Projected measurements of the charged pion photoproduction cross section at a C.M. angle of 90$^\circ $}}{29} \contentsline {figure}{\numberline {20}{\ignorespaces Relative shifts in $Q_{\rm weak}^e$ and $Q_{\rm weak}^{\rm proton}$ from SUSY effects}}{31} \contentsline {figure}{\numberline {21}{\ignorespaces The importance of $\Gamma _{\eta \to \gamma \gamma }$ in the measurement of the quark mass ratio}}{32} \contentsline {figure}{\numberline {22}{\ignorespaces The $\eta - \eta '$ mixing angle as determined by a previous Primakoff measurement, $\gamma - \gamma $ collisions, and the projected result with the Jefferson Laboratory 12\nobreakspace {}GeV Upgrade}}{32} \contentsline {figure}{\numberline {23}{\ignorespaces The configuration of the proposed 12\nobreakspace {}GeV CEBAF Upgrade.}}{35} \contentsline {figure}{\numberline {24}{\ignorespaces Three-dimensional CAD drawing of the MAD spectrometer}}{37} \contentsline {figure}{\numberline {25}{\ignorespaces Three dimensional CAD drawing of the CLAS$^{++}$ detector.}}{39} \contentsline {figure}{\numberline {26}{\ignorespaces A CAD drawing of the new SHMS spectrometer installed in Hall\nobreakspace {}C together with the existing HMS and SOS spectrometers.}}{44} \contentsline {figure}{\numberline {27}{\ignorespaces The proposed detector for the study of the photoproduction of mesons in the mass region around 2\nobreakspace {}GeV.}}{47} \contentsline {figure}{\numberline {28}{\ignorespaces Level diagram for mesons and exotics}}{53} \contentsline {figure}{\numberline {29}{\ignorespaces The $q\mathaccent "7016\relax {q}$ spectrum}}{54} \contentsline {figure}{\numberline {30}{\ignorespaces Field lines associated with forces.}}{56} \contentsline {figure}{\numberline {31}{\ignorespaces Lattice calculation of energy density}}{56} \contentsline {figure}{\numberline {32}{\ignorespaces $3\pi $ mass distributions}}{58} \contentsline {figure}{\numberline {33}{\ignorespaces Intensities distributions in the $3\pi $ system.}}{59} \contentsline {figure}{\numberline {34}{\ignorespaces Intensity in the exotic wave.}}{59} \contentsline {figure}{\numberline {35}{\ignorespaces Breit-Wigner fit results.}}{60} \contentsline {figure}{\numberline {36}{\ignorespaces Production of Hybrid Mesons}}{61} \contentsline {figure}{\numberline {37}{\ignorespaces Photoproduction cross sections}}{62} \contentsline {figure}{\numberline {38}{\ignorespaces $3\pi $ spectrum from SLAC data.}}{64} \contentsline {figure}{\numberline {39}{\ignorespaces Photproduction of particles}}{66} \contentsline {figure}{\numberline {40}{\ignorespaces $\mid t\mid $ distributions.}}{66} \contentsline {figure}{\numberline {41}{\ignorespaces Schematic diagrams of form factor reactions that can be expressed in terms of the GPD formalism}}{74} \contentsline {figure}{\numberline {42}{\ignorespaces Form factor reactions that can be expressed in terms of the valence pQCD formalism}}{75} \contentsline {figure}{\numberline {43}{\ignorespaces The GPD $H(x,b_\perp ) = u(x,b_\perp )$ obtained from the GPD $H(x,0;\Delta _\perp )$}}{78} \contentsline {figure}{\numberline {44}{\ignorespaces The $\pi ^+$ form factor}}{80} \contentsline {figure}{\numberline {45}{\ignorespaces The proton magnetic form factor}}{82} \contentsline {figure}{\numberline {46}{\ignorespaces The status of the JLab measurement of $G_E^p/G_M^p$ and the range of the projected measurements}}{82} \contentsline {figure}{\numberline {47}{\ignorespaces The current status of the data for $G_M^n$, and the projections for the Hall\nobreakspace {}B program with the 12\nobreakspace {}GeV upgrade}}{83} \contentsline {figure}{\numberline {48}{\ignorespaces The neutron electric form factor $G_E^n$.}}{84} \contentsline {figure}{\numberline {49}{\ignorespaces Kinematic coverage of the planned RCS experiments with the 12\nobreakspace {}GeV upgrade}}{86} \contentsline {figure}{\numberline {50}{\ignorespaces The recoil polarization observable $K_{LL}$ measured in the recent real Compton scattering experiment with projected data for a proposed experiment}}{86} \contentsline {figure}{\numberline {51}{\ignorespaces The statistical accuracy of $R^{\pi ^0}_A(t)$ anticipated in the Hall\nobreakspace {}B measurement of the exclusive $\pi ^0$ electroproduction.}}{87} \contentsline {figure}{\numberline {52}{\ignorespaces The Delta resonance transition form factor $G^*_M$, as compared to the dipole $G_D$}}{88} \contentsline {figure}{\numberline {53}{\ignorespaces The $E_{1+}/M_{1+}$ (or - $G^*_E/G^*_M$) ratio for Delta excitation.}}{88} \contentsline {figure}{\numberline {54}{\ignorespaces Existing JLab data for $S_{1+}/M_{1+}$ and JLab Hall\nobreakspace {}B 12\nobreakspace {}GeV projections. }}{88} \contentsline {figure}{\numberline {55}{\ignorespaces The JLab data for the $N\to S_{11}$ helicity amplitude $Q^3A_{1/2}$}}{91} \contentsline {figure}{\numberline {56}{\ignorespaces Ratio $R^{np}$ of neutron to proton structure functions as a function of $x$, extracted from the SLAC data on the deep inelastic proton and deuteron structure functions.}}{93} \contentsline {figure}{\numberline {57}{\ignorespaces Sample of large-$x$ data for $A_1^p$ and $A_1^n$}}{96} \contentsline {figure}{\numberline {58}{\ignorespaces The ratio $F_2^n/F_2^p$ versus $x$}}{98} \contentsline {figure}{\numberline {59}{\ignorespaces Projected measurements for $R=\sigma _L/\sigma _T$ at $x=0.8$}}{100} \contentsline {figure}{\numberline {60}{\ignorespaces Lowest moments $M_n(Q^2)$ of the proton--neutron $F_2$ structure function difference, for $n=2$, 4, and 6, as a function of $Q^2$.}}{101} \contentsline {figure}{\numberline {61}{\ignorespaces Projected errors for measurements of asymmetries $A_1$ in the large-$x$ region made possible by the proposed 12\nobreakspace {}GeV Upgrade}}{103} \contentsline {figure}{\numberline {62}{\ignorespaces Expected data with CLAS$^{++}$ in Hall\nobreakspace {}B for the polarization asymmetries of the proton and deuteron}}{105} \contentsline {figure}{\numberline {63}{\ignorespaces Longitudinal beam-target polarization asymmetry of a proton versus $W$, for an 11\nobreakspace {}GeV measurement at $Q^2 = 8$\nobreakspace {}(GeV/c)$^2$ in Hall\nobreakspace {}C. }}{106} \contentsline {figure}{\numberline {64}{\ignorespaces Projected errors for $x^2 g_2(x)$ for the neutron and proton from 11\nobreakspace {}GeV JLab measurements}}{107} \contentsline {figure}{\numberline {65}{\ignorespaces Neutron twist-3 matrix element $d_2^n$ data and projected errors for a 12\nobreakspace {}GeV JLab measurement}}{108} \contentsline {figure}{\numberline {66}{\ignorespaces Projected errors for the ratio of polarized to unpolarized quark distribution functions compared with HERMES data}}{109} \contentsline {figure}{\numberline {67}{\ignorespaces The projected precision of $\mathaccent "7016\relax d / \mathaccent "7016\relax u$ extractions compared with the FNAL E866 Drell-Yan \cite {Ha98} measurements.}}{111} \contentsline {figure}{\numberline {68}{\ignorespaces Simulated data for the pion structure function at $Q^2 = 1.5$ and 3.0\nobreakspace {}(GeV/c)$^2$}}{111} \contentsline {figure}{\numberline {69}{\ignorespaces Two dimensional image of $H(x,\xi ,t)$ from a model with factorized $t$-dependence}}{114} \contentsline {figure}{\numberline {70}{\ignorespaces Model ``tomographic" images of quarks in the transverse plane}}{116} \contentsline {figure}{\numberline {71}{\ignorespaces Representative handbag diagrams for deeply virtual Compton scattering and deeply virtual meson production}}{118} \contentsline {figure}{\numberline {72}{\ignorespaces Scaling cross sections for the production of photons (DVCS), pseudoscalar mesons, and vector mesons}}{119} \contentsline {figure}{\numberline {73}{\ignorespaces Beam spin asymmetry measured with CLAS}}{119} \contentsline {figure}{\numberline {74}{\ignorespaces Comparison of data on the $Q^2$ dependence of the $\gamma \gamma ^*\pi ^{\circ }$ form factor with two calculations}}{120} \contentsline {figure}{\numberline {75}{\ignorespaces DVCS and Bethe-Heitler cross section for different beam energies}}{121} \contentsline {figure}{\numberline {76}{\ignorespaces Kinematics coverage for deeply virtual exclusive processes for experiments at various laboratories}}{122} \contentsline {figure}{\numberline {77}{\ignorespaces Kinematics for DVCS beam asymmetry measurements at 11\nobreakspace {}GeV}}{123} \contentsline {figure}{\numberline {78}{\ignorespaces Projected data for the $\mathop {\mathgroup \symoperators sin}\nolimits \phi $ moment $A^{\mathop {\mathgroup \symoperators sin}\nolimits \phi }_{LU}$ of the DVCS/BH asymmetry}}{124} \contentsline {figure}{\numberline {79}{\ignorespaces Projected Hall\nobreakspace {}A data for the beam-helicity dependent cross section weighted by Bethe-Heitler denominator at $Q^2 = 7$\nobreakspace {}GeV$^2$}}{125} \contentsline {figure}{\numberline {80}{\ignorespaces Projected results for the separation of $\mathop {\mathgroup \symoperators sin}\nolimits \phi $ and $\mathop {\mathgroup \symoperators sin}\nolimits (2\phi )$ terms in Fig.\nobreakspace {}79\hbox {}. }}{126} \contentsline {figure}{\numberline {81}{\ignorespaces Projected data for longitudinal target asymmetry measured in CLAS$^{++}$ }}{127} \contentsline {figure}{\numberline {82}{\ignorespaces The handbag diagrams for DVCS and DDVCS}}{128} \contentsline {figure}{\numberline {83}{\ignorespaces The handbag diagram for $\Delta $DVCS }}{129} \contentsline {figure}{\numberline {84}{\ignorespaces Inelastic DVCS as measured at 4.3\nobreakspace {}GeV}}{130} \contentsline {figure}{\numberline {85}{\ignorespaces Asymmetry predicted for the $\Delta $DVCS at 11\nobreakspace {}GeV.}}{130} \contentsline {figure}{\numberline {86}{\ignorespaces World data for $R=\sigma _L/\sigma _T$ as a function of $Q^2$ }}{132} \contentsline {figure}{\numberline {87}{\ignorespaces Preliminary data from CLAS on the longitudinal cross section for $\rho $ production at 4.3\nobreakspace {}GeV beam energy}}{133} \contentsline {figure}{\numberline {88}{\ignorespaces Data from HERMES on longitudinal cross sections for $\rho ^0$ production from protons at a beam energy of 27\nobreakspace {}GeV}}{134} \contentsline {figure}{\numberline {89}{\ignorespaces Projected data on $\rho ^0$ production from protons using CLAS$^{++}$}}{135} \contentsline {figure}{\numberline {90}{\ignorespaces Projected data for a Rosenbluth separation of $ep\rightarrow en\pi ^+$ in Hall\nobreakspace {}C at $t=t_{min}$, $x_B=0.55$.}}{135} \contentsline {figure}{\numberline {91}{\ignorespaces Projected CLAS$^{++}$ data for a Rosenbluth separation of $ep\rightarrow en\pi ^+$ for $x_B=0.45$, $-t = 0.5$\nobreakspace {}GeV$^2$.}}{136} \contentsline {figure}{\numberline {92}{\ignorespaces Projected CLAS$^{++}$ data on the transverse target asymmetry for $\rho ^0$ production on protons}}{137} \contentsline {figure}{\numberline {93}{\ignorespaces Interaction of struck quark and the target spectators\cite {Br02}.}}{139} \contentsline {figure}{\numberline {94}{\ignorespaces Beam SSA: HERMES vs CLAS}}{140} \contentsline {figure}{\numberline {95}{\ignorespaces Projected transverse spin asymmetry ($A_{UT}^{\mathop {\mathgroup \symoperators sin}\nolimits \phi }$) in single $\pi ^+$ production with CLAS at 12\nobreakspace {}GeV, and expected precision of the extracted ${\delta u / u}$}}{142} \contentsline {figure}{\numberline {96}{\ignorespaces Kinematic coverage at JLab at 12\nobreakspace {}GeV.}}{142} \contentsline {figure}{\numberline {97}{\ignorespaces Target SSA}}{143} \contentsline {figure}{\numberline {98}{\ignorespaces The $\Delta \epsilon $ range accessible at $x = 0.8$ in Hall\nobreakspace {}C as a function of $Q^2$}}{146} \contentsline {figure}{\numberline {99}{\ignorespaces The ($x, Q^2$) ranges available with the SHMS and HMS spectrometers for $\Delta \epsilon $ ranges above 0.3.}}{146} \contentsline {figure}{\numberline {100}{\ignorespaces Phase diagram for hadronic matter.}}{154} \contentsline {figure}{\numberline {101}{\ignorespaces Distribution of super-fast quarks for deuteron assuming just two nucleons or including a 5\% contribution from a 6-quark bag}}{156} \contentsline {figure}{\numberline {102}{\ignorespaces The scaling window for $\alpha =1.4$.}}{157} \contentsline {figure}{\numberline {103}{\ignorespaces The $Q^2$-dependence of nuclear transparency}}{159} \contentsline {figure}{\numberline {104}{\ignorespaces Data from the Hall\nobreakspace {}A $^3He(e,e'p)d$ experiment}}{161} \contentsline {figure}{\numberline {105}{\ignorespaces Ratio $R = \sigma (p_m=400\nobreakspace {}MeV/c) / \sigma (p_m=200\nobreakspace {}MeV/c)$ for D(e,e$\prime $p) reaction}}{161} \contentsline {figure}{\numberline {106}{\ignorespaces Projected uncertainties for a measurement of transparency in $\rho $-electroproduction in Hall\nobreakspace {}B .}}{162} \contentsline {figure}{\numberline {107}{\ignorespaces Projected uncertainties for measurement of transparency in pion electroproduction in Hall\nobreakspace {}C.}}{162} \contentsline {figure}{\numberline {108}{\ignorespaces Projected uncertainties on the ratio of cross sections at transfered momenta $0.4\nobreakspace {}GeV/c^2$ and $0.8\nobreakspace {}GeV/c^2$}}{163} \contentsline {figure}{\numberline {109}{\ignorespaces Variation of the cross sections of $J/\psi $ elastic photoproduction near threshold, for two or three gluon exchange mechanisms}}{164} \contentsline {figure}{\numberline {110}{\ignorespaces The simplest diagram to reveal hidden color state in deuterium}}{165} \contentsline {figure}{\numberline {111}{\ignorespaces Artist's concept of the hadronization process in the valence quark regime}}{167} \contentsline {figure}{\numberline {112}{\ignorespaces Schematic example of possible results for hadronization length scales}}{169} \contentsline {figure}{\numberline {113}{\ignorespaces Schematic example of possible results for transverse momentum broadening}}{169} \contentsline {figure}{\numberline {114}{\ignorespaces Statistical error per day of beam time as a function of beam energy for \unhbox \voidb@x \hbox {$Q^2 $}=6 \unhbox \voidb@x \hbox {(GeV/c)$^2$}{} at various recoil momenta}}{173} \contentsline {figure}{\numberline {115}{\ignorespaces Statistical error per day of beam time for a beam energy of 11\nobreakspace {}GeV as a function of missing momenta for a variety of values of \unhbox \voidb@x \hbox {$Q^2 $}{}}}{173} \contentsline {figure}{\numberline {116}{\ignorespaces $^3$He$(e,e'pp)n$ measured with CLAS in one day at $E_0 = 4.4$\nobreakspace {}GeV}}{174} \contentsline {figure}{\numberline {117}{\ignorespaces Prediction of the onset of scaling for the $^{56}$Fe$(e,e')X$ reaction.}}{177} \contentsline {figure}{\numberline {118}{\ignorespaces The $\pi ^+$ form factor}}{180} \contentsline {figure}{\numberline {119}{\ignorespaces The charged pion photoproduction differential cross-section ratio at a C.M. angle of 90$^\circ $, as a function of $|t|$ }}{180} \contentsline {figure}{\numberline {120}{\ignorespaces Projected data for the deuteron form factor $F_{d}(Q^2)$ with an 11\nobreakspace {}GeV beam.}}{182} \contentsline {figure}{\numberline {121}{\ignorespaces Projected data for the $^3$He elastic form factor $F(Q^2)$ with an 11\nobreakspace {}GeV beam.}}{182} \contentsline {figure}{\numberline {122}{\ignorespaces High energy deuteron photodisintegration differential cross sections scaled by $s^{11}$.}}{184} \contentsline {figure}{\numberline {123}{\ignorespaces Projected results for deuteron photodisintegration polarizations with MAD.}}{184} \contentsline {figure}{\numberline {124}{\ignorespaces The scaled differential cross-section for the $n(\gamma ,\pi ^{-}p)$ process at a C.M. angle of 90$^\circ $, as a function of C.M. energy squared $s$ in\nobreakspace {}GeV$^2$}}{185} \contentsline {figure}{\numberline {125}{\ignorespaces The scaled differential cross-section for the $p(\gamma ,\pi ^+)n$ process at C.M. angle of 90$^\circ $, as a function of\nobreakspace {}cms energy squared, $s$, in\nobreakspace {}GeV$^2$}}{185} \contentsline {figure}{\numberline {126}{\ignorespaces The scaled differential cross-section for the $p(\gamma ,\pi ^0)p$ process at C.M. angle of 90$^\circ $, as a function of cms energy squared $s$ in\nobreakspace {}GeV$^2$}}{187} \contentsline {figure}{\numberline {127}{\ignorespaces Estimated uncertainties for the induced polarization in $ \mathaccent "017E\relax {\gamma } p \rightarrow \mathaccent "017E\relax {p} \pi ^0 $ for $E_{\gamma }$ $=$ 6.9\nobreakspace {}GeV, as a function of $\pi ^0$ angle.}}{187} \contentsline {figure}{\numberline {128}{\ignorespaces The projected results for nuclear transparency for photo-pion production from a $^{12}$C target}}{188} \contentsline {figure}{\numberline {129}{\ignorespaces The projected results for nuclear transparency for photo-pion production from a $^{4}$He target}}{188} \contentsline {figure}{\numberline {130}{\ignorespaces Relative shifts in $Q_{\rm weak}^e$ and $Q_{\rm weak}^{\rm proton}$ from SUSY effects}}{192} \contentsline {figure}{\numberline {131}{\ignorespaces There has been a steady progression with time in the difficulty of Standard Models tests which employ parity violating electron scattering}}{194} \contentsline {figure}{\numberline {132}{\ignorespaces Schematic of a 12\nobreakspace {}GeV M\o ller experiment}}{195} \contentsline {figure}{\numberline {133}{\ignorespaces The limits on $C_{2u}$ and $C_{2d}$}}{198} \contentsline {figure}{\numberline {134}{\ignorespaces The running of $\mathop {\mathgroup \symoperators sin}\nolimits ^2\theta _W$ in the $\overline {MS}$ scheme showing two measurements: e2ePV/M\o ller and DIS-Parity}}{200} \contentsline {figure}{\numberline {135}{\ignorespaces Symmetry breaking and quark mass effects for the light pseudoscalar mesons. }}{201} \contentsline {figure}{\numberline {136}{\ignorespaces The importance of $\Gamma _{\eta \to \gamma \gamma }$ in the measurement of $\cal {Q}$}}{204} \contentsline {figure}{\numberline {137}{\ignorespaces Two-photon decay width for the $\eta $ meson}}{205} \contentsline {figure}{\numberline {138}{\ignorespaces The $\eta - \eta '$ mixing angle as determined by a previous Primakoff measurement, $\gamma - \gamma $ collisions, and the projected result with the Jefferson Laboratory 12\nobreakspace {}GeV upgrade. }}{206} \contentsline {figure}{\numberline {139}{\ignorespaces Differential cross sections (electromagnetic and nuclear) for the $\gamma + ^4He \rightarrow \eta + ^4He$ reaction at small angles at 10\nobreakspace {}GeV.}}{207} \contentsline {figure}{\numberline {140}{\ignorespaces The $\pi ^o$ transition form factor}}{211} \contentsline {figure}{\numberline {141}{\ignorespaces The $\eta $ transition form factor}}{211} \contentsline {figure}{\numberline {142}{\ignorespaces Three-dimensional CAD drawing of Hall\nobreakspace {}A showing the MAD Spectrometer with one of the present high resolution spectrometers}}{216} \contentsline {figure}{\numberline {143}{\ignorespaces The field vs. current for the MAD-1 and MAD-2 combined-function magnets}}{220} \contentsline {figure}{\numberline {144}{\ignorespaces A TOSCA plot of the magnitude of the magnetic field in the warm bore of the combined-function MAD magnet}}{221} \contentsline {figure}{\numberline {145}{\ignorespaces Exterior view of one of MAD's combined function magnets.}}{221} \contentsline {figure}{\numberline {146}{\ignorespaces Plot of the dipole component (B$_y$) and of the field gradient of the MAD-1 magnet along the centerline from the magnet center to 300\nobreakspace {}cm along the axis.}}{222} \contentsline {figure}{\numberline {147}{\ignorespaces The distribution of extreme trajectories in the MAD Spectrometer}}{226} \contentsline {figure}{\numberline {148}{\ignorespaces The MAD spectrometer's momentum, $y_0$, $\theta $, and $\phi $ resolution}}{228} \contentsline {figure}{\numberline {149}{\ignorespaces Configuration of the detector package for electrons and hadrons}}{232} \contentsline {figure}{\numberline {150}{\ignorespaces Number of photo-electrons expected for high-energy electrons in the gas \v {C}erenkov counter}}{235} \contentsline {figure}{\numberline {151}{\ignorespaces The deviation of velocity from 1 vs. momentum for protons, pions and kaons}}{236} \contentsline {figure}{\numberline {152}{\ignorespaces Layout of the MAD focal plane polarimeter.}}{239} \contentsline {figure}{\numberline {153}{\ignorespaces The upgraded CLAS$^{++}$ detector.}}{245} \contentsline {figure}{\numberline {154}{\ignorespaces CLAS$^{++}$ Central detector region}}{248} \contentsline {figure}{\numberline {155}{\ignorespaces Field distribution in the solenoid magnet and the flux return yoke}}{250} \contentsline {figure}{\numberline {156}{\ignorespaces Perspective view of the central electromagnetic calorimeter inside the solenoid magnet.}}{252} \contentsline {figure}{\numberline {157}{\ignorespaces Central calorimeter}}{252} \contentsline {figure}{\numberline {158}{\ignorespaces Containment versus fraction of plastic.}}{254} \contentsline {figure}{\numberline {159}{\ignorespaces Sampling errors versus fraction of plastic.}}{255} \contentsline {figure}{\numberline {160}{\ignorespaces Perspective view of the central TOF system}}{256} \contentsline {figure}{\numberline {161}{\ignorespaces Time differences between protons and pions, and between kaons and pions over the 25\nobreakspace {}cm path length expected for the outer TOF system.}}{256} \contentsline {figure}{\numberline {162}{\ignorespaces Rates summed over all six sectors as a function of threshold at a luminosity of $0.9\times 10^{34}$cm$^{-2}$s$^{-1}$}}{257} \contentsline {figure}{\numberline {163}{\ignorespaces Cathode chamber view of two superlayers.}}{258} \contentsline {figure}{\numberline {164}{\ignorespaces Concept of a Silicon Strip Detector covering the angular range from 5$^o$ to 135$^o$.}}{259} \contentsline {figure}{\numberline {165}{\ignorespaces Concept of the High Threshold \v {C}erenkov Detector located inside the Torus coil arrangement. }}{263} \contentsline {figure}{\numberline {166}{\ignorespaces Optics of the High Threshold \v {C}erenkov Detector}}{264} \contentsline {figure}{\numberline {167}{\ignorespaces Distribution of the number of photoelectrons N$_{pe}$ for the HTCC in the $\phi - \theta $ plane and the average N$_{pe}$ versus the polar angle}}{265} \contentsline {figure}{\numberline {168}{\ignorespaces Time differences between protons and pions, and between kaons and pions over the 500\nobreakspace {}cm path length expected for the outer TOF system.}}{266} \contentsline {figure}{\numberline {169}{\ignorespaces Previous measurements from two prototype tof detectors}}{267} \contentsline {figure}{\numberline {170}{\ignorespaces Expected resolution for the existing tof detectors}}{267} \contentsline {figure}{\numberline {171}{\ignorespaces Resolution for various scintillators showing the tradeoff between attenuation length and scintillator decay time.}}{269} \contentsline {figure}{\numberline {172}{\ignorespaces Arrangement of the Inner Calorimeter covering the regions of the torus magnet coils}}{270} \contentsline {figure}{\numberline {173}{\ignorespaces Distance between hit positions of the two photons from $\pi ^0$ decay at the FEC plane as a function of the pion momentum}}{271} \contentsline {figure}{\numberline {174}{\ignorespaces $\pi ^0$ reconstruction efficiency from the reaction $ep\nobreakspace {}\rightarrow \nobreakspace {}ep\pi ^o\nobreakspace {}$with beam energy of 11.5\nobreakspace {}GeV}}{272} \contentsline {figure}{\numberline {175}{\ignorespaces 3-d view of a corner of the pre-shower module}}{273} \contentsline {figure}{\numberline {176}{\ignorespaces CLAS$^{++}$ DAQ bloc diagram}}{277} \contentsline {figure}{\numberline {177}{\ignorespaces Sketch of the High-Momentum Spectrometer}}{279} \contentsline {figure}{\numberline {178}{\ignorespaces HMS Spectrometer Representative Data}}{280} \contentsline {figure}{\numberline {179}{\ignorespaces CAD Drawing of the Hall\nobreakspace {}C Spectrometers}}{282} \contentsline {figure}{\numberline {180}{\ignorespaces SHMS Spectrometer Key Dimensions}}{283} \contentsline {figure}{\numberline {181}{\ignorespaces Comparison of the Q1 gradients along Z at 7.1\nobreakspace {}T/m and 8.6\nobreakspace {}T/m. }}{284} \contentsline {figure}{\numberline {182}{\ignorespaces Magnetic Fields in Q1 at High Current. }}{285} \contentsline {figure}{\numberline {183}{\ignorespaces Cut-Away View of QD30 Magnet}}{285} \contentsline {figure}{\numberline {184}{\ignorespaces Magnetic Field Magnitude in QD30 Midplane}}{287} \contentsline {figure}{\numberline {185}{\ignorespaces QD30 Yoke Saturation}}{287} \contentsline {figure}{\numberline {186}{\ignorespaces QD30 Dipole Field (B$_y$)}}{288} \contentsline {figure}{\numberline {187}{\ignorespaces QD30 Quadrupole Field}}{288} \contentsline {figure}{\numberline {188}{\ignorespaces SHMS Pivot with Slider. }}{291} \contentsline {figure}{\numberline {189}{\ignorespaces Hall\nobreakspace {}C Pivot with SOS, SHMS, and HMS Attached}}{291} \contentsline {figure}{\numberline {190}{\ignorespaces The SHMS-HMS spectrometer pair in two extreme configurations.}}{292} \contentsline {figure}{\numberline {191}{\ignorespaces Rays Tracked through the SHMS by COSY for the SSA Tune}}{297} \contentsline {figure}{\numberline {192}{\ignorespaces Polynomial Coefficients in the QD Magnetic Field Model}}{298} \contentsline {figure}{\numberline {193}{\ignorespaces Rays Tracked through the SHMS by COSY for the LSA Tune}}{300} \contentsline {figure}{\numberline {194}{\ignorespaces The Phase Space Acceptance for the LSA and SSA Tunes}}{303} \contentsline {figure}{\numberline {195}{\ignorespaces Particle Hit Density at $z=0$ for Various Target Lengths}}{304} \contentsline {figure}{\numberline {196}{\ignorespaces Particle Hit Density at Detector Locations for the LSA Tune}}{305} \contentsline {figure}{\numberline {197}{\ignorespaces Resolutions at the Target vs. $\delta $ for the SSA Tune}}{306} \contentsline {figure}{\numberline {198}{\ignorespaces Block Diagram of SHMS Detector Arrangement.}}{307} \contentsline {figure}{\numberline {199}{\ignorespaces Measured Residual Distributions in the SOS Wire Chambers}}{309} \contentsline {figure}{\numberline {200}{\ignorespaces Block diagram of the SHMS Wire Chamber Assembly}}{310} \contentsline {figure}{\numberline {201}{\ignorespaces Pion/Kaon Discrimination from dE/dx}}{310} \contentsline {figure}{\numberline {202}{\ignorespaces Time-of-Flight Relative to Electrons vs. Momentum}}{311} \contentsline {figure}{\numberline {203}{\ignorespaces Placement of the Scintillator and \v {C}erenkov Hodoscopes}}{312} \contentsline {figure}{\numberline {204}{\ignorespaces Summary of the SHMS Particle Identification Resolving Power}}{315} \contentsline {figure}{\numberline {205}{\ignorespaces Linearity and Resolution of a Lead Glass Calorimeter}}{316} \contentsline {figure}{\numberline {206}{\ignorespaces Electron -- Pion Discrimination Power of a Lead Glass Calorimeter}}{317} \contentsline {figure}{\numberline {207}{\ignorespaces Pressure and Photoelectron Yield for the $\rm C_4F_{10}$ \v {C}erenkov}}{319} \contentsline {figure}{\numberline {208}{\ignorespaces Schematic Design for the SHMS Heavy Gas \v {C}erenkov Detector. }}{320} \contentsline {figure}{\numberline {209}{\ignorespaces Pion Efficiency of TRDs as a Function of the Detector Length}}{322} \contentsline {figure}{\numberline {210}{\ignorespaces TRD Module and Output Signals}}{322} \contentsline {figure}{\numberline {211}{\ignorespaces Hadron Velocity $1-\beta $ as a Function of Momentum}}{324} \contentsline {figure}{\numberline {212}{\ignorespaces SHMS Detector Package using the Focal Plane Polarimeter}}{325} \contentsline {figure}{\numberline {213}{\ignorespaces A schematic view of the {\textsc {Hall\nobreakspace {}D}}{} photon beam line.}}{329} \contentsline {figure}{\numberline {214}{\ignorespaces The effect of collimation on the coherent bremsstrahlung spectrum}}{330} \contentsline {figure}{\numberline {215}{\ignorespaces Maximum polarization {\em {vs}} radiator-collimator distance for a coherent peak at 9\nobreakspace {}GeV}}{331} \contentsline {figure}{\numberline {216}{\ignorespaces A 3D cutaway view of the {\textsc {GlueX}}{} detector and schematic diagram of its major subsystems}}{332} \contentsline {figure}{\numberline {217}{\ignorespaces The {\textsc {GlueX}}{} Start Counter and Central Tracker.}}{334} \contentsline {figure}{\numberline {218}{\ignorespaces The Forward Calorimeter.}}{337} \contentsline {figure}{\numberline {219}{\ignorespaces The {\textsc {GlueX}}{} Barrel Calorimeter}}{338} \contentsline {figure}{\numberline {220}{\ignorespaces Sketch of a upstream photon veto segment}}{340} \contentsline {figure}{\numberline {221}{\ignorespaces Particle Identification in {\textsc {GlueX}}{}}}{341} \contentsline {figure}{\numberline {222}{\ignorespaces The \v {C}erenkov detector}}{342} \contentsline {figure}{\numberline {223}{\ignorespaces Block diagram of prototype {\textsc {fadc}}\ board.}}{344} \contentsline {figure}{\numberline {224}{\ignorespaces Block diagram of prototype {\textsc {tdc}}{} board.}}{345} \contentsline {figure}{\numberline {225}{\ignorespaces Simulated PWA Results in {\textsc {GlueX}}{}}}{350} \contentsline {figure}{\numberline {226}{\ignorespaces The results of a double-blind Monte Carlo exercise showing the $J^{PC}=1^{-+}$ exotic wave}}{351} \contentsline {figure}{\numberline {227}{\ignorespaces Polarization in PWA }}{351} \contentsline {figure}{\numberline {228}{\ignorespaces Side view of the experimental setup for $\eta $ and $\eta '$ two--gamma decay width measurements}}{353} \contentsline {figure}{\numberline {229}{\ignorespaces Focal plane detectors for the proposed high energy tagging system}}{355} \contentsline {figure}{\numberline {230}{\ignorespaces Background events in the calorimeter projected to the horizontal (dispersive) plane for a photon tagging (photoproduction) run.}}{356} \contentsline {figure}{\numberline {231}{\ignorespaces Energy distribution in calorimeter corresponding to the events in Fig.\nobreakspace {}230\hbox {} (photon run).}}{356} \contentsline {figure}{\numberline {232}{\ignorespaces Monte Carlo simulation of expected yield as a function of angle for $\eta \gamma \gamma $ events on $^4He$.}}{358} \contentsline {figure}{\numberline {233}{\ignorespaces Coulomb photoproduction of the $\eta '$ as a function of angle.}}{359}