Spin and Azimuthal Asymmetries at JLAB

H. Avakian *)

Jefferson Lab

Single-Spin Asymmetries Workshop, BNL June 1-3, 2005

*) in collaboration with P.Bosted, V. Burkert and L. Elouadrhiri

Outline

Introduction

SSA in target fragmentation

Transverse momentum of quarks in SIDIS

>azimuthal asymmetries

Double spin asymmetries

SSA in SIDIS

>beam single-spin asymmetries

>target single-spin asymmetries

>SSA in hard exclusive processes

>DVCS

DVMP

Summary

Polarized Semi-Inclusive DIS

sin

Cross section defined by scale variables **x**,**y**,**z**

x	=	$Q^2/2ME_{\gamma}$
-y	=	E_{γ}/E
z	=	E_h/E_γ
$\sin heta_\gamma$	\approx	$\frac{2Mx}{Q}\sqrt{1-y}$
$\sin \phi$	=	$\frac{[\vec{q}\times\vec{k}]\vec{P}_{\perp}}{ \vec{q}\times\vec{k} P_{\perp} }$

Hadron-Parton transition: by distribution function $f_1^u(x)$: probability to find a **u**-quark with a momentum fraction x

Parton-Hadron transition: by fragmentation function $D_{1\mu}^{\pi+}(z)$: probability for a u-quark to produce a π^+ with a momentum fraction **z**

Wide kinematic coverage of large acceptance detectors allows studies of hadronization both in the target and current fragmentation regions

Transverse momentum of quarks

 \mathbf{k}_{T} – crucial for orbital momentum and spin structure studies

-lead to SSA in hard scattering processes

$\bullet k_{T} - \text{lead to 3 dimensional description}$

–lead to introduction of k_T dependent/u PDFs

 $\mathbf{\cdot} k_{T}$ - important for cross section description (important also for exclusive production)

- P_T distributions of hadrons in DIS
- exclusive photon production (DVCS)
- hard exclusive vector meson x-section
- pp $\rightarrow \pi^0 X$ (E704,RHIC) x-sections

To study orbital motion of quarks in semi-inclusive DIS measurements in a wide range of P_T , ϕ and ϕ_s are required.

The structure functions depend on Q^2 , x_B , z, P_{hT}

Factorization of k_T-dependent PDFs proven at low P_T of hadrons (Ji et al.)
 Universality of k_T-dependent distribution and fragmentation functions proven (Collins,Mets...)

Spin-Azimuthal Asymmetries

Significant progress made recently in studies of Single-Spin Azimuthal Asymmetries (SSA) in electroproduction with longitudinally polarized target (HERMES,CLAS), transversely polarized target (SMC,HERMES,COMPASS), and polarized beam (CLAS,HERMES).

SSA are sensitive to the orbital momentum of quarks.

provide a window to the physics of partonic final and initial state interactions
 model calculations indicate that SSA are not affected significantly by a wide range of corrections.

Good agreement in SSAs measured in a wide energy range in electroproduction and pp scattering.

SSAs: stable observable over a wide beam energy and Q² range

The CLAS Detector

High luminosity, polarized CW beam
Wide physics acceptance, including exclusive, semi-inclusive processes, current and target fragmentation
Wide geometric acceptance, allowing detection of multi-particle final states

Λ in target fragmentation

u

 Λ – unique tool for polarization study due to self-analyzing parity violating decay

e

Accessing polarized PDFs

with unpolarized target!

(ud)-diquark is a spin and isospin singlet s-quark carries whole spin of $\Lambda |\Lambda\rangle = |uds\rangle$

As accessible in CLAS (even at large **z**) are mainly in the TFR region and can provide information on contribution of strange sea to proton spin

W.Melnitchouk and A.W.Thomas '96 J.Ellis, D.Kharzeev, A. Kotzinian '96

X_F

П

Projections for Lambda polarization for 5.75 GeV (25days) with neutron target (**predictions for 5.75 GeV from Ellis et al**.)

The only fragmentation function at leading twist for pions in $eN \rightarrow e'\pi X$ is $D_1(z)$

e p \rightarrow e' π^+ X

No significant variation observed in $\pi + /\pi -$ ratio and in z distributions of π + for different **x** ranges (0.4<z<0.7, M_x>1.5)

Azimuthal Asymmetries in SIDIS

- Gluon bremsstrahlung (Georgi & Politzer, Mendez 1978) at $z \rightarrow 1$ $-\frac{\alpha_s}{2}\sqrt{1-z}\frac{(2-y)\sqrt{1-y}}{1+(1-y)^2}$
- Intrinsic transverse momentum of partons (Cahn 1978)

$$-4 \Big(\frac{P_{\perp}^2}{Q^2}\Big)^{\frac{1}{2}} \frac{a^2 z}{b^2 + z^2 a^2} \frac{(2-y)\sqrt{1-y}}{1+(1-y)^2}$$

• Higher twists (Berger 1980, Brandenburg et al 1995)

$$2\Big(\frac{P_{\perp}^2}{Q^2}\Big)^{\frac{1}{2}}\frac{1}{\mathbf{3}(1-z)}\frac{(2-y)\sqrt{1-y}}{1+(1-y)^2}$$

The DIS data from EMC (1987) and Fermilab (1993) are most consistent with intrinsic parton transverse momentum squared, $k_{\rm T}^2\,$ of ~ 0.25 GeV²

Azimuthal Asymmetries in semi-exclusive limit

• Higher twists (Berger 1980, Brandenburg et al 1995) $z \rightarrow 1$ dominant contribution u+e- \rightarrow e- π + d

Dominant contribution to meson wave function is the perturbative one gluon exchange and approach is valid at factor ~3 lower Q² than in case of hard exclusive scattering (Afanasev & Carlson 1997)

Azimuthal asymmetries at CLAS

Unpolarized Semi-inclusive electroproduction of π⁺ measured.
Complete <u>5-dimensional cross sections</u> were extracted.
Direct separation of different structure functions.

A_1^p f-kinematic dependence for $\pi^{+/-/0}$

$$A_{\rm l}^{p} \approx \frac{1}{P_{\rm B}P_{\rm T}fD_{\rm LL}(y)} \frac{N^{+-} - N^{++}}{N^{+-} + N^{++}}$$

• No significant z-dependence of A₁ in the range 0.4<z<0.7 ($\pi^+\pi^0$) •x dependence of CLAS A₁^p (A₂=0) consistent with HERMES data at x3 higher Q² and with PEPSI (LUND)MC.

SIDIS: factorization studies

 $e p \rightarrow e' \pi X (NH_3)$

- A₁ inclusive, from $\pi^+\pi^-$ sum and π^0 are consistent (in range 0.4<z<0.7)
- A_1^p dependence can serve an important check of HT effects and applicability of simple partonic description.

•There is an indication that A_1^p of $\pi^+ + \pi^-$ is lower than inclusive at large z.

Asymmetries from k_T -odd (f_1^{\perp} , h_1^{\perp} , g_T ..) and k_T -even (g_1) distribution functions are expected to have a very different behavior (F.Yuan)

SSA: P_T -dependence of sin ϕ moment

Beam and target SSA for π + are consistent with increase with P_T

A_{LU}: x-dependence

$A_{LU}^{AC} \propto g^{\perp(1)}(x)D_1(z)$

required to extract distribution functions.

Measuring the Q² dependence of SSA

the higher twist nature of beam and longitudinal target SSAs

Flavor decomposition of T-odd g^{\perp}

In jet SIDIS with massless quarks contributions from H_1^{\perp} , E vanish

$$\sigma_{UU} \propto \left(1 - y + y^2 / 2\right) \sum_{q,q} e_q^2 f_1^q(x) D_1^q(z)$$

$$\sigma_{LU}^{sin\phi} \propto S_L \frac{M}{Q} y \sqrt{1 - y} \sum_{q,q} e_q^2 x g^{\perp q}(x) D_1^q(z) \longrightarrow \text{gauge link contribution}$$

$$\sigma_{LU}^{sin\phi} \propto S_L \frac{M}{Q} y \sqrt{1 - y} \sum_{q,q} e_q^2 x e^q(x) H_1^{\perp q}(z)$$

With SSA measurements for $\pi^++\pi^-$ and π^0 on neutron and proton $(\pi=\pi^++\pi^-)$ assuming $H^{fav}=H^{u\to\pi^+} \approx -H^{u\to\pi^-}=-H^{unfav}$

$$xg^{\perp u}(x) = \frac{4}{15} \Big[A^{\pi}_{LU,p} \big(4u + d \big) - A^{\pi}_{LU,n} \big(d + u/4 \big) \Big]$$
$$xg^{\perp d}(x) = \frac{4}{15} \Big[A^{\pi}_{LU,n} \big(4d + u \big) - A^{\pi}_{LU,p} \big(u + d/4 \big) \Big]$$

•Study the Collins fragmentation mechanism with long. polarized target • For π^- and π^0 SSA is sensitive to unfavored fragmentation For Collins fragmentation use chirally invariant Manohar-Georgi model (Bacchetta et al)

 π - and π^0 SSA will also give access to h_{1L}^d (If R \approx -1 deuteron data could be crucial)

Future: more π^0 data in SIDIS

advantages:

- SIDIS π⁰ production is not contaminated by diffractive ρ
- **2) HT effects and exclusive** π^0 suppressed
- 3) Simple PID by π^{0} -mass (no kaon contamination)
- 4) Provides complementary to $\pi^{+/-}$ information on PDFs

disadvantages:

reconstruction efficiency (requires detection of 2γ)

IC at CLAS opens new avenue for studies of spin and azimuthal asymmetries of exclusive and semi-inclusive γ , π^0 , η , ρ^+

Longitudinally polarized target SSA using CLAS+IC

Provide measurement of SSA for all 3 pions, extract the Mulders TMD and study Collins fragmentation with longitudinally polarized target
Allows also measurements of 2-pion asymmetries

Transverse Target SSA at CLAS @5.7GeV

Collins effect at CLAS kinematically suppressed compared to the Sivers effect.

$$A_{UT} \sim (2-2y+y^2) f_{1T}^{\perp} D$$

Simultaneous measurement of SIDIS, exclusive ρ , ρ +, ω and DVCS asymmetries with a transversely polarized target.

more details in X.Jiang's talk

Deeply Virtual Compton Scattering ep->e'p'y

GPD combinations accessible as **azimuthal moments** of the total cross section.

CLAS/DVCS (ep \rightarrow epX) at 5.75 GeV

JLab dedicated DVCS experiments in 2004 - 2005

→ Opens the way for an ambitious program with JLab@12GeV (CLAS12 and other)

JLab/CLAS

Calorimeter and superconducting magnet within CLAS torus

details in J-P.Chen's talk

DVCS with a polarized target in CLAS

Exclusive $e\vec{p} \rightarrow ep\gamma$

Meson production in GPD framework

Only longitudinal photons

- Different final state mesons filter out different combinations of unpolarized (H,E) and polarized (H,E) GPDs.
- 2. Studies needed to define on how far is the asymptotic regime and guide theory in describing HT.

Meson	GPD flavor
	$\operatorname{composition}$
π^+	$\Delta u - \Delta d$
π^0	$2\Delta u + \Delta d$
η	$2\Delta u - \Delta d$
$ ho^0$	2u+d
ρ^+	u-d
ω	2u-d

Exclusive ρ meson production: $ep \rightarrow ep\rho$

CLAS (5.75 GeV)

GPD formalism (beyond leading order) describes approximately data for $x_B < 0.4$, Q² >1.5 GeV²

Two-pion invariant mass spectra

Decent description in pQCD framework already at moderate Q²

pion SSA from $\rho(\pi^+\pi^-/\pi^+\pi^0)$

 π + SSA at large z may also have a significant (~20%) contribution from ρ

Exclusive ρ (higher twist for SIDIS) crucial for πX and $\pi \pi X$ studies

Summary

Spin and azimuthal asymmetries measured at 5.7 GeV with polarized beam and longitudinally polarized target at JLab.

• SIDIS multiplicities and double spin asymmetries of pions are consistent with factorization and partonic picture: may be used in future NLO QCD fits.

• $sin\phi$ and $sin2\phi$ beam and target SSA measured, providing access to the twist-2 and twist-3 TMD distributions and testing the Collins fragmentation function

• Studies of hard exclusive photon and vector meson production underway, allowing access to GPDs and also providing important info for the interpretation of SIDIS SSAs.

• Ongoing and future measurements with CLAS at 6GeV, will greatly improve $\pi^{0/+/-}$, ρ , and DVCS data, allowing extraction of underlying TMDs and GPDs.