Electroexcitation of Nucleon Resonances

Volker D. Burkert
Jefferson Lab

BARYONS ‘02
9th International Conference on the Structure of Baryons
March 3 - 8, 2002
Why N*’s are important

(Nathan Isgur, N*2000 Conference, Jlab)

- Nucleons represent the real world, they must be at the center of any discussion on

 "why the world is the way it is"
Why Excitations of the Nucleon?

(Nathan Isgur, N*2000 Conference, Jlab)

- Nucleons represent the real world, they must be at the center of any discussion on

 “why the world is the way it is”

- Nucleons represent the simplest system where

 “the non-abelian character of QCD is manifest”
Why Excitations of the Nucleon?

(Nathan Isgur, N*2000 Conference, Jlab)

- Nucleons represent the real world, they must be at the center of any discussion on

 “why the world is the way it is”

- Nucleons represent the simplest system where

 “the non-abelian character of QCD is manifest”

- Nucleons/baryons are complex enough to

 “reveal physics hidden from us in mesons”

Gell-Mann & Zweig - Quark Model

O. Greenberg - The Δ^{++} problem/color
OUTLINE

- Why electroproduction?

- Experimental results
 - Quadrupole deformation in the N-Δ transition
 - The Roper resonance - N’(1440)1/2^+
 - Eta production and the N*(1535)1/2^-
 - SQT.M and higher mass states
 - Resonances in multi-pion, and KY^* channels?

- Summary/Outlook
Why N* Electroproduction?

- Light quark baryon spectrum for $N^* \rightarrow N\pi$

- Internal structure of baryons
 Helicity amplitudes vs Q^2 \(\Rightarrow\) Relevant degrees of freedom vs distance scale

- Meson production mechanism
Lowest Supermultiplets in SU(6)O(3) Symmetry Group

\[D_{13}(1520), S_{11}(1535) \]

\[\Delta(1232) \]

Roper \(P_{11}(1440) \)

Particle Data Group

\[(56,0+), (70,0+) \]

\[(56,2+), (70,2+) \]

\[(56,3-), (70,3-) \]

\[(20,3-) \]

“missing”

\[P_{13}(1910) \]

Capstick & Rol

\[0 \omega, 1\omega, 2\omega, 3\omega \]

\[0\omega \ (1135 \text{ MeV}), 1\omega \ (1545 \text{ MeV}), 2\omega \ (1839 \text{ MeV}), 3\omega \ (2130 \text{ MeV}), N \ (\text{Mass}) \]
CLAS: ep \rightarrow epX, $E=4\text{GeV}$
N-Δ(1232) Quadrupole Transition

SU(6): $E_{1+} = S_{1+} = 0$

(A. Buchmann, E. Henley, 2000)
Multipole Ratios R_{EM}, R_{SM} - before 2001
Kinematics for $ep \rightarrow ep\pi^0$

$$\frac{d\sigma}{d\Omega_e dE'_e d\Omega_\pi} = \Gamma_t \left(\sigma_t + \varepsilon \sigma_1 + \varepsilon \sigma_t t \cos 2\phi_\pi + \sqrt{2\varepsilon (\varepsilon + 1)} \cdot \sigma_t l \cos \phi_\pi \right)$$
Multipole Analysis for $\gamma^* p \rightarrow p\pi^0$

$Q^2 = 0.9$ GeV2

$|M_{1+}|^2$

Re($E_{1+}M_{1+}^*)$

L.C. Smith

$\sigma_t + \varepsilon \sigma_l$

$\sigma_{\pi\pi}$

$\sigma_{\ell\ell}$

Volker D. Burkert BARYONS'02 March 4-8, 2002
Multipole Ratios R_{EM}, R_{SM} - before 2001
Multipole Ratios R_{EM}, R_{SM} - 2002
Multipole Ratios $R_{EM}(Q^2)$, $R_{SM}(Q^2)$

![Graph showing multipole ratios](image)

- **Sato**
- **Ernst**
Multipole Ratios $R_{EM}(Q^2)$, $R_{SM}(Q^2)$

LQCD 1993
Multipole Ratios $R_{EM}(Q^2)$, $R_{SM}(Q^2)$

LQCD 2002? (Moore’s law)
Polarized Beam Observable

\[e^+ p \longrightarrow e^- p \pi^0 \quad \sigma_{LT}, \text{ response function} / \text{CLAS} \]

Beam spin asymmetry

Mami/A2

Joo Botto Kuhn
The 2nd Resonance Region

The Roper \(N'(1440) P_{11} \)

- In CQM assigned as a \(N=2 \) radial excitation of the nucleon

- Poor description of properties such as mass, photocouplings, \(Q^2 \) evolution

- Strong gluonic component?
- Quark core with meson cloud?
- \(N\sigma \) molecule?
The 2nd Resonance Region

CLAS $e p \rightarrow e n \pi^+$ UnitaryIsobar fit

W, GeV/c2

μ / sr

θ^*, deg
The 2nd Resonance Region

The Roper \(N'(1440)P_{11} \)

- In CQM assigned as a \(N=2 \) radial excitation of the nucleon
- Poor description of properties such as mass, photocouplings, \(Q^2 \) evolution
 - Strong gluonic component?
 - Quark core with meson cloud?
 - \(N\sigma \) molecule?

\[CLAS \text{ (preliminary)} \]
\[\sigma(\pi^0,\pi^+), A_c(\pi^0,\pi^+), \text{ unitary isobar fit} \]

\[H. \ Egiyan \]
The 2nd Resonance Region

$N^*(1535)S_{11}$

- CQM assigns state to the $[70,1^-]$ multiplet
- Speculation if it is not a $|q^3>$ state but a $|K\Sigma>$ molecule
The 2nd Resonance Region

$N^*(1535)S_{11}$

- CQM assigns state to the $[70,1^-]$ multiplet
- Speculation if it is not a $|q^3>$ state but a $|K\Sigma>$ molecule
- Hard e.m. formfactor
- LQCD indicates clear $|q3>$ behavior
The 2nd Resonance Region

\[N^*(1535)S_{11} \]

- CQM assigns state to the \([70,1^-]\) multiplet
- Speculation if it is not a \(|q^3\rangle\) state but a \(|K\Sigma\rangle\) molecule
- Hard e.m. formfactor
- LQCD indicates clear \(|q^3\rangle\) behavior
- Strong coupling to \(p\eta\)
The 2nd Resonance Region

\[N^*(1535)S_{11} \]

- CQM assigns state to the \([70,1^-]\) multiplet
- Speculation if it is not a \(|q^3\rangle\) state but a \(|K\Sigma\rangle\) molecule
- Hard e.m. formfactor
- LQCD indicates clear \(|q^3\rangle\) behavior
- Strong coupling to \(p\eta\)
The 2nd Resonance Region

N*(1535)S_{11}

- Consistent Q^2 evolution from η production

H. Denizli
The 2nd Resonance Region

Photocoupling amplitude $A_{1/2}$

- **$N^*(1535)S_{11}$**
 - Consistent Q^2 evolution from η production

![Graph showing photocoupling amplitude $A_{1/2}$ vs. Q^2 (GeV2)]

- Li and Close (NR)
- Konen and Weber (Rel)
- Capstick and Keister (NR)
- Capstick and Keister (Rel)
- Dipole form factor
- Old data
- Armstrong et al. [11]
- CLAS published
- New CLAS data

Giannini and Santopinto
The 2nd Resonance Region

Photocoupling amplitude $A_{1/2}$

$N^*(1535)S_{11}$

- Consistent Q^2 evolution from η production
- Discrepancy with $N\pi$ analysis
The 2nd Resonance Region

Photocoupling amplitude $A_{1/2}$

$N^*(1535)S_{11}$

- Consistent Q^2 evolution from η production
- Discrepancy with $N\pi$ analysis
- **CLAS** $p\eta$ and $N\pi$ data consistent
Transition $[56,0^+] \rightarrow [70,1^-]$ described by 3 amplitudes, e.g. determined from S_{11}, D_{13}
Transition \([56,0^+] \rightarrow [70,1^-]\) described by 3 amplitudes, e.g. determined from \(S_{11}, D_{13}\).

Predicts all other amplitudes in same supermultiplet.
Test of the Single Quark Transition Model

- Transition \([56,0^+] \rightarrow [70,1^-]\) described by 3 amplitudes, e.g. determined from \(S_{11}, D_{13}\)

- Predicts all other amplitudes in same supermultiplet

- Tests model in the large \(N_c\) limit

- Good description of \(Q^2=0\)

- Insufficient \(Q^2 \neq 0\) data
Higher mass and “missing states”

- Higher mass states tend to couple strongly to $N\pi\pi$

<table>
<thead>
<tr>
<th>State</th>
<th>πN</th>
<th>ηN</th>
<th>πN wave</th>
<th>$\pi\pi N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{1/2-}(1535)$</td>
<td>40</td>
<td>45</td>
<td>S_{11}</td>
<td>5</td>
</tr>
<tr>
<td>$N_{1/2+}(1440)$</td>
<td>65</td>
<td></td>
<td>P_{11}</td>
<td>35</td>
</tr>
<tr>
<td>$N_{1/2+}(1710)$</td>
<td>15</td>
<td></td>
<td>P_{11}</td>
<td>40 - 90</td>
</tr>
<tr>
<td>$N_{3/2+}(1720)$</td>
<td>15</td>
<td></td>
<td>P_{13}</td>
<td>70</td>
</tr>
<tr>
<td>$N_{3/2-}(1520)$</td>
<td>55</td>
<td></td>
<td>D_{13}</td>
<td>45</td>
</tr>
<tr>
<td>$N_{3/2-}(1700)$</td>
<td>10</td>
<td></td>
<td>D_{13}</td>
<td>90</td>
</tr>
<tr>
<td>$N_{5/2-}(1675)$</td>
<td>45</td>
<td></td>
<td>D_{15}</td>
<td>55</td>
</tr>
<tr>
<td>$N_{5/2+}(1680)$</td>
<td>65</td>
<td></td>
<td>F_{15}</td>
<td>35</td>
</tr>
<tr>
<td>$\Delta_{1/2-}(1620)$</td>
<td>25</td>
<td>-</td>
<td>S_{31}</td>
<td>75</td>
</tr>
<tr>
<td>$\Delta_{3/2+}(1232)$</td>
<td>100</td>
<td>-</td>
<td>P_{33}</td>
<td></td>
</tr>
<tr>
<td>$\Delta_{3/2+}(1600)$</td>
<td>15</td>
<td>-</td>
<td>P_{33}</td>
<td>~80</td>
</tr>
<tr>
<td>$\Delta_{3/2-}(1700)$</td>
<td>15</td>
<td>-</td>
<td>D_{33}</td>
<td>85</td>
</tr>
<tr>
<td>$\Delta_{7/2+}(1950)$</td>
<td>40</td>
<td>-</td>
<td>F_{37}</td>
<td>35</td>
</tr>
</tbody>
</table>
“Missing” Resonances?

- Symmetric CQM predicts many more states than observed in elastic \(\pi N \) scattering analysis

\[|q^3> \Rightarrow \text{predicted to couple to} \]

\(\Lambda\pi\pi (\Delta\pi, N\rho), N\omega, KY \)

which model is closer to reality?

\[|q^2q> \Rightarrow \text{fewer excitation degrees of freedom} \]

fewer states

\[\text{Klempt, Vijande} \]
Resonances in $\gamma^* p \rightarrow p \pi^+ \pi^-$

CLAS

Genova-Moscow Isobar model fit

$\Gamma_{N\pi\pi}$ PDG

$\Gamma_{N\gamma}$ AO/SQTM

Total cross section

$Q^2 = 0.65 \text{ GeV}^2$

$Q^2 = 0.95 \text{ GeV}^2$

$Q^2 = 1.30 \text{ GeV}^2$

missing resonance strength
Isobar fit to $D_{13}(1700)$ and new P_{13}

CLAS

Genova-Moscow Isobar model fit

$\Gamma_{N\pi\pi}$ PDG

$\Gamma_{N\gamma}$ AO/SQTM

Total cross section

- $Q^2 = 0.65$ GeV2
- $Q^2 = 0.95$ GeV2
- $Q^2 = 1.30$ GeV2

P_{13}

$D_{13}(1700)$
Isobar fit - hadronic decays

\[W = 1.74 \text{GeV} \]

\[\text{CLAS} \]

\[\theta_{\pi^-} \text{(deg)} \]

\[\theta_{\pi} \text{(deg)} \]

Data described best by new \(P_{13} \)

\[M = 1.72 \pm 0.02 \text{ GeV} \]

\[\Gamma_T = 88 \pm 17 \text{ MeV} \]

\[\Delta\pi : 0.41 \pm 0.13 \]

\[N\rho : 0.17 \pm 0.10 \]
Isobar fit - A new state?

$W = 1.74 \text{GeV}$

CLAS

- P_{13}
- $D_{13}(1700)$

- Data described best by new P_{13}
 - $M = 1.72 \pm 0.02 \text{ GeV}$
 - $\Gamma_T = 88 \pm 17 \text{ MeV}$
 - $\Delta\pi : 0.41 \pm 0.13$
 - $N_{\rho} : 0.17 \pm 0.10$

- Consistent with “missing” P_{13} state, but mass low

Known P_{13}

- 1650-1750
- 100-200
- ~ 0
- 0.8 - 0.9

F. Klein
Search for resonances in hyperon production

CLAS \(\gamma^*p \rightarrow K^+Y \)

forward hemisphere

\[
0. < \cos(\Theta_K) < 1., \quad Q^2 = 0.7 \text{ (GeV/c)}^2
\]

backward hemisphere

\[
-1. < \cos(\Theta_K) < 0., \quad Q^2 = 0.7 \text{ (GeV/c)}^2
\]

\[\Lambda \quad \sigma_T + \varepsilon_L \sigma_L\]

\[\Lambda \quad \sigma_T + \varepsilon_L \sigma_L\]

Niculescu/Feuerbach

Volker D. Burkert
BARYONS’02
March 4-8, 2002
Resonances in $\gamma^* p \rightarrow p \omega$?

above resonance region

CLAS

in resonance region

σ vs $\cos\theta_{p\omega}$

γ \rightarrow p \rightarrow N^* \rightarrow ω

γ \rightarrow p \rightarrow p \rightarrow ω

γ \rightarrow N^* \rightarrow p \rightarrow p \rightarrow ω

γ \rightarrow p \rightarrow p \rightarrow N^* \rightarrow ω

γ \rightarrow p \rightarrow p \rightarrow ω

F. Klein
Resonances in Virtual Compton Scattering

Hall A - E93-50

\[e^+ p \rightarrow e^+ p \gamma \]

- First measurement through entire resonance region
- Advantage over mesons, the lack of final state interaction
- Strong resonance excitations

\[\Delta(1232) \]
\[N^*(1520) \]
\[N^*(1650) \]

Fonvieille
Todor

Volker D. Burkert BARYONS’02 March 4-8, 2002
Summary

- Accurate results on transition amplitudes for several states give a consistent picture, and allow stringent test of theory
 - $\Delta(1232)$, $N^*(1535)$, (Roper)

- Searches in various final states suggest excitations of states not seen before
 - $p\pi^+\pi^-$, $p\omega$, $K^+\Lambda$,

- N^* electroexcitation has become a major tool in studying the complex regime of strong QCD and confinement
Outlook

- Transition amplitudes for several states under study
 CLAS, Hall A/C, OOPS

- New instrumentation/facilities - BLAST, MAMI upgrade
Outlook

- Transition amplitudes for several states under study
 CLAS, Hall A/C, OOPS

- New instrumentation/facilities - BLAST, MAMI upgrade

- The $\Delta(1232)$ is the only resonance so far seen first
 in electron scattering experiments.

 Perhaps, this long drought is over soon.

 The potential is there!
Outlook

- Transition amplitudes for several states under study
 CLAS, Hall A/C, OOPS

- New instrumentation/facilities - BLAST, MAMI upgrade

- The Δ(1232) is the only resonance so far seen first in electron scattering experiments.
 Perhaps, this long drought is over soon.

 The potential is there!

It is an exciting time to work in this field!