HALL-A Upgrade

- Introduction
- MAD spectrometer
- Background simulation
- Detector system
- Infrastructure
- Physics examples
- Summary

PAC on 12 GeV
January 17-22, 2003

Kees de Jager
JEFFERSON LABORATORY
Introduction

- Initial design of Hall A upgrade focused on
 - Nucleon structure functions in valence region \((x \geq 0.5)\)
 \[A_1, g_2, F_2^n/F_2^p, \ldots \]
 - Leading to general requirements
 - High luminosity \((\geq 10^{38} \text{ cm}^{-2} \text{ s}^{-1})\)
 - Large acceptance in momentum and angle
 - Medium resolution \((\delta p/p \approx 10^{-3})\)
 - Intermediate excitation \((p_{\text{max}} \approx 6-7 \text{ GeV/c})\)
- Suitable candidate combined-function warm-bore SC magnets
Design of MAD

- Configuration to be optimized
 - nested (cosθ, cos2θ) coils
 - warm bore and yoke with 120 cm ID
- Resulted in 3 T dipole with 4.5 T quadrupole gradient
- Elliptical shape of yoke for closer approach to beam line
Mechanical Elements
MAD Infrastructure

- Background simulation (see later) require no target-detector line-of-sight
 ✓ Increase deflection in second magnet from 10° to 22°
- Peak field in bore -1 to 4 T in coils -2 to 5 T, acceptable forces
- Very stable cryogenics with
 ✓ a critical temperature ≥ 7 K
 ✓ α between 0.15 and 0.72, implying quench delayed until LHe evaporated
- Stored energy 15 and 25 MJ
- Four independent power supplies
- Total weight 2 * 250 (magnet) + 500 (shield house) ton \approx 1000 ton
- Support requires angular and radial motion
 ✓ no pivot mount (autocollimated laser for alignment)
 ✓ 90° steerable wheels
- Three vacuum systems
 ✓ cryosystem
 ✓ spectrometer helium bag
 ✓ gas Cerenkov
Optics Simulation

Ingredients:
- TOSCA produced field maps
- SNAKE for particle transport
- Fit transfer functions

Results shown for three cases
- No measurement error: understanding of optics with 200 µm beam spot
- Standard errors: $\sigma_x = \sigma_y = 100$ µm and $\sigma_\theta = \sigma_\phi = 0.5$ mrad
- 0.5 * standard errors

MCEEP and SIMC available for experiment simulation
Predicted Optical Performance

Momentum Resolution

θ Resolution

y Resolution

φ Resolution
MAD Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spectrometer angle</th>
<th>Acceptance</th>
<th>Resolution (σ)</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer angle</td>
<td>35° <-> (linear interpolation) <-> 12°</td>
<td>acceptance</td>
<td>resolution (σ)</td>
<td>acceptance</td>
</tr>
<tr>
<td>Angular</td>
<td>28 msr</td>
<td>1.0 mrad</td>
<td>2.0 mrad</td>
<td>6 msr</td>
</tr>
<tr>
<td>horizontal</td>
<td>± 35 mrad</td>
<td></td>
<td>± 23 mrad</td>
<td></td>
</tr>
<tr>
<td>vertical</td>
<td>± 198 mrad</td>
<td>2.0 mrad</td>
<td>± 68 mrad</td>
<td></td>
</tr>
<tr>
<td>Momentum</td>
<td>± 15 %</td>
<td>0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target coordinate</td>
<td>± 6 cm @ 90°</td>
<td>0.26 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEANT Simulation

Ingredients

- EM interactions + Mott
- SNAKE field maps
- MAD configuration with
 - Target 15 cm LH2 with 180 µm thick Al window
 - Scattering chamber with 0.5 mm thick Al window
 - 2 m air
 - 100 µm plastic window
 - 5 m He

Conclusions

- Increase deflection by second magnet to 22° to avoid line-of-sight
- Place collimators at target chamber, entrance of MAD1 and centre of MAD2
- At 25° with 50 µA on 15 cm LH2 100 MHz photons with 0.7 MeV average energy
Basic Detector Package

- Drift Chamber
- S1
- Cherenkov
- S2
- Calo
- MAD magnet
- He
- N₂ / He
- MWPC
- ep 11
- ep 12
- ep 13
- n - 1 = 0.000166
Detector introduction

MAD Single Rates (KHz)

\[E = 11 \text{ GeV} \]

70 uA, 15 cm L\(^2 \) target, \(L=3 \times 10^{38} \text{ s}^{-1} \text{ cm}^{-2} \)

<table>
<thead>
<tr>
<th>(P) (GeV/c)</th>
<th>(\theta=15 \text{ degree})</th>
<th>(\theta=25 \text{ degree})</th>
<th>(\theta=35 \text{ degree})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(e) (\pi^-) (\pi^+)</td>
<td>(e) (\pi^-) (\pi^+)</td>
<td>(e) (\pi^-) (\pi^+)</td>
</tr>
<tr>
<td>1.5</td>
<td>1 780 830 360</td>
<td>500 290 300 290</td>
<td>0.1 21 120 330</td>
</tr>
<tr>
<td>3</td>
<td>3 90 90 170</td>
<td>0.4 5 100 270</td>
<td>0.02 0.04 130 270</td>
</tr>
<tr>
<td>4.5</td>
<td>4 9 70 170</td>
<td>0.1 0.03 30 280</td>
<td>-- -- -- --</td>
</tr>
</tbody>
</table>

Main concerns

- High rate of low-energy photons
- Pion suppression
Trigger Scintillators

- Three trigger planes S0, S1 and S2(V+H)
 - S0/S1 before/after drift chamber package
 - 0.5 m * 2 m * 0.5 cm with 1 cm overlap
 - S2 two orthogonal planes just before calorimeter
 - 0.6 m * 2.5 m * 5 cm
 - Each plane segmented in 16 paddles, read out at both ends
- Main trigger formed by S1+S2
 - Timing determined by S2 (s < 150 ps)
 - S0 to determine trigger efficiency
- Discriminator set to reduce soft photon background
 - 50 kHz/paddle in S0 and S1, 100 Hz in S2
Wire Chambers

- Two drift chambers 1 m apart with standard MWPC in between
- Drift chambers
 - 0.6 m * 2.5 m
 - 3 groups (u,v,x) each of four planes
 - Requiring 2 out of 4 planes yields very high efficiency
 - 75 µm resolution, 3 mm between sense wires
 - Dead time ~ 300 ns/cm/wire, negligible effect of 100 MHz soft photons
- MWPC for track selection
 - 3 mm wire distance
• Mixture of He/N₂ adjusted to optimize N_{pe}
• 12 mirrors pairwise with 1 m radius
• Winston cones for bottom 2 pairs
• Average efficiency ~98%
EM Calorimeter

- **Main purpose**: pion rejection
- **Construction**: 3.2 m * 1 m lead (2.2 mm)-plastic (10 mm) sandwich
- **Arrangement**: 10 cm * 100 cm strips, 22 X0 deep
- **Readout**: Every 5 even/odd plastic strips read out on alternate sides
- **Energy resolution**: \(\sim 0.1 / \sqrt{E} \)
- **Pion suppression**: \(e/\pi \sim 100 \)

Data Acquisition

- **Combination**: VME/NIM/CAMAC
- **Components**: Flash ADC’s and pipeline TDC’s
- **Upgrade**: HRS from Fastbus to VME
Hadron Extension

- Drift Chambers
- S1
- Cherenkov
- S2
- Calo

- MWPC
- He
- 30 degree
- ep 11
- ep 12
- ep 13

- X
- Z

- n = 0.008
- n = 0.030
- n = 0.001430

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy
Particle Identification

- **Shorten Gas Cerenkov to 1 m**
- **Install two aerogel Cerenkovs with**
 - $\text{n} = 1.008$ and 1.030
- **0.6 m * 2.5 m * 15 cm**
- **Magnetic shield either complete box or individual PMT’s**
- **Good identification over full momentum range**

Index

<table>
<thead>
<tr>
<th>Index</th>
<th>p_π (GeV/c)</th>
<th>p_K (GeV/c)</th>
<th>p_p (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.030</td>
<td>0.58</td>
<td>2.06</td>
<td>3.92</td>
</tr>
<tr>
<td>1.008</td>
<td>1.11</td>
<td>3.93</td>
<td>7.46</td>
</tr>
<tr>
<td>1.0014</td>
<td>2.61</td>
<td>9.24</td>
<td>17.6</td>
</tr>
</tbody>
</table>
Particle Identification (cont.)

Index = 1.008 Thickness = 15 cm

- π⁺
- K⁺
- N.P.E. = 1.5

Index = 1.03 Thickness = 10 cm

- π⁺
- K⁺
- ρ
- N.P.E. = 1.5
Focal Plane Polarimeter

- Double CH2 analyzer
 - Each 2 m * 3.5 m * 0.5 m (~% ton!)
- Tracking 2.5 m * 4 m
 - 4 multilayer straw chambers
 - 2 cm drift cell
- Use aerogel for π^+ rejection
Overview of MAD and HRS
Calorimeter

- Calorimeter on floor successful for photon/electron detection in coincidence experiments (e,e'p\gamma or e,e'X)
- Existing A/C calorimeter
 1700 lead-glass blocks 4 * 4 * 40 cm³
- Improved version
 ✓ Use PbF₂
 ✗ Higher density -> better energy resolution
 ✗ Higher refractive index -> lower e⁻ threshold
 ✗ Enhanced UV transmission
 ✗ Lower critical energy -> less e⁺e⁻ pairs
 ✓ 1296 elements 26 * 26 * 200 mm³
Beam Line

- Beam emittance deteriorates factor 2 (longitudinal) to 10 (transverse)
- Little effect on quality of data, no need for significant modifications
- Arc dipoles modified from C- to H-yoke

- Energy measurement
 - ARC measurement requires remapping of all dipoles
 - EP instrument only useable up to 6 GeV

- Beam polarimeters
 - Møller reduce dipole bend angle from 11° to 7°
 - add quadrupole
 - Compton lift beam line by 8 cm
Research Program

Experimental Requirements for MAD

<table>
<thead>
<tr>
<th>No.</th>
<th>Exp's</th>
<th>Pmax (GeV/c)</th>
<th>Angle (degrees)</th>
<th>Acc(angle) (msr)</th>
<th>Acc(mom) (%)</th>
<th>Res(mom) (%)</th>
<th>Res(ang) H, V (mr)</th>
<th>Luminosity (10^37)</th>
<th>e or h?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d/u (3H/3He)*</td>
<td>6</td>
<td>15-30</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>1-3</td>
<td>10</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>A1n,g1n</td>
<td>6-7</td>
<td>15-30</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>3</td>
<td>g2n</td>
<td>6</td>
<td>15-30</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>A1p,g1p</td>
<td>6-7</td>
<td>15-30</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.01</td>
<td>e</td>
</tr>
<tr>
<td>5</td>
<td>spin duality</td>
<td>6-7</td>
<td>12-25</td>
<td>12-25</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>6</td>
<td>g1 at high E</td>
<td>6-7</td>
<td>12</td>
<td>12</td>
<td>30</td>
<td>0.3</td>
<td>1-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>7</td>
<td>DIS-Parity</td>
<td>6-7</td>
<td>12-15</td>
<td>12-15</td>
<td>30</td>
<td>0.3</td>
<td>1-3</td>
<td>100</td>
<td>e</td>
</tr>
<tr>
<td>8</td>
<td>semi-pi+/pi-</td>
<td>6</td>
<td>15-25</td>
<td>15-25</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>5</td>
<td>e</td>
</tr>
<tr>
<td>9</td>
<td>d_bar/u_bar</td>
<td>6</td>
<td>15-25</td>
<td>15-25</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>40</td>
<td>e</td>
</tr>
<tr>
<td>10</td>
<td>delta u, d, s</td>
<td>6</td>
<td>15-25</td>
<td>15-25</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>11</td>
<td>transversity</td>
<td>6</td>
<td>15-38</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>12</td>
<td>pi struc. fun.</td>
<td>3</td>
<td>15-22</td>
<td>15-25</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>13</td>
<td>charm</td>
<td>6-7</td>
<td>12-15</td>
<td>12-15</td>
<td>30</td>
<td>0.3</td>
<td>1-3</td>
<td>40</td>
<td>e</td>
</tr>
<tr>
<td>14</td>
<td>hadronization</td>
<td>6</td>
<td>12-30</td>
<td>12-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>40</td>
<td>e</td>
</tr>
<tr>
<td>15</td>
<td>x>1</td>
<td>7</td>
<td>12-60</td>
<td>12-30</td>
<td>30</td>
<td>0.2</td>
<td>1-3</td>
<td>40</td>
<td>e</td>
</tr>
<tr>
<td>16</td>
<td>Gen</td>
<td>6</td>
<td>15-20</td>
<td>15-20</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>0.1</td>
<td>e</td>
</tr>
<tr>
<td>17</td>
<td>Gep/Gmp</td>
<td>7-8*</td>
<td>15-35</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>40</td>
<td>p, FPP</td>
</tr>
<tr>
<td>18</td>
<td>CT (e,e'p)</td>
<td>7-8*</td>
<td>15-35</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>40</td>
<td>p</td>
</tr>
<tr>
<td>19</td>
<td>CT with FPP</td>
<td>7</td>
<td>15-40</td>
<td>15-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>10</td>
<td>p, FPP</td>
</tr>
<tr>
<td>20</td>
<td>CT in pion prod</td>
<td>6</td>
<td>12-30</td>
<td>12-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>20</td>
<td>pi</td>
</tr>
<tr>
<td>21</td>
<td>pi+ photoprod</td>
<td>6</td>
<td>12-30</td>
<td>12-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>20</td>
<td>pi</td>
</tr>
<tr>
<td>22</td>
<td>gamma-d</td>
<td>4</td>
<td>20-40</td>
<td>20-30</td>
<td>30</td>
<td>0.3</td>
<td>2-3</td>
<td>20</td>
<td>p, FPP</td>
</tr>
</tbody>
</table>
Neutron (Proton) Spin Structure A1

![Graph showing neutron spin structure A1 vs. Bjorken x for different experiments and models.]

VALENCE SPIN STRUCTURE USING SEMI-INCLUSIVE DEEP INELASTIC SCATTERING

HERMES preliminary (1996-2000)
JLab at 11 GeV

\[\frac{\Delta q}{q} \]
Neutron (Proton) Spin Structure g_2

Graphs showing data for neutron spin structure g_2 at different energies. The graphs compare data from various models and experiments, including SLAC data and projected errors at 12 GeV.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy
Few-Body Systems

Induced Polarization (90°_{\text{cm}}) vs. Photon Energy (GeV)

- Stanford
- Tokyo
- JLab
- MAD 4 GeV 30 days
- MAD 2.8 GeV 7 days
- Sargsian

Deuteron Form Factor
\[F_{g}(Q^{2}) = |\Lambda(Q^{2})|^{1/2} \]

He Form Factor
\[F_{g}(Q^{2}) = |\Lambda(Q^{2})|^{1/2} \]

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Thomas Jefferson National Accelerator Facility

PAC for 12 GeV, January 17 - 22, 2003, 27
Summary

• MAD design has met all specifications
 Large acceptance
 ✓ angle 30 msr
 ✓ momentum 30 %
 Medium resolution
 ✓ angle few mrad
 ✓ momentum 10^{-3}

• MAD with HRS and ECAL provides versatile and powerful instrumentation for large variety of experiments