Nucleon Resonances

Bernhard A. Mecking
Jefferson Lab

Science & Technology Review
July 15, 2002

Introduction
Missing resonances
N→Δ transition
Summary
Physics Goals

• Understand QCD in the strong coupling regime
 – example: bound qqq systems
 – mass spectrum, quantum numbers of nucleon excited states
 – what are the relevant degrees-of-freedom
 – wave function and interaction of the constituents

• Source of information
 – dominated by pion-induced reactions (mostly $\pi N \rightarrow \pi N$)
 – advantage:
 • strong coupling \rightarrow large cross sections
 • simple spin structure
 • good quality beams
 – disadvantage: no structure information
 insensitive to states with weak πN coupling
Theoretical Models

• Constituent quark model
 – 3 constituent quarks
 – all 3 contribute to number of states
 – non-relativistic treatment (typically)

• Refinements of the constituent quark model
 – restore relativity
 – hadronic form factors
 – coupling between decay channels

• Lattice gauge calculations
Program Requirements

Experiment

large high-quality data set for N* excitation covering
- a broad kinematical range in Q², W, decay angles
- multiple decay modes (π, ππ, η, ρ, ω, K)
- polarization information (sensitive to interference terms)

Analysis

Δ(1232): full Partial Wave Analysis possible
(isolated resonance, Watson theorem)

higher resonances
- need to incorporate Born terms, unitarity, channel coupling
- full PWA presently not possible due to lack of data (polarization)
 (substitute by assuming energy dependence of resonance)
- skills required at the boundary between experiment and theory
Quark Model Classification of N^*

“missing” P_{13}(1850) Capstick& Roberts
"Missing" Resonances?

Problem: symmetric CQM predicts many more states than have been observed (in πN scattering)

Two possible solutions:

1. di-quark model
 fewer degrees-of-freedom
 open question: mechanism for q^2 formation?

2. not all states have been found
 possible reason: decouple from πN-channel
 model calculations: missing states couple to
 $N\pi\pi$ ($\Delta\pi$, $N\rho$), $N\omega$, KY

γ coupling not suppressed \rightarrow electromagnetic excitation is ideal
Electromagnetic Probe

- Helicity amplitudes very sensitive to the difference in wave functions of N and N^*

- Can separate electric and magnetic parts of the transition amplitude

- Varying Q^2 allows to change the spatial resolution and enhances different multipoles

- Sensitive to missing resonance states
Standard Analysis Approach

known resonance parameters
(mass, width, quantum numbers, hadronic couplings)

Analysis

photo- and electro-production data base
(mostly differential cross sections)

electromagnetic transition form factors
e p → e X at 4 GeV

Elastic

Deep Inelastic

Δ(1232) N(1520) N(1680)

CLAS
CLAS Coverage for $e p \rightarrow e' X$

$p(e,e')X$
$E=4\text{GeV}$

$Q^2(\text{GeV}^2)$

$W(\text{GeV})$

N(1520)
N(1680)
N(940)
\Delta(1232)
missing states
deep inelastic

CLAS
CLAS Coverage for $e^+ p \rightarrow e' p X, \ E=4$ GeV

CLAS Coverage for $e^+ p \rightarrow e' p X, \ E=4$ GeV

Diagram Description:
- The diagram illustrates the CLAS coverage for the reaction $e^+ p \rightarrow e' p X$ at $E=4$ GeV.
- The graph shows the missing mass (W) versus the mass of the final state (M_X) in units of GeV.
- Key resonances labeled are N(1680), N(1520), Δ(1232), π^0, η, and ω.
- The diagram highlights the missing states and the regions of interest for this reaction.

Legend:
- The CLAS logo is visible in the bottom right corner.
- The diagram is published by JLab S&T Review, July 15, 2002.
Resonance Contributions to $\gamma^* p \rightarrow p \omega$?

CLAS above resonance region

in resonance region

\begin{align*}
\sigma &\rightarrow \gamma p \\
N^* &\rightarrow p p
\end{align*}
Resonances in Hyperon Production?

$$\gamma^* p \rightarrow K^+ Y$$

CLAS

forward hemisphere

$$0. < \cos(\Theta_K) < 1., \; Q^2 = 0.7 \; (\text{GeV}/c)^2$$

backward hemisphere

$$-1. < \cos(\Theta_K) < 0., \; Q^2 = 0.7 \; (\text{GeV}/c)^2$$

preliminary
Analysis performed by Genova-Moscow collaboration

step #1:
use the best information presently available

\(\Gamma_{N\pi\pi} \) from PDG
\(\Gamma_{N\gamma} \) AO/SQTM

extra strength
Attempts to fit observed extra strength

Analysis step #2:

- vary parameters of known D_{13}
 or
- introduce new P_{13}

\[
\sigma (\mu b) \\
W(\text{GeV})
\]

- $Q^2 = 0.65 \text{ GeV}^2$
- $Q^2 = 0.95 \text{ GeV}^2$
- $Q^2 = 1.30 \text{ GeV}^2$
Summary of $\gamma^* p \rightarrow p \pi^+ \pi^-$ Analysis

CLAS data at variance with N* information in PDG

Describing data requires

• major modifications of the parameters of known resonances, or

• introduction of new P_{13} resonance with

 (consistent with “missing” P_{13} state, but mass lower than predicted)

Next steps:

• more experimental data already in hand

• combined analysis with other decay channels: πN, ηN, $K\Lambda$

M = 1.72 +/- 0.02 GeV
$\Gamma_T = 88 +/- 17$ MeV
$\Delta \pi : 0.41 +/- 0.13$
$N\rho : 0.17 +/- 0.10$
Electromagnetic Probe

- Helicity amplitudes very sensitive to the difference in wave functions of N and N^*
- Can separate electric and magnetic parts of the transition amplitude
- Varying Q^2 allows to change the spatial resolution and enhances different multipoles
- Sensitive to missing resonance states
N $\rightarrow \Delta(1232)$ Transition Form Factors

SU(6): $E_{1+}=S_{1+}=0$

(E/M) \quad (S/M) \quad (A. Buchmann, E. Henley, 2000)

- E/M: ~0.03 \sim 0.1
- S/M: ~0.01

pion cloud
one-gluon exch.
pQCD

+1 const.
Multipoles E_{1+}/M_{1+}, S_{1+}/M_{1+} (before 2001)
Kinematics and Cross Sections

example:
\[e + p \rightarrow e' + p + \pi^0 \]

\[
\frac{d\sigma}{d\Omega_e dE' e d\Omega_\pi} = \Gamma_t \left(\sigma_t + \varepsilon \sigma_l + \varepsilon \sigma_{tt} \cos 2\phi_\pi + \sqrt{2\varepsilon (\varepsilon + 1)} \cdot \sigma_{tl} \cos \phi_\pi \right)
\]
$Q^2 = 0.40 \text{(GeV/c)}^2$, $\Delta Q^2 = 0.100 \text{(GeV/c)}^2$
Multipole Analysis for $\gamma^* p \rightarrow p \pi^0$

CLAS

$Q^2 = 0.9 \text{ GeV}^2$

\[|M_{1+}|^2 \]

\[\text{Re}(E_{1+}M_{1+}^*) \]

\[|M_{1+}|^2 \]

\[\text{Re}(S_{1+}M_{1+}^*) \]
Multipoles E_{1+}/M_{1+}, S_{1+}/M_{1+} (2002)
Theoretical Interpretation of E_{1^+}/M_{1^+}, S_{1^+}/M_{1^+}
N→∆ Transition, what’s next?

- systematic uncertainties in extraction of E_{1+}/M_{1+} from $ep\rightarrow e'p\pi^0$ around 0.5%
 - differences in treatment of background terms (models not constrained)
 - will become more severe for higher Q^2 (Δ dropping faster)

- more experimental information in hand (analysis in progress)
 - cross sections $ep\rightarrow e'p(\pi^0)$ $Q^2 = (1.5 - 5.5)$ GeV2
 - single-spin asymmetry σ_{TL} for $e^-p\rightarrow e'p(\pi^0)$ and $e^-p\rightarrow e^+\pi^+(n)$
 - polarization transfer in $e^-p\rightarrow e'^-p(\pi^0)$
 - differential cross sections for $e^-p\rightarrow e'^+\pi^-n$ (Δ less important)

- experiments in the near future
 - extend Q^2 range to 0.05 GeV2 (end of 2002)
 - extend Q^2 range to ~7 GeV2 (1st half of 2003)
Polarized Beam Observables

CLAS

$\sigma_{LT'}$ response function for

$\vec{e} \ p \rightarrow \vec{e} \ p \ \pi^0$

$\sigma_{LT'} = 0$ if only a single diagram contributes (sensitive to the interference between Δ and background)
Polarization Measurement in $\vec{e} \ p \rightarrow e' \ \vec{p} \ (\pi^0)$

Hall A

$Q^2 = 1 \text{ GeV}^2$

$W = 1.232 \text{ GeV}$

Results sensitive to non-resonant contributions

Parametrisations of available data

--- SAID

---- MAID
π^+ Electroproduction

CLAS

W, GeV/c2

μ_b/sr

θ^*, deg
Summary

• Understanding the structure of bound qqq systems is a central problem for the study of QCD in the strong coupling regime

• Specific issue #1: identify relevant degrees-of-freedom
 – finally getting electromagnetic data of sufficient quality to study missing resonance problem
 – initial data strongly suggest resonance contributions that cannot be explained by known baryon states

• Specific issue #2: probing details of quark wave functions
 – consistent data set for $N \rightarrow \Delta$ transition up to $Q^2 = 4 \text{ GeV}^2$
 – E_{1+}/M_{1+} small and negative
 – data emphasize the importance of pion degrees-of-freedom and relativity