Nucleon Resonances

Bernhard A. Mecking Jefferson Lab

Science & Technology Review July 15, 2002

Introduction

Missing resonances

 $N \rightarrow \Delta$ transition

Summary

Physics Goals

- Understand QCD in the strong coupling regime
 - example: bound qqq systems
 - mass spectrum, quantum numbers of nucleon excited states
 - what are the relevant degrees-of-freedom
 - wave function and interaction of the constituents
- Source of information
 - dominated by pion-induced reactions (mostly $\pi N \rightarrow \pi N$)
 - advantage:
 - strong coupling → large cross sections
 - simple spin structure
 - good quality beams
 - disadvantage: no structure information

insensitive to states with weak πN coupling

N

N*

N

Theoretical Models

- Constituent quark model
 - 3 constituent quarks
 - all 3 contribute to number of states
 - non-relativistic treatment (typically)
- Refinements of the constituent quark model
 - restore relativity
 - hadronic form factors
 - coupling between decay channels
- Lattice gauge calculations

Program Requirements

Experiment

large high-quality data set for N* excitation covering

- a broad kinematical range in Q², W, decay angles
- multiple decay modes (π , $\pi\pi$, η , ρ , ω , K)
- polarization information (sensitive to interference terms)

Analysis

 $\Delta(1232)$: full Partial Wave Analysis possible

(isolated resonance, Watson theorem)

higher resonances

- need to incorporate Born terms, unitarity, channel coupling
- full PWA presently not possible due to lack of data (polarization) (substitute by assuming energy dependence of resonance)

- skills required at the boundary between experiment and theory

Quark Model Classification of N*

"Missing" Resonances?

- Problem: symmetric CQM predicts many more states than have been observed (in πN scattering)
- Two possible solutions:
- di-quark model fewer degrees-of-freedom open question: mechanism for q² formation?
- 2. not all states have been found possible reason: decouple from π N-channel model calculations: missing states couple to $N\pi\pi$ ($\Delta\pi$, Np), N ω , KY

 γ coupling not suppressed \rightarrow electromagnetic excitation is ideal

Electromagnetic Probe

- helicity amplitudes very sensitive to the difference in wave functions of N and N*
- can separate electric and magnetic parts of the transition amplitude

- varying Q² allows to change the spatial resolution and enhances different multipoles
- sensitive to missing resonance states

Standard Analysis Approach

$e p \rightarrow e X$ at 4 GeV

CLAS Coverage for $e p \rightarrow e' X$

CLAS Coverage for $e p \rightarrow e' p X$, **E=4 GeV**

Resonance Contributions to $\gamma^* \mathbf{p} \rightarrow \mathbf{p} \omega$?

Resonances in Hyperon Production?

CLAS

 $\longrightarrow K^+Y$

CLAS Resonances in $\gamma^* p \rightarrow p \pi^+ \pi^-$

Analysis performed by Genova-Moscow collaboration step #1:

> use the best information presently available

 $\begin{array}{ll} \Gamma_{N\pi\pi} & \mbox{from PDG} \\ \Gamma_{N\gamma} & \mbox{AO/SQTM} \end{array}$

efferson (

Attempts to fit observed extra strength

Summary of $\gamma^* p \rightarrow p \pi^+ \pi^-$ Analysis

- CLAS data at variance with N* information in PDG
- Describing data requires
 - major modifications of the parameters of known resonances, or
 - introduction of new P_{13} resonance with

(consistent with "missing" P_{13} state, but mass lower than predicted)

M = 1.72 + -0.02 GeV $\Gamma_{T} = 88 + -17 \text{ MeV}$ $\Delta \pi : 0.41 + -0.13$ $N \rho : 0.17 + -0.10$

ηΝ

KΛ

Next steps:

- more experimental data already in hand
- combined analysis with other decay channels: πN

Electromagnetic Probe

- helicity amplitudes very sensitive to the difference in wave functions of N and N*
- can separate electric and magnetic parts of the transition amplitude

- varying Q² allows to change the spatial resolution and enhances different multipoles
- sensitive to missing resonance states

$N \rightarrow \Delta$ (1232) Transition Form Factors

Multipoles E_{1+}/M_{1+} , S_{1+}/M_{1+} (before 2001)

Kinematics and Cross Sections

 $\frac{d \sigma}{d\Omega_e dE'_e d\Omega_{\pi}} = \Gamma_t \left(\sigma_t + \varepsilon \sigma_l + \varepsilon \sigma_{tt} \cos 2\phi_{\pi} + \sqrt{2\varepsilon (\varepsilon + 1)} \cdot \sigma_{tl} \cos \phi_{\pi} \right)$

CLAS

 $Q^2 = 0.40 (GeV/c)^2$, $\Delta Q^2 = 0.100 (GeV/c)^2$

Multipole Analysis for $\gamma^* p \rightarrow p \pi^o$

Multipoles E₁₊/M₁₊, S₁₊/M₁₊ (2002)

Theoretical Interpretation of E_{1+}/M_{1+} , S_{1+}/M_{1+}

$N \rightarrow \Delta$ Transition, what's next?

- systematic uncertainties in extraction of E₁₊/M₁₊ from ep→e'p π^o around 0.5%
 - differences in treatment of background terms (models not constrained)
 - will become more severe for higher Q^2 (Δ dropping faster)
- more experimental information in hand (analysis in progress)
 - cross sections e p → e'p (π°) Q² = (1.5 5.5) GeV²
 - single-spin asymmetry σ_{TL} , for $\vec{e} p \rightarrow e' p (\pi^{o})$ and $\vec{e} p \rightarrow e' \pi^{+} (n)$
 - polarization transfer in $\vec{e} p \rightarrow e' \vec{p} (\pi^{o})$
 - differential cross sections for $e p \rightarrow e' \pi^+ n$ (Δ less important)
- experiments in the near future
 - extend Q^2 range to 0.05 GeV² (end of 2002)
 - extend Q² range to \sim 7 GeV² (1st half of 2003)

CLAS

CLAS

Hall A

CLAS

CLAS

Hall C

Polarized Beam Observables

Polarization Measurement in $\vec{e} p \rightarrow e' \vec{p} (\pi^{o})$

Hall A R'_{LT} 4.5 -0.5 3.5 3 2.5 2 1.5 $Q^2 = 1 \text{ GeV}^2$ W = 1.232 GeV 2.50.5 3.50 2 R_{LT}^{t} R_{TT}^{t} 2.5 **Results sensitive** 1 2 to non-resonant 0 1.5 contributions -1 0.5 -2 0 -3 90° 120° 150° 180° 0° 30° 60° 90° 120° 150° 180° 0° 60° 30° θ_{pq} θ_{pq} SAID Parametrisations of available data MAID (efferson G

π^+ Electroproduction

Summary

- Understanding the structure of bound qqq systems is a central problem for the study of QCD in the strong coupling regime
- Specific issue #1: identify relevant degrees-of-freedom
 - finally getting electromagnetic data of sufficient quality to study missing resonance problem
 - initial data strongly suggest resonance contributions that cannot be explained by known baryon states
- Specific issue #2: probing details of quark wave functions
 - − consistent data set for N → Δ transition up to Q² = 4 GeV²
 - E_{1+}/M_{1+} small and negative
 - data emphasize the importance of pion degrees-of-freedom and relativity

