Science & Technology Peer Review

Nucleon Spin Structure

Kees de Jager

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

efferson G

Science & Technology Peer Review

Nucleon Spin Structure

- Introduction
- Q²-evolution of GDH integral
- Nucleon Spin Structure at large x
- Quark-Hadron (Spin) Duality
- $R=\sigma_L/\sigma_T$ in Resonance Region
- Real Compton Scattering up to Large t-values
- Summary

July 15-17, 2002 Kees de Jager

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Spin Structure in Deep Inelastic Scattering

$$\langle S_z^N \rangle = \frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

• Study of nucleon spin structure started with EMC (~'88): $\Delta\Sigma = \Delta d + \Delta u + \Delta s = 0.12 \pm 0.17$

- World-wide effort (SLAC, DESY, CERN) established that $\Delta\Sigma \sim 0.2$... 0.4
- Focus shifted to other contributions to <S_z>:
 - strange sea polarization
 - gluon polarization
 - orbital angular momentum

semi-inclusive DSA

open charm, high p_T hadron pairs Generalized Parton Distributions

Thomas Jefferson National Accelerator Facility

Spin Structure in Deep Inelastic Scattering

*

$$3/2 \sim q^+(x)$$

Partonic Interpretation

$$x = \frac{Q^{2}}{2M\nu}$$

$$q(x) = q^{+}(x) + q^{-}(x)$$

$$F_{1}(x) = \frac{1}{2} \sum_{flavor} e_{f}^{2}q_{f}(x) \qquad F_{2}(x) = xF_{1}(x)$$

$$\Delta q(x) = q^{+}(x) - q^{-}(x) \qquad A_{1}(x) = \frac{g_{1}(x)}{F_{1}(x)}$$

$$g_{1}(x) = \frac{1}{2} \sum_{flavor} e_{f}^{2} \Delta q_{f}(x) \qquad g_{2}(x) = 0$$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

lersan C

Nucleon Spin Structure

- Fairly extensive data set on g₁(x), but only for x < 0.3
- Low-x region dominated by sea quarks, predictions difficult
- High-x region (a single quark carries most of the nucleon momentum) dominated by valence quarks, predictions feasible
- Accurate data will allow selection of models
- JLab unique combination of energy and luminosity

Thomas Jefferson National Accelerator Facility

Bjørken Sum Rule

$$\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \int \{g_1^p(x, Q^2) - g_1^n(x, Q^2)\} dx = \frac{1}{6}g_A C_{NS}$$

g_A=1.2601 ± 0.0025 C_{NS} neutron β -decay coupling constant Q²-dependent QCD correction

Basic assumptions

- Isospin symmetry
- Current Algebra or Operator Product Expansion within QCD

Present status (at $Q^2 = 5 (GeV/c)^2$)Experiment 0.176 \pm 0.003 \pm 0.007Theory0.182 \pm 0.005

 Combined world data are consistent with the Bjørken Sum Rule at 5 % level

Thomas Jefferson National Accelerator Facility

Gerasimov-Drell-Hearn Sum Rule

$$\int_{\nu_{in}}^{\infty} \left(\sigma_{y_2}(\nu) - \sigma_{y_2}(\nu) \right) \frac{d\nu}{\nu} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2$$

GDH Sum Rule

lerson (

- The Gerasimov-Drell-Hearn Sum Rule (at Q² = 0) is a fundamental test of the relation between the nucleon resonance excitation and its anomalous magnetic moment
- Rests on basic physics principles (Lorentz invariance, gauge invariance, unitarity) and on dispersion relation applied to forward Compton amplitude
- Technical developments have only recently allowed first measurement of GDH integral for the proton up to 800 MeV (Mainz) and up to 3 GeV (Bonn)
- Results agree with sum rule with assumptions for contributions at higher energies
- Many facilities (GRAAL, SPring-8, LEGS, HIGS, JLab) geared for extensive studies
- Will include data for the neutron from polarized deuterium

Fhomas Jefferson National Accelerator Facility

Transition from Strong to Perturbative QCD

- Dispersion relations on Compton Scattering Amplitudes lead to extension of GDH sum rule valid at all Q^2 (Ji and Osborne)
- Q²-evolution of Gerasimov-Drell-Hearn Sum Rule provides quantitative measure of transition from resonance (strong QCD) to DIS (pQCD) regimes
- Transition from Bjørken sum rule down to ~ 1 GeV² can be predicted using Operator Product Expansion of higher twist contributions
- Transition from GDH sum rule up to $\sim 0.1~{\rm GeV^2}$ can be predicted using Chiral Perturbation Theory
- For intermediate region one awaits Lattice QCD calculations

Thomas Jefferson National Accelerator Facility

Why is $I^{GDH}(Q^2)$ interesting?

One of the few opportunities to "zoom out" from tiny length scales (DIS) to large length scales

Many of the underlying assumptions are the same as those being tested in high-energy spin-structure tests ellerson F

homas Jefferson National Accelerator Facility

Polarized ³He Target (Hall A)

- Polarized ³He is best approximation of polarized neutron $P_n = 87$ % and P_p=2.7 %
- Requires corrections for nuclear medium, investigated by many theorists
- Basic principle:

ellerson 9

Optical pumping of Rb, followed by polarization transfer to ³He through spin-exchange collisions

olarization (%)

Target polarization measured by EPR/NMR

Q²-Evolution of the Gerasimov-Drell-Hearn Integral

$$I_{GDH} = \int_{v_{in}}^{\infty} \left(\sigma_{\psi_2}(v, Q^2) - \sigma_{\mathcal{J}_2}(v, Q^2) \right) \frac{dv}{v} = -2 \int_{v_{in}}^{\infty} \sigma_{TT} \frac{dv}{v} = -\frac{8\pi^2 \alpha}{MK} \int_{v_{in}}^{\infty} \left(g_1 - \frac{Q^2}{v^2} g_2 \right) \frac{dv}{v}$$

- Longitudinal and transverse target polarization allows separation of g₁ and g₂
- Kinematic coverage sufficient to integrate to W ≈ 2 GeV
- Nuclear medium corrections from Ciofi degli Atti and Scopetta
- Compared to calculations by Drechsel et al. which neglect contributions from DIS and by Ji and Bernard based on Chiral Perturbation Theory (band shows uncertainty in contribution from ∆resonance)

llerson C

Thomas Jefferson National Accelerator Facility

Q²-Evolution of the Gerasimov-Drell-Hearn Integral (cont.)

The neutron A_1^n spin structure function

Thomas Jefferson National Accelerator Facility

Quark-Gluon Correlations

$$g_{2}(x,Q^{2}) = g_{2}^{WW}(x,Q^{2}) + \overline{g}_{2}(x,Q^{2})$$
$$g_{2}^{WW}(x,Q^{2}) = -g_{1}(x,Q^{2}) + \int_{x}^{1} g_{1}(y,Q^{2}) \frac{dy}{y}$$

- In simple partonic picture $g_2(x)=0$
- Wandzura and Wilczek have shown that g_2 can be written in two parts:
 - one given by g_1 in twist-2 contributions
 - the other originating solely from quark-gluon correlations (twist-3)

Twist-2

Twist-3

$$d_2^n(Q^2) = \int_0^1 x^2 \left[2g_1^n(x,Q^2) + 3g_2^n(x,Q^2) \right] dx \qquad d_2 = \left(2\chi_B + \chi_E \right) / 3$$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

The neutron g_2 structure function

- First measurements of g₂ in Hall A order of magnitude improvement in accuracy over SLAC E155X
- Preliminary data indicate significant excess over simple prediction
- First quantitative information(?) of twist-3 effects

Hall A E97-103

ellerson q

Quark-Hadron Duality

- Quark-Hadron Duality implies that properly averaged hadronic observables can be described by perturbative QCD in a certain kinematic regime
- QHD must hold in the scaling region
- QHD must break down at very low Q²
- Extensive data set from Hall C shows that QHD works well down to Q² ~ 0.5 GeV²
- Once QHD has been verified, it provides a relation between the resonance region and the DIS region

⁽c) Ioana Niculescu 02/02/00

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

$R=\sigma_L/\sigma_T$ in Resonance Region

- First measurements of R
 (yielding the longitudinal
 structure function F_L) in the
 resonance region
- Surprisingly strong resonance structure evident in F_L
- Allows test of QHD in F_L
- Moments of F_L can be directly compared to Lattice Gauge Theory calculations

Hall C E94-110

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Spin Duality

- First preliminary results of measurements of g_1^p in the resonance region
- Spin duality appears to set in at Q² > 1.5 GeV²
- Opens possibility to extend measurements of spin structure functions to smaller values of W (larger values of x, shown is the Nachtmann variable ξ, which is x with a target mass correction)

Hall B E91-023

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

ellerson G

MAD Spectrometer in Hall A

Thomas Jefferson National Accelerator Facility

Expected results with 12 GeV upgrade

QCD Sum Rules

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Jefferson J

Real Compton Scattering

- Wide-Angle Compton Scattering (WACS) provides information on the partonic structure of the nucleon through the moments of the Generalized Parton Distributions
- First, the dominant mechanism of Real Compton Scattering at large values of s and t (~10 GeV²) has to be established:
 - pQCD
 - momentum shared by hard gluon exchange
 - 3 active quarks
 - valence configuration dominates
 - scaling: $d\sigma/dt = f(\theta_{CM})/s^6$
 - Handbag diagram
 - hard scattering from single quark
 - momentum shared by soft overlap
 - 1-body form factor
 - soft gluon exchange neglected

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Real Compton Scattering (cont.)

"Sweep" magnet essential for electron/photon separation

Hall A E99-114

efferson g

in plane events

Thomas Jefferson National Accelerator Facility

Real Compton Scattering (cont.)

- On-line analysis of ~60 % of data
- Demonstrates feasibility of WACS at high luminosity (three orders higher than at Cornell)
- Proves dominance of softoverlap mechanism (handbag)
- AS, KS, COZ, CZ: variety of pQCD calculations

proton angle in CM system

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

ellerson G

Summary

- Study of Nucleon Spin Structure provides fascinating insight into the partonic structure of the nucleon
- Recent results from Jefferson Lab have contributed significantly to this field in a wide variety of aspects
 - Sensitive measurements of the Q²-evolution of the GDH integral
 - First accurate measurements of A_1^n at large x and of g_2^n
 - First L/T separation in the resonance region
 - First high-luminosity measurement of Wide Angle Compton Scattering
- These studies will continue and be expanded strongly with the 12 GeV upgrade

Thomas Jefferson National Accelerator Facility

ollerson C

Proton

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

S&T Review, july 15-17, 2002, 24