Hadron Form Factors
Rolf Ent
Jefferson Lab

Science & Technology Review
July 2002

• Introduction
• Pion Form Factor
• G_E^p/G_M^p ratio
• G_E^n
• G_M^n
• Strangeness Form Factors
• Outlook
How are the Nucleons Made from Quarks and Gluons?

Why are nucleons interacting via V_{NN} such a good approximation to nature?
How do we understand QCD in the confinement regime?

A) The distribution of u, d, and s quarks in the hadrons
 (spatial structure of charge and magnetization in the nucleons is an essential ingredient for conventional nuclear physics; the flavor decomposition of these form factors will provide new insights and a stringent testing ground for QCD-based theories of the nucleon)

B) The excited state structure of the hadrons

C) The spin structure of the hadrons

D) Other hadron properties
 (polarizability, quark correlations, ….)
Nucleon and Pion Form Factors

• Fundamental ingredients in “Classical” nuclear theory
• A testing ground for theories constructing nucleons from quarks and gluons.
 - spatial distribution of charge, magnetization
• Experimental insights into nucleon structure from the flavor decomposition of the nucleon form factors

\[
\begin{align*}
&G_E^p, G_E^n, G_E^{p,Z} \\
&G_M^p, G_M^n, G_M^{p,Z}
\end{align*}
\]

\[\Rightarrow\]

\[
\begin{align*}
&G_E^u, G_E^d, G_E^s \\
&G_M^u, G_M^d, G_M^s
\end{align*}
\]

• Additional insights from the measurement of the form factors of nucleons embedded in the nuclear medium
 - implications for binding, equation of state, EMC…
 - precursor to QGP
Historical Overview

Stern (1932) measured the proton magnetic moment $\mu_p = 2.79 \mu_{\text{Dirac}}$ indicating that the proton was not a point-like particle.

Hofstadter (1950's) provided the first measurement of the proton's radius through elastic electron scattering.

Subsequent data (\leq 1993) were based on:
- Rosenbluth separation for proton, severely limiting the accuracy for G_{E}^{p} at $Q^2 > 1 \text{ GeV}^2$

As yet, no “ab initio” calculations available, waiting for Lattice QCD.

Main interpretation based on Vector-Meson Dominance:
- In simplest form resulting in dipole form factor:

$$G_D = \left(\frac{\Lambda^2}{\Lambda^2 + Q^2} \right)^2 \quad \text{with} \quad \Lambda = 0.84 \text{ GeV}$$

Adylov et al. (1970's) provided the first measurement of the pion's radius through pion-atomic electron scattering.

Subsequent measurements at Fermilab and CERN (1980's)

“Ab initio” calculations of the pion far simpler
- In asymptotic region, $F_\pi \rightarrow 8\pi\alpha_s f_\pi^2 Q^{-2}$
Charged Pion Electromagnetic Form Factor

Potential to approach region where perturbative QCD applies

Hall C E93-021 results
Projected E01-004 and 12 GeV results
World Data in 1993
Measurement of G_E^p/G_M^p to $Q^2 = 5.6 \text{ GeV}^2$ (E99-007)

Earlier nucleon form factor data used Rosenbluth separation
Leading to large systematic errors in G_E^p since $G_E^p < G_M^p$ for $Q^2 > 1 \text{ (GeV/c)}^2$
Measurement of G_E^p/G_M^p to $Q^2 = 5.6 \text{ GeV}^2$ (E99-007)

Earlier nucleon form factor data used Rosenbluth separation
Leading to large systematic errors in G_E^p since $G_E^p < G_M^p$ for $Q^2 > 1 \text{ (GeV/c)}^2$

Polarization observables resolve this shortcoming
f.i. by measuring recoil polarization:

$$^1\text{H}(\bar{e}, e'\bar{p})$$

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_t} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

Key is high beam current
high polarization
focal plane polarimeter
Measurement of G_E^p/G_M^p to $Q^2 = 5.6$ GeV2 (E99-007)

Earlier nucleon form factor data used Rosenbluth separation
Leading to large systematic errors in G_E^p since $G_E^p < G_M^p$ for $Q^2 > 1$ (GeV/c)2

E93-027 observed linear decrease of G_E^p/G_M^p
E99-007 extended the data set to 5.6 (GeV/c)2 using a Pb-glass calorimeter

Linear trend is observed to continue

The data do not approach basic pQCD scaling
$F_2/F_1 \propto 1/Q^2$ (Bjørken)

Ralston et al. include quark orbital angular momentum L_q
$F_2/F_1 \propto 1/Q$
Measurement of G_E^p/G_M^p to $Q^2 = 5.6 \text{ GeV}^2$

Hall A E93-027 and E99-007 results

$Q^2 \text{ [GeV}^2\text{]}$

$\mu_p G_E^p/G_M^p$

- E93-027
- E99-007
- SU(6) breaking + CQ FF
- SU(6) breaking
- CQM
- Soliton
- VMD
- CQM + Goldstone
Radial Charge Distribution

In Breit frame

\[G_E^p(k^2) = \int p(r) j_0(kr)r^2 dr \quad \text{with} \quad k^2 = \frac{Q^2}{1 + \tau} \]

k first-order correction for Breit-frame transformation

• Fourier-Bessel analysis

\[\rho(r) = \sum_{n=1}^{n_{\text{max}}} a_n j_0(k_n r) \Theta(R - r) \quad \text{with} \quad k_n = \frac{n\pi}{R} \]

Jim Kelly

Proton densities

[Jefferson Lab]

Thomas Jefferson National Accelerator Facility
Extensions

J. Arrington and R. Segel
E01-001 (Hall A)
Super Rosenbluth separation

\[R_1 = \frac{\sigma(E_A, Q_1^2)}{\sigma(E_B, Q_1^2)} = K_1 \frac{\rho_1^2 + \varepsilon_{A1}^{-1} K Q_1^2}{\rho_1^2 + \varepsilon_{B1}^{-1} K Q_1^2} \]

with \(\rho_1 = \frac{G_E^P}{G_M^P} \)

at \(Q_1^2 = 1.9, 2.8 \) and 4.2 GeV\(^2\)
and \(Q_2^2 = 0.5 \) GeV\(^2\)

C.F. Perdrisat et al.
E01-109 (Hall C)
Use HMS (with new Focal Plane Polarimeter)
and larger Pb-glass calorimeter
$^{2\text{H}}(\vec{e},e'^{\prime}\vec{n})$
G_n^E Experiment with DNP ND$_3$ Target $^2\bar{\text{H}}(\bar{e}, e'n)$
Neutron Electric Form Factor G_E^n

• G_E^n(Madey,Kowalski) – high current polarized beam, unpolarized LD$_2$ target, neutron polarimeter & neutron precession magnet.
• G_E^n(Day) – low intensity polarized beam ND$_3$ polarized target and neutron detector.
Neutron Electric Form Factor G_E^n

Hall C Experiment E93-038 (Madey, Kowalski)

- G_E^n (Hall A) – polarized beam, polarized 3He target, and neutron detector

Pion cloud not sufficient

Relativistic effects important ingredient
Measurement of G^n_M at low Q^2 from $^3\text{He}(\bar{e},e')$

Hall A E95-001

$Q^2=0.1,0.2 \ (\text{GeV/c})^2$
extracted from full calculation (W.Xu et al.
PRL 85, 2900 (2000))

$Q^2=0.3-0.6$ extracted from PWIA, more reliable extraction requires improved theory (in progress)
Measurement of G^m_n at low Q^2 from $^3\text{He}(\bar{e},e')$

Hall A E95-001

$Q^2=0.1,0.2$ (GeV/c)2 extracted from full calculation (W.Xu et al. PRL 85, 2900 (2000))

$Q^2=0.3-0.6$ extracted from PWIA, more reliable extraction requires improved theory (in progress)
Measurement of G^n_M from CLAS

\[\frac{^2H(e,e'n)}{^2H(e,e'p)} \Rightarrow G^n_M \]

- 6 GeV Projections
- 12 GeV Projections
Strange Quark Currents in the Nucleon G^s_E, G^s_M

Polarized Electron
Unpolarized Target

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

For a Nucleon:

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \right] \varepsilon G^\gamma_E G^Z_E + \tau G^\gamma_M G^Z_M (1 - 4\sin^2\theta_W) \varepsilon' G^\gamma_M G^e_A$$

\[
\varepsilon = \frac{1}{1 + 2(1 + \tau) \tan^2\theta/2} \quad \varepsilon' = [\tau (1 + \tau)(1 - \varepsilon^2)]^{-1/2}
\]

$$\tau = Q^2/4m^2$$
Q^2 is the four momentum transfer
θ is the laboratory electron scattering angle

forward angles
HAPPEX, Mainz, G^s: sensitive to G^s_E and G^s_M

backward angles
SAMPLE, G^s: sensitive to G^s_M and G^e_A

weak charge of the proton Q^p_{weak}
Strange Form Factors G_E^s and G_M^s

What we have on the books now
Strange Form Factors G_E^s and G_M^s

Expected Forward Angle Results by late 2003
Strange Form Factors G_E^s and G_M^s

Rosenbluth separation of G_E^s and G_M^s

Projected data indicated by open symbols are not approved yet
High Precision Nucleon Form Factors at JLab

Q^2 range

<table>
<thead>
<tr>
<th></th>
<th>Present</th>
<th>Planned (12 GeV)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_E^p</td>
<td>5.6</td>
<td>9.0 (14.0)</td>
<td>Precision Measurements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Does G_E^p/G_M^p keep dropping linearly?</td>
</tr>
<tr>
<td>G_M^p</td>
<td></td>
<td>(20.0)</td>
<td>Q$^2 > 14$ makes assumptions about G_E^p</td>
</tr>
<tr>
<td>G_E^n</td>
<td>1.5</td>
<td>3.4 (5.5)</td>
<td>Precision Measurements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$^3\text{He}(\bar{e}, e' n)$ for $Q^2 > 1.5$</td>
</tr>
<tr>
<td>G_M^n</td>
<td>5.0</td>
<td>(14.0)</td>
<td>Precision Measurements</td>
</tr>
<tr>
<td>$G_E^s + \alpha G_M^s$</td>
<td>0.5</td>
<td>1.0</td>
<td>α small (non-0), now only at $Q^2=0.5$</td>
</tr>
<tr>
<td>G_M^s</td>
<td></td>
<td>0.8</td>
<td>Presently only approved at $Q^2=0.1$ and 0.8</td>
</tr>
</tbody>
</table>
Summary

- **F^π** First measurement away from $Q^2 \approx 0$
 no Q\(^{-2}\) behavior yet
- **G_{E}^{p}** Precise data set up to $Q^2 = 5.6$ (GeV/c\(^2\))
 charge differs from current distribution
 $Q^2 = 9$ (GeV/c\(^2\)) planned
- **G_{E}^{n}** 2 successful experiments, precise data anticipated
 higher Q^2 possible and approved
- **G_{M}^{n}** $Q^2 < 1$ data from 3He(e,e’)
 high Q^2 data from 2H(e,e’n)/2H(e,e’p) anticipated
- **G_{E}^{s}, G_{M}^{s}** Happex-2, Happex-He, G0 coming up
 + Sample, Happex, Mainz
 \Rightarrow Stringent constraints on strangeness contributions
 \Rightarrow Enables Q-Weak Standard Model test