Hadron Form Factors Rolf Ent Jefferson Lab

Science & Technology Review July 2002

- Introduction
- •Pion Form Factor
- • G_E^{p}/G_M^{p} ratio
- ${}^{\bullet}G_{E}{}^{n}$
- • G_M^n
- •Strangeness Form Factors
- •Outlook

How are the Nucleons Made from Quarks and Gluons?

Why are nucleons interacting via V_{NN} such a good approximation to nature? How do we understand QCD in the confinement regime?

A) The distribution of u, d, and s quarks in the hadrons

(spatial structure of charge and magnetization in the nucleons is an essential ingredient for conventional nuclear physics; the flavor decomposition of these form factors will provide new insights and a stringent testing ground for QCD-based theories of the nucleon)

B) The excited state structure of the hadrons

C) The spin structure of the hadrons

D) Other hadron properties (polarizability, quark correlations,)

Nucleon and Pion Form Factors

- Fundamental ingredients in "Classical" nuclear theory
- A testing ground for theories constructing nucleons from quarks and gluons.
 - spatial distribution of charge, magnetization
- Experimental insights into nucleon structure from the flavor decomposition of the nucleon form factors

 $\begin{array}{c} \text{PRECISION} \\ G_{E}^{p} & G_{E}^{n} & G_{E}^{p,Z} \\ G_{M}^{p} & G_{M}^{n} & G_{M}^{p,Z} \end{array} \right\} \qquad \Rightarrow \qquad \begin{array}{c} G_{E}^{u} & G_{E}^{d} & G_{E}^{s} \\ G_{M}^{u} & G_{M}^{d} & G_{M}^{s} \end{array}$

•Additional insights from the measurement of the form factors of nucleons embedded in the nuclear medium

- implications for binding, equation of state, EMC...
- precursor to QGP

Historical Overview

Stern (1932) measured the proton magnetic moment $\mu_p = 2.79 \ \mu_{Dirac}$ indicating that the proton was not a point-like particle Hofstadter (1950's) provided the first measurement of the proton's radius through elastic electron scattering Subsequent data (\leq 1993) were based on:

•Rosenbluth separation for proton,

severely limiting the accuracy for G_{E}^{p} at $Q^{2} > 1 \text{ GeV}^{2}$

As yet, no "ab initio" calculations available, waiting for Lattice QCD Main interpretation based on Vector-Meson Dominance

•In simplest form resulting in dipole form factor:

$$G_D = \left\{ \frac{\Lambda^2}{\Lambda^2 + Q^2} \right\}^2$$
 with $\Lambda = 0.84 \, GeV$

Adylov et al. (1970's) provided the first measurement of the pion's radius through pion-atomic electron scattering. Subsequent measurements at Fermilab and CERN (1980's) Pion

Proton

"Ab initio" calculations of the pion far simpler • In asymptotic region, $F_{\pi} \rightarrow 8\pi\alpha_s f_{\pi}^2 Q^{-2}$

Charged Pion Electromagnetic Form Factor

Potential to approach region where perturbative QCD applies

 \square

efferson Lab

Thomas Jefferson National Accelerator Facility

٦

World Data in 1993

Measurement of $G_{E^{P}}/G_{M^{P}}$ to $Q^{2} = 5.6 \text{ GeV}^{2}$ (E99-007)

Earlier nucleon form factor data used Rosenbluth separation Leading to large systematic errors in $G_{F^{p}}$ since $G_{F^{p}} < G_{M^{p}}$ for $Q^{2} > 1$ (GeV/c)²

Thomas Jefferson National Accelerator Facility

lerson (

Earlier nucleon form factor data used Rosenbluth separation Leading to large systematic errors in $G_{E^{p}}$ since $G_{E^{p}} < G_{M^{p}}$ for $Q^{2} > 1$ (GeV/c)²

Polarization observables resolve this shortcoming f.i. by measuring recoil polarization:

 1 H($\vec{e}, e'\vec{p}$)

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

Key is high beam current high polarization focal plane polarimeter

Measurement of $G_{E^{P}}/G_{M^{P}}$ to $Q^{2} = 5.6 \text{ GeV}^{2}$ (E99-007)

Earlier nucleon form factor data used Rosenbluth separation Leading to large systematic errors in $G_{E^{p}}$ since $G_{E^{p}} < G_{M^{p}}$ for $Q^{2} > 1$ (GeV/c)²

E93-027 observed linear decrease of G_E^p/G_M^p E99-007 extended the data set to 5.6 (GeV/c)² using a Pb-glass calorimeter

Linear trend is observed to continue

The data do not approach basic pQCD scaling $F_2/F_1 \propto 1/Q^2$ (Bjørken)

Ralston et al. include quark orbital angular momentum L_q $\boxtimes F_2/F_1 \propto 1/Q$

Measurement of G_{E}^{p}/G_{M}^{p} to $Q^{2}=5.6 \ GeV^{2}$

Thomas Jefferson National Accelerator Facility

lerson (

Radial Charge Distribution

In Breit frame

$$G_E^p(k^2) = \int p(r) j_0(kr) r^2 dr$$
 with $k^2 = \frac{Q^2}{1+\tau}$

k first-order correction for Breit-frame transformation

Extensions

J. Arrington and R. Segel E01-001 (Hall A) Super Rosenbluth separation

$$R_{1} = \frac{\sigma(E_{A}, Q_{1}^{2})}{\sigma(E_{B}, Q_{1}^{2})} = K_{1} \frac{\rho_{1}^{2} + \varepsilon_{A1}^{-1} K Q_{1}^{2}}{\rho_{1}^{2} + \varepsilon_{B1}^{-1} K Q_{1}^{2}}$$

with $\rho_{1} = \frac{G_{E}^{P}}{G_{M}^{P}}$

at Q1²=1.9, 2.8 and 4.2 GeV² and Q2²=0.5 GeV²

C.F. Perdrisat *et al.* E01-109 (Hall C) Use HMS (with new Focal Plane Polarimeter) and larger Pb-glass calorimeter

Gⁿ_E **Experiment with Neutron Polarimeter**

 2 H($\vec{e}, e'\vec{n}$)

G_{E}^{n} Experiment with DNP ND₃ Target $^{2}\vec{H}(\vec{e},e'n)$

Neutron Electric Form Factor G_Fⁿ

 $\bullet G_{F}^{n}$ (Madey, Kowalski) – high current polarized beam, unpolarized LD₂ target, neutron polarimeter & neutron precession magnet.

 $G_{E^{n}}(Day)$ – low intensity polarized beam ND₃ polarized target and neutron detector.

Neutron Electric Form Factor G_{E^n}

Pion cloud not sufficient

Relativistic effects important ingredient

• G_{E}^{n} (Hall A) – polarized beam, polarized ³He target, and neutron detector

Measurement of G^{n}_{M} at low Q² from ${}^{3}\vec{H}e(\vec{e},e')$

Hall A E95-001

Q²=0.1,0.2 (GeV/c)² extracted from full calculation (W.Xu et al. PRL 85, 2900 (2000))

Q²=0.3-0.6 extracted from PWIA, more reliable extraction requires improved theory (in progress)

Measurement of G^{n}_{M} at low Q² from ${}^{3}\vec{H}e(\vec{e},e')$

Hall A E95-001

Q²=0.1,0.2 (GeV/c)² extracted from full calculation (W.Xu et al. PRL 85, 2900 (2000))

Q²=0.3-0.6 extracted from PWIA, more reliable extraction requires improved theory (in progress)

Measurement of G^n_M from CLAS

Strange Quark Currents in the Nucleon $G_{F^{s}}$, $G_{M^{s}}$

Strange Form Factors G_E^s and G_M^s

What we have on the books now

Strange Form Factors G_E^s and G_M^s

Thomas Jefferson National Accelerator Facility

Herson G

Strange Form Factors G_E^s and G_M^s

Rosenbluth separation of G_E^s and G_M^s

Projected data indicated by open symbols are not approved yet

lerson (

High Precision Nucleon Form Factors at JLab

Q ² range			
	Present	Planned (12 GeV)	Comments
G_E^p	5.6	9.0	Precision Measurements
		(14.0)	Does G_E^{p}/G_M^{p} keep dropping linearly?
G_M^p			$Q^2 > 14$ makes assumptions about G_E^p
		(20.0)	
G_E^n	1.5	3.4	Precision Measurements
		(5.5)	${}^{3}\vec{H}e(\vec{e},e'n)$ for Q ² > 1.5
G_M^n	5.0		Precision Measurements
		(14.0)	
$G_E^s + \alpha G_M^s$	0.5	1.0	α small (non-0), now only at Q ² =0.5
G _M ^s		0.8	Presently only approved at Q ² =0.1 and 0.8

Summary

- \mathbf{F}^{π} First measurement away from $Q^2 \approx 0$ no Q^{-2} behavior yet
- G_E^p Precise data set up to Q²=5.6 (GeV/c)² charge differs from current distribution Q² = 9 (GeV/c)² planned
- G_Eⁿ 2 successful experiments, precise data anticipated higher Q² possible and approved
- $G_M{}^n Q^2 < 1$ data from ³He(e,e') high Q² data from ²H(e,e'n)/²H(e,e'p) anticipated
- G_{E}^{s} , G_{M}^{s} Happex-2, Happex-He, G0 coming up
 - + Sample, Happex, Mainz
 - \Rightarrow Stringent constraints on strangeness contributions
 - \Rightarrow Enables Q-Weak Standard Model test