The Parton-Hadron Transition in Structure Functions and Moments Rolf Ent Jefferson Lab Science & Technology Review June 2003

- •Introduction: QCD and the Strong Nuclear Force
- •The Parton-Hadron Transition in Moments of Structure Functions
- •Quark-Hadron Duality: How Local is the Transition?
- •Applications and Theoretical Understanding
- •Summary

How do we understand QCD in the confinement regime?

- A) What are the spatial distributions of u, d, and s quarks in the hadrons?
- B) What is the excited state spectrum of the hadrons, and what does it reveal about the underlying degrees of freedom?
- C) What is the QCD basis for the spin structure of the hadrons?
 Q² evolution of structure functions and their moments
 Extended GDH sum rule, Bjorken sum rule
- D) What can other hadron properties tell us about 'Strong QCD'? Inclusive Resonance Electroproduction and Quark-Hadron Duality Q² evolution of structure functions and their moments

QCD and the Strong Nuclear Force

QCD has the most bizarre properties of all the forces in nature

• Confinement:

restoring force between quarks at large distances equivalent to 10 tons, *no matter how far apart*

• Asymptotic freedom:

quarks feel almost no strong force when closer together

QCD (+ electro-weak) in principle describes all of nuclear physics - at all distance scales *but how does it work?*

QCD and the Parton-Hadron Transition

QCD and the Parton-Hadron Transition

Inclusive Electron Scattering - Formalism

The Parton-Hadron Transition in Structure Functions and Moments

- •Introduction: QCD and the Strong Nuclear Force
- •The Parton-Hadron Transition in Moments of Structure Functions
- •Quark-Hadron Duality: How Local is the Transition?
- •Applications and Theoretical Understanding
- •Summary

QCD and Moments

ferson C

• Moments of the Structure Function $M_n(Q^2) = \int_0^1 dx x^{n-2}F(x,Q^2)$

Let $F(x,Q^2) = xf(x)$ be a probability density distribution, describing the velocity distribution in a dilute gas

 $M_1 = 1$

 $M_2 = \langle x \rangle$ average velocity $M_3 = \langle x^2 \rangle$ variance etc.

In QCD the moments are also dependent on Q^2 due to Q^2 evolution of probability density distributions $\rightarrow \langle x \rangle$, $\langle x^2 \rangle$ vary with Q^2

QCD and the Operator-Product Expansion

Moments of F_2^p @ Low Q^2

Moments of F_2^p @ Low Q^2

Moments of F_2^p @ Low Q^2

n = 2 Moments of F_2 , F_1 and F_L : $M_n(Q^2) = \int_0^1 dx x^{n-2}F(x,Q^2)$

Elastic Contributions

$$\mathbf{F}_1^{\mathrm{EL}} = \mathbf{G}_{\mathrm{M}}^2 \,\delta(x\text{-}1)$$

$$F_2^{EL} = \frac{(G_E^2 + \tau G_M^2)\delta(x-1)}{1+\tau}$$
$$\tau = Q^2/4M_p^2$$
$$F_L^{EL} = G_E^2 \delta(x-1)$$

Flat Q^2 dependence \rightarrow small higher twist! - not true for contributions from the elastic peak (bound guarks)

n = 4 Moments of F_2 , F_1 and F_L

Neglecting elastic contribution, n = 4 moments have only a small Q^2 dependence as well.

Momentum sum rule

$$M_{L}^{(n)} = \alpha_{s}(Q^{2}) \{ \frac{4M_{2}^{(n)}}{3(n+1)} + 2 \frac{c \int dx \, xG(x,Q^{2})}{(n+1)(n+2)} \}$$

Gluon distributions!

This is only at leading twist and for zero proton mass

Must remove non-zero proton \Rightarrow mass effects from data to extract moment of $xG(x,Q^2)$ \Rightarrow

Work in progress

Moments of g_1^p (= Γ_1^p)

Moments of g_1^p (= Γ_1^p)

Moments of g_1^p (= Γ_1^p)

Moments of g_1^n and $g_1^p - g_1^n$

Hall A ${}^{3}He(e,e')$ to extract $g_{1}{}^{n}$ and its moment $\Gamma_{1}{}^{n}$ (E94-010) • Similar ideas as with proton • Here, whole region negative

Moments of g_1^n and $g_1^p - g_1^n$

Hall A ³He(e,e') to extract g_1^n and its moment Γ_1^n • Similar ideas as with proton • Here, whole region negative

Combine Hall A g_1^n with Hall B g_1^p data

Moments of g_1^n and $g_1^p - g_1^n$

Summary I - Moments

Resonances are an integral part of the Structure Function Moments at Low Q^2

(Note: QCD deals with the Moments and does not care what contributes to the moments!)

The Structure Function Moments have a smooth behavior as a function of Q^2 , and in fact pick up almost uniquely the quark-quark interactions in the SU(6) ground states

This seems to indicate that the parton-hadron transition occurs in a local and small region, with only few resonances

→ "Quark-Hadron Duality"

→ Let us examine the structure functions themselves rather than their moments

The Parton-Hadron Transition in Structure Functions and Moments

- •Introduction: QCD and the Strong Nuclear Force
- •The Parton-Hadron Transition in Moments of Structure Functions
- •Quark-Hadron Duality: How Local is the Transition?
- •Applications and Theoretical Understanding
- •Summary

Quark-Hadron Duality

complementarity between quark and hadron descriptions of observables

At high enough energy:

Hadronic Cross Sections averaged over appropriate energy range

Perturbative Quark-Gluon Theory

lferson C

Can use either set of complete basis states to describe physical phenomena

But why also in limited local energy ranges?

Duality in the F₂ Structure Function

- First observed ~1970 by Bloom and Gilman at SLAC by comparing resonance production data with deep inelastic scattering data
- Integrated F₂ strength in Nucleon Resonance region equals strength under scaling curve. Integrated strength (over all ω') is called Bloom-Gilman integral

Shortcomings:

- Only a single scaling curve and no Q² evolution (Theory inadequate in pre-QCD era)
- No σ_L/σ_T separation \rightarrow F₂ data depend on assumption of R = σ_L/σ_T
- Only moderate statistics

lerson C

Rosenbluth Separations

Rosenbluth Separations

Hall C E94-110: a global survey of longitudinal strength in the resonance region.....

- Spread of points about the linear fits is Gaussian with σ ~ 1.6 % consistent with the estimated point-point experimental uncertainty (1.1-1.5%)
 - a systematic "tour de force"

World's L/T Separated Resonance Data

 $\mathbf{R} = \sigma_{\rm L} / \sigma_{\rm T}$

World's L/T Separated Resonance Data

 $\mathbf{R} = \sigma_{\rm L} / \sigma_{\rm T}$

Duality in the F_2 Structure Function

- Now can truly obtain F₂ structure function data, and compare with DIS fits or QCD calculations/fits (CTEQ/MRST)
- Use Bjorken x instead of Bloom-Gilman's ω'
- Bjorken Limit: Q², v → ∞
- Empirically, DIS region is where logarithmic scaling is observed: Q² > 5 GeV², W² > 4 GeV²
- Duality: Averaged over W, logarithmic scaling observed to work also for Q² > 0.5 GeV², W² < 4 GeV², resonance regime (note: x = Q²/(W²-M²+Q²)
- JLab results: Works quantitatively to better than 10% at such low Q²

lerson C

Duality in F_{T} and F_{L} Structure Functions

QCD and the Operator-Product Expansion

- Moments of the Structure Function $M_n(Q^2) = \int_0^1 dx \ x^{n-2}F(x,Q^2)$ If n = 2, this is the Bloom-Gilman duality integral!
- Operator Product Expansion

$$M_{n}(Q^{2}) = \sum_{k=1}^{\infty} (nM_{0}^{2}/Q^{2})^{k-1} B_{nk}(Q^{2})$$
higher twist logarithmic dependence

Duality is described in the Operator Product Expansion
 as higher twist effects being small or canceling
 DeRujula, Georgi, Politzer (1977)
 Thomas Jefferson National Accelerator Facility

Duality more easily established in Nuclei

but tougher in Spin Structure Functions

CLAS EG1

efferson Pab

CLAS: N- Δ transition region turns positive at Q² = 1.5 (GeV/c)² Elastic and N- Δ transition cause most of the higher twist effects