JLab Nuclear Physics at 12 GeV and Beyond

L. Cardman
Over the Past Two Years

For the 12 GeV Upgrade:

• The science case has expanded dramatically and been documented
• The science case has been strengthened by results from the 6 GeV program
• The hall equipment designs have matured and been documented
• There has been further progress on accelerator-related R&D
• Both the science and the equipment have been further reviewed by the PAC and NSAC

Now All that is Missing is the Formal Start (CD-0)!

For physics “beyond 12 GeV”:

• The outlines of the science motivation are emerging
• Machine design studies reveal promising options for achieving high luminosity in a collider
• The basics have been presented to NSAC
Evolution of the Science Case for the Upgrade

Following the Long Range Plan:

• Hall collaborations prepared Hall-specific pCDRs with:
  - Physics motivating the equipment
  - Technical descriptions of the apparatus with many details
  - Examples of experiments that could be carried out using the equipment to address the motivating physics

• The User Group Formed an Executive Committee to write the pCDR for the overall project *(User’s Meeting Last Summer)*

• PAC23 Reviewed the Science as presented by working groups (mainly committee members) and the equipment

• The Executive Committee developed a Summary of the Physics Case (which was presented to the NSAC Facilities Subcommittee), then

• Wrote the pCDR (now available for community review)
Key new physics:

• Understanding confinement (via meson spectroscopy)
  (defines $E_{\text{max}}$ and requires the addition of “Hall D”)
• Detailed mapping of the quark and gluon wave functions of the nucleons via measurements of:
  − Deep Exclusive Scattering, and
  − Deep Inelastic Scattering as $x \to 1$ for a large range of $Q^2$
    (MAD in Hall A, CLAS upgrade to $\Lambda = 10^{35}$, SHMS in Hall C)

Enhancements to our present physics program:

• Extension of the present program of spin, hadron and nuclear microscopy to higher $Q^2$
  (Higher energies also increase throughput for many experiments now run with 6 GeV beams)
The Science Case Has Evolved Significantly Over the Past Year

As presented to PAC23 (1/03) and NSAC:

- **Gluonic Excitations and the Origin of Confinement**
- **Developing a Unified Description of Hadron Structure**
  - The GPDs as Accessed via Deep(ly) Exclusive Reactions
  - Valence Quark Structure and Parton Distributions
  - Form Factors – Constraints on the GPDs
  - Other Topics in Hadron Structure
- **The Physics of Nuclei**
  - The Short-Range Behavior of the N-N Interaction and Its QCD Basis
  - Identifying and Exploring the Transition from the Nucleon/Meson Description of Nuclei to the Underlying Quark/Gluon Description
- **Symmetry Tests in Nuclear Physics**
  - Standard Model Tests
  - Spontaneous Symmetry Breaking
Gluonic Excitations and the Origin of Confinement

Theoretical studies of QCD suggest that confinement is due to the formation of “Flux tubes” arising from the self-interaction of the glue, leading to a linear potential (and therefore a constant force).

Experimentally, we want to “pluck” the flux tube and see how it responds.

From G. Bali
CLAS Data Demonstrates the Promise of Meson Photoproduction

~500x existing data on photoproduction from a 1 month run with CLAS

$\pi^+\pi^+\pi^-$ events

$\pi^+\pi^+\pi^-$ GeV/c$^2$

Developing a Unified Description of Hadron Structure via the Recently Devised Generalized Parton Distributions

Transverse momentum of partons

Quark angular momentum

Quark spin distributions

Pion distribution amplitudes

Form factors (transverse Quark distributions)

Pion cloud

Quark longitudinal momentum distributions

GPDs

$\xi = \frac{x_B}{2-x_B}$

$\gamma, \pi, \eta, \rho, \omega, K$

$N, N', \Delta, \Lambda$

$H$, $E$ - unpolarized, $\tilde{H}, \tilde{E}$ - polarized GPD

The GPDs Define Nucleon Structure
Generalized Parton Distributions Contain Much More Information than DIS

DIS only measures a cut at $\xi=0$

Quark distribution $q(x)$

Antiquark distribution $\bar{q}(x)$
Proton Properties Measured in Different Experiments

**Elastic Scattering**
- transverse quark distribution in Coordinate space

**DIS**
- longitudinal quark distribution in momentum space

**DES (GPDs)**
- The fully-correlated Quark distribution in both coordinate and momentum space
**DVCS: Single-Spin Asymmetry in $\bar{e}p \rightarrow ep\gamma$**

Measures phase and amplitude directly

**DVCS and Bethe-Heitler are coherent**

⇒ can measure amplitude AND phase

DVCS at 11 GeV can cleanly test correlations in nucleon structure

(data shown – 2000 hours)
CLAS Data Demonstrate The Feasibility of These Experiments: DVCS/BH Beam Spin Asymmetry

- 5.8 GeV energy increases kinematics range.
- Higher statistics allows binning in $Q^2$, $t$, $x$
Extending DIS to High x
The Neutron Asymmetry $A_1^n$

12 GeV will access the valence quark regime ($x > 0.3$), where constituent quark properties are not masked by the sea quarks and glue.
He$^3$ Data Demonstrate the Feasibility of These Experiments

New E99-117 data provide first indication that $A_1^n$ deviates from 0 at large $x$, but are clearly at variance with pQCD prediction assuming Hadron Helicity Conservation.
Determine the Distance Scale for the Transition from ‘Strong’ to pQCD

Pion Elastic Form Factor

Complementary Approach:
Corrections cancel in $\pi^-/\pi^+$ Ratio
(but theoretical interpretation is more ambiguous)

- Simplest valence quark structure
- pQCD is expected to manifest at low momentum transfer
- pQCD and non-pQCD calculations exist
- The asymptotic pion form factor:

$$f_\pi(Q^2) = \frac{12 f^2_\pi \pi C_F \alpha_s(Q^2)}{Q^2}$$
Color Transparency – Now and at 12 GeV

Hall C (e,e’p) experiments at 4 and 5.5 GeV show no evidence for color transparency.

Extending these data to 12 GeV will either reveal color transparency or force us to rethink our understanding of quark-based models of the nucleus.

12 GeV will also permit similar measurements using the (e,e’\(\pi^0\)) reaction, which is expected to show color transparency at lower Q\(^2\).
Identifying and Exploring the Transition from the Meson/Nucleon to the Quark/Gluon Description of Nuclei

Extend the deuteron photodisintegration data to higher energy, confirming the onset of scaling behavior at constant $p_t$. 
Determine Fundamental Parameters of the Standard Model

Primakoff Effect Measurements:

$\Gamma(\eta \rightarrow \gamma \gamma)$ and $\Gamma(\eta' \rightarrow \gamma \gamma) \Rightarrow \eta \eta'$ mixing and quark mass ratio

SM Tests

$\Psi PT$ to $O(p^6)$.....
And Test Its Predictions

- Measurements of $\sin^2(\theta_W)$ below $M_Z$ provide strict tests of the SM.
- Measurements in different systems provide complementary information.
- Moller Parity Violation can be measured at JLab at a level which will impact the Standard Model.
- DIS-Parity violation measurement is easily carried out at JLab.
PAC Conclusions about the Science  
(from Review Summary)

• Gluonic excitations of mesons and the origin of confinement, and the unified description of the quark-gluon structure of the nucleon, primarily through the determination of Generalized Parton Distributions continue to represent the main driving motivations for the 12 GeV upgrade. The physics is well motivated and JLab has a unique opportunity to have strong impact in these areas.

• Two additional areas have outstanding potential to develop into major components of the physics program.
  - a coherent experimental and theoretical physics program to develop a unified description of high-density cold nuclear matter as it can be explored at the 12 GeV facility,
  - measurements that test the Standard Model: in the electro-weak sector as they relate to parity violation in deep-inelastic scattering, and the weak charge of the proton and the electron, as well as in the strong sector as they test the strong interaction Lagrangian through investigation of the radiative decay of $\pi^0$, $\eta$, and $\eta'$ mesons.
Overall it is the judgment of the PAC that the envisioned JLab Upgrade offers an outstanding opportunity for exploring new and fundamental physics issues of widespread interest to the community of nuclear and particle physicists. In many respects the new experimental facilities will be unique in the world. They will also impact issues raised at other facilities. Therefore the PAC enthusiastically endorses the JLab 12 GeV Upgrade in view of the timeliness and high impact it can have on physics issues of concern to a broad spectrum of the nuclear and particle physics community.
SCIENCE (Category 1 – Absolutely Central)

The 2002 NSAC Long Range Plan “strongly recommend[s] the upgrade of CEBAF at Jefferson Laboratory to 12 GeV as soon as possible. [It] is critical for our continued leadership in the experimental study of hadronic matter…” This was one of the four major recommendations of the LRP. The Upgrade has the support of a large and active user community (~1100 scientists from 29 countries); it has been enthusiastically reviewed by numerous outside peer groups and will be unique worldwide. The realization of the Upgrade will create synergies with other fields of research, most notably with large-scale computing, high-energy physics, and astrophysics.

The 12 GeV Upgrade will provide answers to questions of fundamental importance, probing issues that are absolutely central to nuclear science in four main areas:

• The experimental study of gluonic excitations in order to understand the confinement of quarks.
  ..........
• The determination of the quark and gluon wavefunctions of the nuclear building blocks.....
• Exploring the basis of our understanding of nuclei. ..... 
• Tests of the Standard Model of electro-weak interactions and the determination of fundamental parameters of QCD. .....
The Development of This Outstanding Science Case Took Place as Part of a Detailed Study of the Experimental Apparatus Needed

In Sum:

• Four major user community workshops (4/94, 6/98, 1/00, and 7/02)
• Extensive physics experiment designs and equipment designs carried out by the existing hall collaborations and the new GlueX collaboration
• PAC review of science and equipment (7/00) prior to completion of the 2/01 “White Paper” that defines the science and the equipment requirements
• Two-year effort (post NSAC) to refine equipment designs and expand science program, including writing of hall-specific pCDRs
• Second PAC review of science and equipment (1/03)
• pCDR for the science and equipment (in final review)
Plans for 12 GeV Began With The Equipment in the Existing Experimental Halls

Hall A (2 HRS)

Hall B (CLAS)

Hall C (SOS/HMS)
And Ended With Enhanced and/or Complementary Equipment in Halls A, B, & C and a New Hall D

A

Medium Acceptance Detector (MAD) at high luminosity and intermediate angles

B

CLAS upgraded to higher \(10^{35}\) luminosity and coverage

C

Super High Momentum Spectrometer (SHMS) at high luminosity and forward angles

D

9 GeV tagged polarized photons and a \(4\pi\) hermetic detector
Four Hall-Specific pCDRs Have Been Written
### Hall A: MAD and the HRS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MAD design</th>
<th>HRS performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central momentum range</td>
<td>0.4 - 6.0 GeV/c</td>
<td>0.2 - 4.3 GeV/c</td>
</tr>
<tr>
<td>Scattering angle range</td>
<td>6° - 130°</td>
<td>6° - 150°</td>
</tr>
<tr>
<td>Momentum acceptance</td>
<td>± 15%</td>
<td>± 5%</td>
</tr>
<tr>
<td>Momentum resolution</td>
<td>0.1%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>28 msr (≥35°)</td>
<td>6 msr (standard)</td>
</tr>
<tr>
<td></td>
<td>6 msr (6°- 12°)</td>
<td>12 msr (forward)</td>
</tr>
<tr>
<td>Angular resolution (hor)</td>
<td>1 mrad</td>
<td>0.5 mrad</td>
</tr>
<tr>
<td>Angular resolution (ver)</td>
<td>1 mrad</td>
<td>1 mrad</td>
</tr>
<tr>
<td>Target length acceptance (90°)</td>
<td>50 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>Vertex resolution</td>
<td>0.5 cm</td>
<td>0.1 cm</td>
</tr>
<tr>
<td>Maximum DAQ rate</td>
<td>20 kHz</td>
<td>5 kHz</td>
</tr>
<tr>
<td>e/h Discrimination</td>
<td>$0.5 \times 10^5$ at 98%</td>
<td>$2 \times 10^5$ at 99%</td>
</tr>
<tr>
<td>π/K Discrimination</td>
<td>100 at 95%</td>
<td>100 at 95%</td>
</tr>
</tbody>
</table>
## Hall B: CLAS++

### Detector Coverage

<table>
<thead>
<tr>
<th></th>
<th>Forward detector</th>
<th>Central Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Angular coverage</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracks (inbending)</td>
<td>8° – 37°</td>
<td>40° – 135°</td>
</tr>
<tr>
<td>Tracks (outbending)</td>
<td>5° – 37°</td>
<td>40° – 135°</td>
</tr>
<tr>
<td>Photons</td>
<td>3° – 37°</td>
<td>40° – 135°</td>
</tr>
</tbody>
</table>

| **Track resolution** |                  |                  |
| \( \delta p/p \)     | 0.003 – 0.001p   | \( \delta p_T/p_T = 0.02 \) |
| \( \delta \theta(mr) \) | 1                | 8                |
| \( \delta \phi(mr) \) | 2 – 5            | 2                |

### Detector Performance

|                      |                  |                  |
| **Photon detection** |                  |                  |
| Energy range (MeV)   | > 150            | > 60             |
| \( \delta \theta(mr) \) | 4 (1 GeV)       | 15 (1 GeV)       |

| **Neutron detection** |                  |                  |
| \( \eta^{eff} \)     | 0.5 (\( p > 1.5 GeV/c \)) | NA |

| **Particle ID**       |                  |                  |
| **Electron/pion**     | > 1000 (\( p < 4.8 GeV/c \)) | NA  |
|                       | > 100 (\( p > 4.8 GeV/c \)) | NA  |
| \( \pi^+/\pi^- \)    | full range       | <0.65 GeV/c      |
| K/\( \pi \)          | full range       | <0.65 GeV/c      |
| K\(^+\)/p, K\(^+\)/p | <4.5 GeV/c       | <0.90 GeV/c      |
| \( \pi^0 \rightarrow \gamma\gamma \) | full range | full range |
| \( \eta \rightarrow \gamma\gamma \) | full range | full range |
# Hall C: The SHMS

![Diagram of SHMS](image)

## Table: SHMS Performance and Specification

<table>
<thead>
<tr>
<th><strong>Parameter</strong></th>
<th><strong>HMS Performance</strong></th>
<th><strong>SHMS Specification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of Central Momentum</td>
<td>0.4 to 7.3 GeV/c</td>
<td>2.5 to 11 GeV/c</td>
</tr>
<tr>
<td>Momentum Acceptance</td>
<td>± 10%</td>
<td>-15% to +25%</td>
</tr>
<tr>
<td>Momentum Resolution</td>
<td>0.1% – 0.15%</td>
<td>&lt; 0.2%</td>
</tr>
<tr>
<td>Scattering Angle Range</td>
<td>10.5 to 90 degrees</td>
<td>5.5 to 25 degrees</td>
</tr>
<tr>
<td>Target Length Accepted at 90</td>
<td>10 cm</td>
<td>50 cm</td>
</tr>
<tr>
<td>Horizontal Angle Acceptance</td>
<td>± 32 mrad</td>
<td>± 18 mrad</td>
</tr>
<tr>
<td>Vertical Angle Acceptance</td>
<td>± 85 mrad</td>
<td>± 50 mrad</td>
</tr>
<tr>
<td>Solid Angle Acceptance</td>
<td>8.1 msr</td>
<td>4 msr (LSA tune)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 msr (SSA tune)</td>
</tr>
<tr>
<td>Horizontal Angle Resolution (yptar)</td>
<td>0.8 mrad</td>
<td>2-4 mrad</td>
</tr>
<tr>
<td>Vertical Angle Resolution (xptar)</td>
<td>1.0 mrad</td>
<td>1-2 mrad</td>
</tr>
<tr>
<td>Vertex Reconstruction Resolution (ytar)</td>
<td>0.3 cm</td>
<td>0.2 - 0.6 cm</td>
</tr>
<tr>
<td>Maximum DAQ Event Rate</td>
<td>2,000 events/second</td>
<td>10,000 events/second</td>
</tr>
<tr>
<td>Maximum Flux within Acceptance</td>
<td>5 MHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>e/h Discrimination</td>
<td>&gt;1000:1 at 98% efficiency</td>
<td>1000:1 at 98% efficiency</td>
</tr>
<tr>
<td>π/K Discrimination</td>
<td>100:1 at 95% efficiency</td>
<td>100:1 at 95% efficiency</td>
</tr>
</tbody>
</table>
Hall D: The GlueX Detector

<table>
<thead>
<tr>
<th>Capability</th>
<th>Quantity</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged particles</td>
<td>Coverage</td>
<td>$1 \leq \theta \leq 170^\circ$</td>
</tr>
<tr>
<td></td>
<td>Momentum resolution $(5^\circ - 140^\circ)$</td>
<td>$\sigma_p/p \approx 1-2%$</td>
</tr>
<tr>
<td></td>
<td>Position resolution</td>
<td>$\sigma \approx 150 - 200 \mu m$</td>
</tr>
<tr>
<td></td>
<td>dE/dx measurements</td>
<td>$20 \leq \theta \leq 140^\circ$</td>
</tr>
<tr>
<td></td>
<td>Vertex detector</td>
<td>$\sigma \approx 500 \mu m$</td>
</tr>
<tr>
<td></td>
<td>Time-of-flight scintillator</td>
<td>$\sigma_t \approx 50 \text{ ps}$</td>
</tr>
<tr>
<td></td>
<td>Cerenkov for $\pi/K$ separation</td>
<td>$\theta \leq 14^\circ$</td>
</tr>
<tr>
<td></td>
<td>Barrel time resolution</td>
<td>$\sigma_t \approx 250 \text{ ps}$</td>
</tr>
<tr>
<td>Photon detection</td>
<td>Energy measurements</td>
<td>$1 \leq \theta \leq 120^\circ$</td>
</tr>
<tr>
<td></td>
<td>Veto capability</td>
<td>$\theta \geq 120^\circ$</td>
</tr>
<tr>
<td></td>
<td>Lead glass energy resolution $(E \ 150 \text{ MeV})$</td>
<td>$\sigma_E/E = 2 + 5%/\sqrt{E}$</td>
</tr>
<tr>
<td></td>
<td>Barrel energy resolution $(E \ 20 \text{ MeV})$</td>
<td>$\sigma_E/E = 4.4%/\sqrt{E}$</td>
</tr>
<tr>
<td></td>
<td>Barrel position resolution</td>
<td>$\sigma_z = 1 \text{ cm}$</td>
</tr>
<tr>
<td>DAQ / trigger</td>
<td>Level 1</td>
<td>20 kHz</td>
</tr>
<tr>
<td></td>
<td>Event Rate</td>
<td>15 kHz to tape</td>
</tr>
<tr>
<td></td>
<td>Data Rate</td>
<td>100 MB/s</td>
</tr>
<tr>
<td>Electronics</td>
<td>fully pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Rate</td>
<td></td>
</tr>
<tr>
<td>Photon Flux</td>
<td>Tagged rate</td>
<td>$10^8 \gamma/s$</td>
</tr>
</tbody>
</table>
There is a Detailed WBS for the Project

e.g., for Hall D

<table>
<thead>
<tr>
<th>Identified WBS</th>
<th>Total k$ or m-w</th>
<th>Contingency %</th>
<th>CDR k$ or m-w</th>
<th>R&amp;D k$ or m-w</th>
<th>PED k$ or m-w</th>
<th>Construction k$ or m-w</th>
<th>Pre-Ops k$ or m-w</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Procurements</strong> (FY02 $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Supplies & Materials | $591k | 30% | $297k | 1% | $94k | 4% | $44k | 15% | $105k | 7% | $76k | 9% | | $0k | 0% | $0k | 0% |
|----------------------|-------|-----|-------|----|------|----|------|----|-------|----|-------|----|-----|-----|-----|-----|
| Major Components Mnt & Rollup | $695k | 30% | $193k | 1% | $54k | 3% | $43k | 15% | $128k | 7% | $92k | 9% | | $0k | 0% | $0k | 0% |
| Major Components Mnt & Rollup | $2,264k | 30% | $679k | 1% | $18k | 1% | $16k | 1% | $624k | 9% | $462k | 100% | | $0k | 0% | $0k | 0% |
| Total | $12,002k | $3,601k | $48k | $99k | $315k | $11,541k | $0k | | | | | | | | | |

| JLab Labor (man-weeks) | | | | | | | |

| Plant Eng | 0 m-w |
| Plant Dsgn | 0 m-w |
| Plant Tech | 0 m-w |
| Skilled Trades, Electrician | 104 m-w | 30% | 31 m-w | 0% | 0 m-w | 1% | 1 m-w | 3% | 3 m-w | 96% | 100 m-w | 0% | 0 m-w |
| Mech Eng | 452 m-w | 30% | 136 m-w | 4% | 18 m-w | 8% | 34 m-w | 11% | 113 m-w | 84% | 452 m-w | 0% | 0 m-w |
| Mech Dsgn | 1008 m-w | 30% | 302 m-w | 1% | 5 m-w | 3% | 35 m-w | 12% | 123 m-w | 84% | 845 m-w | 0% | 0 m-w |
| Mech Tech | 287 m-w | 30% | 62 m-w | 3% | 0 m-w | 1% | 1 m-w | 4% | 11 m-w | 96% | 287 m-w | 0% | 0 m-w |
| Elect Eng | 94 m-w | 30% | 28 m-w | 3% | 3 m-w | 34% | 32 m-w | 11% | 293 m-w | 67% | 123 m-w | 0% | 0 m-w |
| Elect Dsgn | 572 m-w | 30% | 172 m-w | 5% | 4 m-w | 9% | 54 m-w | 14% | 359 m-w | 66% | 409 m-w | 0% | 0 m-w |
| Elect Tech | 228 m-w | 30% | 68 m-w | 3% | 0 m-w | 1% | 1 m-w | 4% | 14 m-w | 96% | 228 m-w | 0% | 0 m-w |
| Proj Admin | 0 m-w |
| Scientists-Existing | 0 m-w |
| Scientists-Additional | 1892 m-w | 30% | 568 m-w | 3% | 48 m-w | 3% | 23 m-w | 15% | 348 m-w | 18% | 348 m-w | 70% | 1326 m-w | 0% | 0 m-w |
| Compt Spt | 440 m-w | 30% | 132 m-w | 0% | 0 m-w | 0% | 0 m-w | 0% | 0 m-w | 100% | 440 m-w | 0% | 0 m-w |
| Total | 9897 m-w | $3,801k | $48k | $95k | $315k | $11,541k | $0k | | | | | | | | |

| University Labor (man-weeks) | | | | | | | |

| Faculty | 1835 m-w | 30% | 551 m-w | 3% | 48 m-w | 3% | 203 m-w | 11% | 824 m-w | 44% | 1233 m-w | 0% | 0 m-w |
| Staff | 1856 m-w | 30% | 557 m-w | 2% | 41 m-w | 14% | 261 m-w | 14% | 824 m-w | 44% | 1205 m-w | 0% | 0 m-w |
| Undergraduate | 938 m-w | 30% | 281 m-w | 7% | 63 m-w | 24% | 221 m-w | 16% | 1110 m-w | 58% | 594 m-w | 0% | 0 m-w |
| Graduate | 1026 m-w | 30% | 308 m-w | 2% | 17 m-w | 14% | 139 m-w | 11% | 1026 m-w | 69% | 605 m-w | 0% | 0 m-w |
| Total | 5655 m-w | 30% | 1697 m-w | 3% | 168 m-w | 16% | 919 m-w | 16% | 1026 m-w | 69% | 3547 m-w | 0% | 0 m-w |

| Purchased labor (man-weeks) | | | | | | | |

| Mech Eng | 0 m-w |
| Mech Tech | 44 m-w | 30% | 13 m-w | 0% | 0 m-w | 1% | 0 m-w | 0% | 100% | 44 m-w | 0% | 0 m-w | 0 m-w |
| Elect Eng | 248 m-w | 30% | 74 m-w | 0% | 0 m-w | 3% | 32 m-w | 13% | 100% | 248 m-w | 0% | 0 m-w | 0 m-w |
| Elect Tech | 152 m-w | 30% | 45 m-w | 0% | 0 m-w | 0% | 0 m-w | 0% | 0 m-w | 100% | 152 m-w | 0% | 0 m-w |
| Total | 2479 m-w | 30% | 744 m-w | 0% | 0 m-w | 1% | 35 m-w | 1% | 35 m-w | 97% | 2410 m-w | 0% | 0 m-w |

| Consultant (FY02 k$) | $0k |
PAC Conclusions about the Equipment (from Review Summary)

• The PAC endorses the overall plan for the major new instrumentation as being required to implement the new physics program and therefore recommends that the major components in all four halls be implemented.
This Effort Formed the Basis for Our Current Plan for the Upgrade, as Outlined in the pCDR

The Hall-Specific pCDRs Included:

• Physics motivating the equipment;
• Technical descriptions of the apparatus with many details; and
• Examples of experiments that could be carried out using the equipment to address the motivating physics.

They have been combined into a coherent physics case, together with a detailed presentation of the apparatus in the pCDR for the Science and Experimental Equipment.

Through the PAC23 Upgrade Meeting this plan has received its first serious peer review.
The pCDR Draft is Now Available for Review by the Entire JLab Community

Contents

1 EXECUTIVE SUMMARY ........................................... 1

1.A Physics Overview .............................................. 2

1.A.1 Gluonic Excitations and the Origin of Quark Confinement ............ 3

1.A.2 The Fundamental Structure of the Nuclear Building Blocks .......... 8

Form Factors - Constraints on the Generalised Parton Distributions .... 11

Valence Quark Structure and Parton Distributions ..................... 13

The Generalised Parton Distributions as Accessed via Deeply Exclusive Reactions ............................................ 15

Other Topics in Hadron Structure .................................. 17

Transverse parton distributions .................................... 19

The extended GDH integral and sum rule ................................ 19

Duality: the transition from a hadronic to a quark-gluon description of Deep Inelastic Scattering .......................... 19

1.A.3 The Physics of Nuclei ........................................... 20

The Short-Range Behavior of the $N-N$ Interaction and its QCD Basis .... 21

Color transparency ................................................. 22

Learning about the $NN$ force by the measurement of the threshold $N$ cross section and by searching for -nucleus bound states. ....... 22

Quark propagation through cold QCD matter: nuclear hadronisation and transverse momentum broadening ........................ 23

Short-range correlations in nuclei: the nature of QCD at high density and the structure of cold, dense nuclear matter. ................ 23

Identifying and Exploring the Transition from the Meson/Nucleon Description of Nuclei to the Underlying Quark and Gluon Description ............................................. 25

The onset of scaling behavior in nuclear cross sections ............... 26

vii

Charged Particle Identification ..................................... 335

The Time-of-Flight System ......................................... 335

The Čerenkov Detector .............................................. 337

Sub-system Installation and Integration ................................ 338

3.D.4 Rates, Electronics, Trigger and Data Acquisition .................. 338

3.D.5 Computing and Partial Wave Analysis ................................ 342

3.D.6 Summary .......................................................... 347

3.E Experiment-Specific Equipment .................................... 347

3.E.1 Properties of Light Pseudoscalar Mesons via the Primakoff Effect .................................... 347

REFERENCES ......................................................... 357

FIGURES .................................................................... 386

TABLES ....................................................................... 398

CONTRIBUTORS TO THE pCDR ...................................... 400

xvi
We Will Finish the Document Mid-Summer, After That Review Has Been Completed

- Comments will be welcome until July 14 when we’ll “close the books”
- Please send your remarks (ideally with proposed “fixes”) to the head of the writing group responsible for the material with a copy to me
- Suggested changes will be reviewed by the subgroup and added with their approval and/or recommended modifications
- You can appeal to the larger editorial board (through me) if you are unhappy with the result
- The finished pCDR will be the basis for the next round of discussion on the experimental equipment (hopefully in the context of a real budget!)
There Has Also Been Significant Progress on Accelerator Issues Relevant to the Upgrade
The KEY Accelerator R&D Issues are the SRF and the Magnets.
Key R&D Issues Have Been Addressed

Prototype 7-cell cavity

Prototype dipole

Prototype tuner

- Performance of 7-cell electropolished cavity (red) exceeds design specs.
- Conversion from 'C' to 'H' configuration eliminates saturation to 12 GeV.
- Extra power needed (measured vs. linear) for different field strengths.
- Central field in dipole vs. measured vs. linear fields.
- 6 GeV fields and 12 GeV fields are compared.
- 600 A is highlighted as a critical point.
The First “New Style” Cryomodule (SL21) Was Just Under Test at the Time of the Facility Review

The new cryomodule meets its design goals
Subsequent Experience Has Been Invaluable

High Performance ⇒ Reduced Design Margins

1) 7-cell cavities ⇒ no beam-line bellows ⇒ cavity tuning interactions (and assembly and alignment complications)
2) Higher power dissipation ⇒ sensitivity to operating He pressure ⇒ instability
3) Higher $Q_{\text{ext}}$ ⇒ greater Lorentz detuning & narrower operating resonance ⇒ more demands on low level RF controls OR resonant coupling ⇒ more coupler heating
4) Reduced LHe volume ⇒ end groups conduction cooled ⇒ potential thermal excursions

Results to Date:
• Individual cavity tests - Excellent!
• Significant Operational Problems:
  • Cryogenic instability (2). Restrict gradients in CEBAF to ~10 MV/m (still provides 56 MV).
    ⇒ Include larger heat removal capability in final design.
  • Much more caution required for turn on (1 & 3).
    ⇒ Revise automated scripts in CEBAF and Upgrade
  • Fundamental Power Coupler overheating if not accurately on resonance (3&4).
    ⇒ Disable resonant coupling, reduce tuner deadband, and (in Upgrade) add more FPC cooling.
• Resolving these issues will smooth Upgrade commissioning
NSAC Facilities Subcommittee Conclusions

READINESS (Category 1) “Ready to initiate construction”, with no significant scientific/engineering challenges to resolve prior to construction.

The Upgrade project is a proposal to double the maximum energy of the CEBAF accelerator at Jefferson Lab, to build a fourth experimental facility dedicated to the study of gluonic excitations, and to upgrade the existing experimental facilities. The accelerator portion of the upgrade is straightforward; CEBAF was designed with such an upgrade in mind. The key issues were increasing the performance of the superconducting RF cavities and cost-effectively increasing the bending power of the recirculation arcs; both have been addressed successfully. The major equipment in the new end station is a refurbished large superconducting solenoid previously used at LAMPF and SLAC. All aspects of the project, as well as a detailed budget, have been described in reports. The scientific goals and proposed design of the Upgrade have been positively evaluated by internal and peer review committees, including the 2001 Institutional Plan Review and the 2002 DOE S&T Review of JLab, which noted that “It appeared that the 12 GeV upgrade project is technically ready to proceed.” The 2002 LRP considered the project “ready to initiate construction”. All remaining R&D is focused on cost reduction and/or improved technical contingency; no R&D is needed to demonstrate feasibility. The project is fully ready to initiate construction. A CD-0 package has been generated and is awaiting approval.
Now *ALL* we need is CD-0 and the fun (and the work) can begin!
There Has Also Been Progress in Planning for Science “Post-12 GeV”

- Further design work on an electron, light-ion collider
- Development of the basics of the science case

Both presented to NSAC at the 2/03 Facilities Subcommittee meeting
CEBAF Beyond 12 GeV

• There is a clear scientific case for the 12-GeV JLab Upgrade, addressing outstanding issues in Hadron Physics:
  − Unprecedented measurements to region in x (> 0.1) where basic three-quark structure of nucleons dominates.
  − Measurements of correlations between quarks, mainly through Deep-Virtual Compton Scattering (DVCS) and constraints by nucleon form factors, in pursuit of the Generalized Parton Distributions.
  − Finishing the job on the transition from hadronic to quark-gluon degrees of freedom.

• In Addition, over the next 5-10 years, data from facilities worldwide concurrent with vigorous accelerator R&D and design will clarify the key physics and machine issues, revealing the relative advantages and technical feasibility of alternate “next generation” accelerator designs and permitting an informed choice for the next facility:
  − A 25 GeV Fixed-Target Facility? Or
  − An Electron-Light Ion Collider, center-of-mass energy of 20-65 GeV?
Science addressed by the second Upgrade:

• How do quarks and gluons provide the binding and spin of the nucleons?
• How do quarks and gluons evolve into hadrons?
• How does nuclear binding originate from quarks and gluons?

---

![Graph showing the evolution of quarks and gluons with Q^2 = 10 GeV^2.](image)
ELIC Layout

One accelerating & one decelerating pass through a 5 GeV/pass CEBAF (all cryomodules upgrade-class)

Ion Source
RFQ
DTL
CCL
IR
Snake
Solenoid
Snake

5 GeV electrons
100 GeV light ions

Injector

CEBAF with Energy Recovery

Beam Dump
# Luminosity Potential with ELIC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>GeV</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/100</td>
</tr>
<tr>
<td>Electron Cooling</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Circulator Ring</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Luminosity</td>
<td>cm(^{-2}) sec(^{-1})</td>
<td>6\times10^{34} / 1\times10^{35}</td>
</tr>
<tr>
<td>(I_{ave})</td>
<td>A</td>
<td>2.5</td>
</tr>
<tr>
<td>(f_c)</td>
<td>MHz</td>
<td>1500</td>
</tr>
</tbody>
</table>

![Graph showing luminosity potential with ELIC and other experiments]
The same electron accelerator can also provide 25 GeV electrons for fixed target experiments

- Implement 5-pass recirculator, at 5 GeV/pass, as in present CEBAF (straightforward upgrade, no accelerator R&D needed)

- Exploring whether collider and fixed target modes can run simultaneously (can certainly run in alternating-use mode)
CEBAF II/ELIC Upgrade – Design Issues

Electron-Light Ion Collider (ELIC)

- R&D needed on
  - High Charge per Bunch and High Average Current Polarized Electron Source
  - High Energy Electron Cooling of Protons/Ions
  - High Current and High Energy demonstration of Energy Recovery
  - Integration of Interaction Region design with Detector Geometry

- NSAC Report: “Strong consensus among nuclear scientists to pursue R&D over the next three years to address a number of design issues”

25-GeV Fixed-Target Facility Straightforward

- Use existing CEBAF footprint
- Upgrade ALL Cryo modules to 12-GeV design (7-cell design, 18 MV/m)
- Change ARC magnets, Switchyard, Hall Equipment
R&D Strategy

• Several important R&D topics have been identified
• Our R&D strategy is multi-pronged:
  • Conceptual development
    “Circulator Ring” concept promises to ease high current polarized photoinjector and ERL requirements significantly
    Additional concepts for luminosity improvements are being explored
  • Analysis/Simulations
    Electron cooling and short bunches
    Beam-beam physics
    ERL physics
  • Experiments
    CEBAF-ER: The Energy Recovery experiment at CEBAF to address ERL issues in large scale systems (First run: March 2003)
    JLab FEL (10mA), Cornell/JLab ERL Prototype (100mA), BNL Cooling Prototype (100mA) to address high current ERL issues
Facilities Subcommittee Conclusions

• SCIENCE (Category 1 – Absolutely Central) The research program of this type of facility at JLab, similar in many ways to the electron-ion collider EIC that received a preliminary endorsement in LRP 2002, will be absolutely central to nuclear physics

• READINESS (Category 3 - mission and/or technical requirements not yet fully defined) This project is still in an early stage of development. A number of technical challenges must be resolved, and several R&D projects have been started. These include development of a polarized electron source with a high average current and high bunch charge, electron cooling of protons/ions, and energy recovery at high current and high energy. The design of an interaction region and detector that support the combination of high luminosity and high detector acceptance and resolution is also underway. Construction would not begin until after the completion of the 12 GeV upgrade of CEBAF; the final design will be influenced by evolving physics
Summary and Perspectives

• CEBAF research is producing outstanding science. The beautiful data and physics insights presented at this meeting provide ample evidence.

• Modest incremental investments will make it even better!

• The 12 GeV Upgrade, a formal recommendation of the NSAC Long Range Plan, is essential to address identified key questions and maintain our world leadership in hadronic physics.

• The Upgrade project was judged by NSAC to be of the highest scientific importance and “ready for construction”.

  OUR KEY PROBLEM IS GETTING IT STARTED

  CD-0 in FY03 and R&D $$$ in FY05

• ELIC and 25 GeV fixed target opportunities were judged “central to the science” but there are “mission and/or technical requirements to be defined”. Developing these ideas (both the science and the machine) over the next 5 years will be important.