# Nucleon Form Factors Experiments and Data 

Donal Day<br>University of Virginia

June 11, 2003

## Outline

* Introduction: History, Proposals, Formalism
* Form Factor Data: Proton and Neutron, pre-1998
* Models
* Experiments at Jefferson Lab
* Conclusion, Prospects and Credits


## Form Factors at CEBAF

* Long history - NEAL was proposed in 1980 by SURA

First in the list of Illustrative Proposals
$\boldsymbol{\checkmark}$ Nucleon Electric Form Factors by R. Arnold and F. Gross
Why measure the FF?

* Since 198922 proposals for the elastic form factors. 9 were approved. 7 have taken data $2-G_{E}^{n}, 2-G_{M}^{n}, 3-G_{E}^{p}$

| Proposal | Technique | Reaction | Form Factor | Year | Data |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $93-026$ | Asymmetry | $\vec{D}\left(\vec{e}, e^{\prime} n\right) p$ | $G_{E}^{n}$ | $1998 / 2001$ | Pub./Prelim. |
| $93-027$ | Recoil | ${ }^{1} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{p}\right)$ | $G_{E}^{p} / G_{M}^{p}$ | 1998 | Pub. |
| $93-038$ | Recoil | ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$ | $G_{E}^{n} / G_{M}^{n}$ | 2000,2001 | Prelim. |
| $94-017$ | Ratio | $\frac{d\left(e, e^{\prime} n\right) p}{d\left(e, e^{\prime} p\right) n}$ | $G_{M}^{n}$ | 2000 | Analysis |
| $95-001$ | Asymmetry | $3^{3} \overrightarrow{\mathrm{He}}\left(\vec{e}, e^{\prime}\right) X$ | $G_{M}^{n}$ | 1999 | Pub. |
| $99-007$ | Recoil | ${ }^{1} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{p}\right)$ | $G_{E}^{p} / G_{M}^{p}$ | 2000 | Pub. |
| $01-001$ | Rosenbluth | ${ }^{1} H(e, p)$ | $G_{E}^{p}$ | 2002 | Analysis |
| $01-109$ | Recoil | ${ }^{1} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{p}\right)$ | $G_{E}^{p} / G_{M}^{p}$ | 2005 | - |
| $02-013$ | Asymmetry | ${ }^{3} \overrightarrow{\mathrm{He}}\left(\vec{e}, e^{\prime} n\right)$ | $G_{E}^{n}$ | 2004 | - |

Two others, $T_{20}$ (E94-018) and E94-110, have also contributed.

## Formalism

$$
\frac{d \sigma}{d \Omega}=\sigma_{\mathrm{Mott}} \frac{E^{\prime}}{E_{0}}\left\{\left(F_{1}\right)^{2}+\tau\left[2\left(F_{1}+F_{2}\right)^{2} \tan ^{2}\left(\theta_{e}\right)+\left(F_{2}\right)^{2}\right]\right\}
$$



$$
\begin{array}{ll}
F_{1}^{p}=1 & F_{1}^{n}=0 \\
F_{2}^{p}=1.79 & F_{2}^{n}=-1.91
\end{array}
$$

In Breit frame $F_{1}$ and $F_{2}$ related to charge and spatial curent densities:

$$
\begin{aligned}
\rho & =J_{0}=2 e M\left[F_{1}-\tau F_{2}\right] \\
J_{i} & =e \bar{u} \gamma_{i} u\left[F_{1}+F_{2}\right]_{i=1,2,3}
\end{aligned}
$$

$$
G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\tau F_{2}\left(Q^{2}\right) \quad G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
$$

* For a point like probe $G_{E}$ and $G_{M}$ are the FT of the charge and magnetizations distributions in the nucleon, with the following normalizations

$$
Q^{2}=0 \text { limit: } \quad G_{E}^{p}=1 G_{E}^{n}=0 \quad G_{M}^{p}=2.79 G_{M}^{n}=-1.91
$$

## Proton Form Factor Data (pre-1998)

Rosenbluth separation

$$
\frac{d \sigma}{d \Omega}=\frac{\sigma_{M o t t}}{(1+\tau)} \frac{E^{\prime}}{E_{0}}[G_{E}^{2}+\underbrace{\tau\left(1+(1+\tau) 2 \tan ^{2}(\theta / 2)\right) G_{M}^{2}}]
$$




* $G_{M}^{p}$ well measured via Rosenbluth, but not $G_{E}^{p}$
* Dipole Parametrization: Good description of early $G_{E, M}^{p}$ data

$$
G_{E}^{p}=\frac{G_{M}^{p}}{\mu_{p}}=G_{D}=\left(1+\frac{Q^{2}}{0.71}\right)^{-2} \quad \begin{aligned}
& G_{D}=\left(1+\frac{Q^{2}}{k^{2}}\right)^{-2}{ }_{\text {implies an exponential }} \\
& \text { charge distribution: } \rho(r) \propto e^{-k r}
\end{aligned}
$$

## $G_{M}^{n}$ unpolarized



| Kubon | ratio |
| :--- | :--- |
| Anklin | ratio |
| Bruins | ratio |
| Lung | $D\left(e, e^{\prime}\right) X$ |
| Markowitz | $D\left(e, e^{\prime} n\right) p$ |
| ratio $\equiv \frac{D\left(e, e^{\prime} n\right) p}{D\left(e, e^{\prime} p\right) n}$ |  |

## Neutron Form Factors Before Polarization

No free neutron - extract from $e-D$ elastic scattering:

$$
\frac{d \sigma}{d \Omega}=\sigma_{N S}\left[A\left(Q^{2}\right)+B\left(Q^{2}\right) \tan ^{2}\left(\frac{\theta_{e}}{2}\right)\right]
$$

small $\theta_{e}$ approximation

$$
\frac{d \sigma}{d \Omega}=\cdots\left(G_{E}^{p}+G_{E}^{n}\right)^{2}\left[u(r)^{2}+w(r)^{2}\right] j_{0}\left(\frac{q r}{2}\right) d r \cdots
$$




Galster Parametrization: $G_{E}^{n}=-\frac{\tau \mu_{n}}{1+5.6 \tau} G_{D}$

## $G_{E}^{n}$ from Elastic Scattering - D $\left(e, e^{\prime} \overrightarrow{\mathrm{d}}\right)$

Components of the tensor polarization give useful combinations of the form factors,

$$
t_{20}=\frac{1}{\sqrt{2} S}\left\{\frac{8}{3} \tau_{d} G_{C} G_{Q}+\frac{8}{9} \tau_{d}^{2} G_{Q}^{2}+\frac{1}{3} \tau_{d}\left[1+2\left(1+\tau_{d}\right) \tan ^{2}(\theta / 2)\right] G_{M}^{2}\right\}
$$

allowing $G_{Q}\left(Q^{2}\right)$ to be extracted. Exploiting the fact that $G_{Q}\left(Q^{2}\right)=\left(G_{E}^{p}+G_{E}^{n}\right) C_{Q}(q)$ suffers less from theoretical uncertainties than $A\left(Q^{2}\right), G_{E}^{n}$ can be extracted to larger momentum transfers.

## E94-018!!



## Models of Nucleon Form Factors

VMD
pQCD

Hybrid VMD-pQCD
Lattice
RCQM
di-quark
CBM
LFCBM
Helicity non-conservation
$F\left(Q^{2}\right)=\sum_{i} \frac{C_{\gamma V_{i}}}{Q^{2}+M_{V_{i}}^{2}} F_{V_{i} N}\left(Q^{2}\right)$
breaks down at large $Q^{2}$
$F_{2} \propto F_{1}\left(\frac{M}{Q^{2}}\right)$ helicity conservation
Counting rules: $F_{1} \propto \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{4}}$
$Q^{2} F_{2} / F_{1} \rightarrow$ constant
JLAB proton data: $Q F_{2} / F_{1} \rightarrow$ constant
GK, Lomon
Dong .. (1998)
point form (Wagenbrunn..)
light front (Cardarelli ..)
Kroll ...
Lu, Thomas, Williams (1998)
Miller
pQCD (Ralston..) LF (Miller..)

Spin Correlations in elastic scattering

* Dombey, Rev. Mod. Phys. 41236 (1968): $\vec{p}\left(\vec{e}, e^{\prime}\right)$
* Akheizer and Rekalo, Sov. Phys. Doklady 13572 (1968): $p\left(\vec{e}, e^{\prime}, \vec{p}\right)$
* Arnold, Carlson and Gross, Phys. Rev. C 23363 (1981): ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$

Early work at Bates, Mainz

* ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$, Eden et al. (1994)
* ${ }^{1} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{p}\right)$, Milbrath et al. (1998)
* ${ }^{3} \overrightarrow{\mathrm{He}}\left(e, e^{\prime}\right)$, Woodward, Jones, Thompson, Gao (1990-1994)
* ${ }^{3} \overrightarrow{\mathrm{He}}\left(e, e^{\prime} n\right)$, Meyerhoff, (1994)


## Nucleon Form Factors



## Recoil Polarization



$$
\begin{gathered}
I_{0} P_{t}=-2 \sqrt{\tau(1+\tau)} G_{E} G_{M} \tan \left(\theta_{e} / 2\right) \\
I_{0} P_{l}=\frac{1}{M_{N}}\left(E_{e}+E_{e^{\prime}}\right) \sqrt{\tau(1+\tau)} G_{M}^{2} \tan ^{2}\left(\theta_{e} / 2\right)
\end{gathered}
$$

$$
\frac{G_{E}}{G_{M}}=-\frac{P_{t}}{P_{l}} \frac{\left(E_{e}+E_{e^{\prime}}\right)}{2 M_{N}} \tan \left(\frac{\theta_{e}}{2}\right)
$$

Direct measurement of form factor ratio by measuring the ratio of the transfered polarization $P_{t}$ and $P_{l}$

## Recoil Polarization - Principle and Practice

* Interested in transfered polarization, $P_{l}$ and $P_{t}$, at the target
* Polarimeters are sensitive to the perpendicular components only, $P_{n}^{\mathrm{pol}}$ and $P_{t}^{\mathrm{pol}}$

Measuring the ratio $P_{t} / P_{l}$ requires the precession of $P_{l}$ by angle $\chi$ before the polarimeter.

* If polarization precesses $\chi$ (e.g. in a dipole): $P_{n}^{\mathrm{pol}}=\sin \chi \cdot h P_{l}$ and $P_{t}^{\mathrm{pol}}=h P_{t}$
$P_{t}^{\mathrm{pol}}=P_{t}$ in scattering plane and proportional to $G_{E} G_{M}$
$P_{n}^{\mathrm{pol}}$ is related to $G_{M}^{2}$
* $G_{E}^{p} / G_{M}^{p}$ via ${ }^{1} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{p}\right)$ in Hall A - HRS and FPP
* $G_{E}^{n} / G_{M}^{n}$ via ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$ in Hall C-Charybdis and N-Pol
$G_{E}^{p}$ in Hall A
E93-027 (data taken in 1998)
Jones et al., PRL 84, 1398 (2000)
* $G_{E}^{p} / G_{M}^{p}$ out to $Q^{2}=3.5 \mathrm{GeV} / \mathrm{c}^{2}$
* Electron in one HRS and proton in FPP in other HRS

E99-007 (data taken in 2000)
Gayou et al. PRL 88, 092301 (2002)

* $G_{E}^{p} / G_{M}^{p}$ out to $Q^{2}=5.6 \mathrm{GeV} / \mathrm{c}^{2}$
* electron in one HRS and proton in FPP in other HRS
* above $Q^{2}=3.5$ proton in FPP in one HRS and electron in calorimeter.


## $G_{E}^{p}$ in Hall A



* left-right asymmetry $\Rightarrow P_{n}^{\mathrm{fpp}}$ polarization in vertical direction
* up-down asymmetry $\Rightarrow P_{t}^{\mathrm{fpp}}$ polarization in the horizontal direction

$$
\begin{aligned}
& P_{n}^{\mathrm{fpp}}=\sin \chi \cdot h P_{l} \\
& P_{t}^{\mathrm{fpp}}=h P_{t} \\
& \chi=\gamma \theta_{B}\left(\mu_{p}-1\right)
\end{aligned}
$$

## $G_{E}^{p}$ in Hall A

Azimuthal Distribution

$$
N(\vartheta, \varphi)=N_{0}(\vartheta) \epsilon(\vartheta)\left\{1+\left[h A_{y}(\vartheta) P_{t}^{\mathrm{fpp}}+a_{\mathrm{instr}}\right] \sin \varphi-\left[h A_{y}(\vartheta) P_{n}^{\mathrm{fpp}}+b_{\mathrm{instr}}\right] \cos \varphi\right\}
$$



* Difference between 2 helicity states
- instrumental asymmetries cancel, $P_{B}$ and $A_{y}$ cancel.
- gain access to the polarization components
$G_{E}^{p}$ in Hall A
Difference between 2 helicity states ( $Q^{2}=5.6$ )

* Fit $N^{+}-N^{-}$with $F(\varphi)=C \cos (\varphi+\delta) \rightarrow \tan \delta=P_{t}^{\mathrm{fpp}} / P_{n}^{\mathrm{fpp}} \simeq 7^{\circ}$
* $P_{n}^{\mathrm{fpp}}=\sin \chi \cdot h P_{l}, \quad P_{t}^{\mathrm{fpp}}=h P_{t}$
* $\frac{G_{E}}{G_{M}}=-\frac{P_{t}}{P_{l}} \frac{\left(E_{e}+E_{e^{\prime}}\right)}{2 M_{N}} \tan \left(\frac{\theta_{e}}{2}\right)$
$G_{E}^{p}$ in Hall A - Results

copemp jlab vith poet 18/80/08
$G_{E}^{p}$ in Hall A - Results



## $G_{E}^{n}$ in Hall C, E93-038

Recoil polarization, ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$

* In quasifree kinematics, $P_{s^{\prime}}$ is sensitive to $G_{E}^{n}$ and insensitive to nuclear physics
* Up-down asymmetry $\xi \Rightarrow$ transverse (sideways) polarization $P_{s^{\prime}}=\xi_{s^{\prime}} / P_{e} A_{\mathrm{pol}}$. Requires knowledge of $P_{e}$ and $A_{\mathrm{pol}}$
* Rotate the polarization vector in the scattering plane (with Charybdis) and measure the longitudinal polarization, $P_{l^{\prime}}=\xi_{l^{\prime}} / P_{e} A_{\mathrm{pol}}$
* Take ratio, $\frac{P_{s^{\prime}}}{P_{l^{\prime}}} . P_{e}$ and $A_{\mathrm{pol}}$ cancel
* Three momentum transfers, $Q^{2}=0.45,1.13$, and $1.45(\mathrm{GeV} / \mathrm{c})^{2}$.
* Data taking 2000/2001.
$G_{E}^{n}$ in Hall C via ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$


Taking the ratio eliminates the dependence on the analyzing power and the beam polarization $\rightarrow$ greatly reduced systematics

$$
\frac{G_{E}^{n}}{G_{M}^{n}}=K \tan \delta \quad \text { where } \quad \tan \delta=\frac{P_{s^{\prime}}}{P_{l^{\prime}}}=\frac{\xi_{s^{\prime}}}{\xi_{l^{\prime}}}
$$

$G_{E}^{n}$ in Hall C via ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$




## $G_{E}^{n}$ in Hall C via ${ }^{2} \mathrm{H}\left(\vec{e}, e^{\prime} \vec{n}\right) p$



## Extraction of the neutron form factors

No free neutron targets - scattering from a nucleus, $\mathrm{D},{ }^{3} \mathrm{He}$
Neutron is not free - can not avoid engaging the details of the nuclear physics.

Minimize sensitivity to the how the reaction is treated and maximize the sensitivity to the neutron form factors by working in quasifree kinematics.

* Indirect measurements: The experimental asymmetries $\left(\xi_{s^{\prime}}, A_{V}^{e d}\right.$, $\left.A_{\text {exp }}^{q e}\right)$ are compared to theoretical calculations.
* Theoretical calculations are generated for scaled values of the form factor.
* Form factor is extracted by comparison of the experimental asymmetry to acceptance averaged theory.

Beam-Target Asymmetry - Principle
Polarized Cross Section:
$\sigma=\Sigma+h \Delta$
Beam Helicity $h \pm 1$

$$
A=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}=\frac{\Delta}{\Sigma}
$$

$$
A=\frac{\overbrace{a \cos \Theta^{\star}\left(G_{M}\right)^{2}}^{A_{T}}+\overbrace{b \sin \Theta^{\star} \cos \Phi^{\star} G_{E} G_{M}}^{A_{T L}}}{c\left(G_{M}\right)^{2}+d\left(G_{E}\right)^{2}} ; \quad \varepsilon=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}=P_{B} \cdot P_{T} \cdot f \cdot A
$$

$$
\begin{aligned}
& \Theta^{\star}=90^{\circ} \Phi^{\star}=0^{\circ} \\
& \Longrightarrow A=\frac{b G_{E} G_{M}}{c\left(G_{M}\right)^{2}+d\left(G_{E}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Theta^{\star}=0^{\circ} \Phi^{\star}=0^{\circ} \\
& \Longrightarrow A=\frac{a G_{M}^{2}}{c\left(G_{M}\right)^{2}+d\left(G_{E}\right)^{2}}
\end{aligned}
$$

$G_{E}^{n}$ in Hall C


* Polarized Target
* Chicane to compensate for beam deflection of $\approx 4$ degrees
* Scattering Plane Tilted
* Protons deflected $\approx 17 \mathrm{deg}$ at $Q^{2}=0.5$
* Raster to distribute beam over $3 \mathrm{~cm}^{2}$ face of target
* Electrons detected in HMS (right)
* Neutrons and Protons detected in scintillator array (left)
* Beam Polarization measured in coincidence Möller polarimeter

Experimental Technique for $\overrightarrow{\mathrm{D}}\left(\vec{e}, e^{\prime} n\right) p$
For different orientations of $h$ and $P: N^{h P} \propto \sigma(h, P)$
Beam-target Asymmetry:

$$
\epsilon=\frac{N^{\uparrow \uparrow}-N^{\downarrow \uparrow}+N^{\downarrow \downarrow}-N^{\uparrow \downarrow}}{N^{\uparrow \uparrow}+N^{\downarrow \uparrow}+N^{\downarrow \downarrow}+N^{\uparrow \uparrow}}=h P f A_{e d}^{V}
$$



## Extracting $G_{E}^{n}$







## Preliminary results



$G_{M}^{n}$ via $\overrightarrow{{ }^{3} \mathrm{He}}\left(\vec{e}, e^{\prime}\right) X$, E95-001


* Elastic scattering as monitor of $P_{b} P_{t}$. Very effective $\rightarrow 1.7 \%$ contribution to error!
* $P_{t}^{+}, P_{t}^{-}, h^{+}, h^{-}$to minimize false asymmetries
$G_{M}^{n}$ via $\overrightarrow{{ }^{3} \mathrm{He}}\left(e, e^{\prime}\right) X$


E95001, Wu et al.. PRC 67 012201(R) (2003)

* dots: Lomon
* short-dash: Holzwarth
* solid: Lu
* long dash: Mergell


## $G_{M}^{n}$ measurement in CLAS

Measure ratio of quasielastic $e-n$ scattering to quasielastic $e-p$ scattering off deuterium

$$
R_{D}=\frac{\frac{d \sigma}{d \Omega}_{Q E}^{D\left(e, e^{\prime} n\right) p}}{\frac{d \sigma}{d \Omega}_{Q E}^{D\left(e, e^{\prime} p\right) n}} \approx \frac{f\left(G_{M}^{n}, G_{E}^{n}\right)}{f\left(G_{M}^{p}, G_{E}^{p}\right)}
$$

Using the known values of $G_{E}^{p}, G_{M}^{p}, G_{E}^{n}$, extract $G_{M}^{n}$.
Has advantages over traditional techniques, $D\left(e, e^{\prime}\right), D\left(e, e^{\prime} \bar{p}\right) n$, $D\left(e, e^{\prime} n\right) p$

* No Rosenbluth separation or subtraction of dominant proton
* Ratio insenstive to deuteron model
* MEC and FSI are small in quasielastic region - don't get amplified by subtractions

Large acceptance to veto events with extra charged particles

## Experimental Advantages/Demands

* Insensitive to
- Luminosity
- Electron radiative processes
- Reconstruction and trigger efficiency
* Requires
- Precise determination of absolute neutron detection efficiency
- Equivalent solid angles for neutron and proton


## Neutron Detection Efficiency

* Data taken with hydrogen and deuterium target simultaneously

* tag neutrons with $H_{2}$ target via $H\left(e, e^{\prime} n \pi^{+}\right)$
- In-situ efficiency, timing, angular resolution determination
- Insensitive to PMT gain variations
- Small acceptance correction

$G_{E}^{p}$, Status of Rosenbluth Separations
$\sigma_{R} \equiv \frac{d \sigma}{d \Omega} \frac{\epsilon(1+\tau)}{\sigma_{M o t t}}=\tau G_{m}^{2}\left(Q^{2}\right)+\epsilon G_{E}^{2}\left(Q^{2}\right)$
Fundamental problem: $\sigma$ insensitive to $G_{E}^{p}$ at large $Q^{2}$. With $\mu G_{E}^{p}=G_{M}^{p}$, $G_{E}^{p}$ contributes $8.3 \%$ to total cross section at $Q^{2}=5$.
$\delta G_{E} \propto \delta\left(\sigma_{R}\left(\epsilon_{1}\right)-\sigma_{R}\left(\epsilon_{2}\right)\right)(\Delta \epsilon)^{-1}\left(\tau G_{M}^{2} / G_{E}^{2}\right)$


J. Arrington: nucl-ex / 0305009 (2003)
$\square$ E94-110 consistent with global fit $\square$ Rules out experimental systematics
$\square \epsilon$ dependence must be large
$\square$ Unconsidered $\epsilon$ dependent radiative correction

Super-Rosenbluth, E01-001 (Hall A), $p\left(e, p^{\prime}\right)$

| $Q^{2}=3.2$ | Electron | Proton |
| :--- | :---: | :---: |
| $\epsilon$ | $0.13-0.87$ | $0.13-0.87$ |
| $\theta$ | $22.2-106.0$ | $12.5-36.3$ |
| $\mathrm{p}[\mathrm{GeV} / \mathrm{c}]$ | $0.56-3.86$ | 2.47 |
| $\frac{d \sigma}{d \Omega}\left[10^{-10} \mathrm{fm}^{-2}\right]$ | $6-340$ | $120-170$ |
| $\frac{\delta \sigma}{\delta E}[\% / \%]$ | $11.5-14.2$ | $5.0-5.3$ |
| $\frac{\delta \sigma}{\delta \theta}[\% / \mathrm{deg}]$ | $3.6-37.0$ | $5.6-19.0$ |
| Rad. Corr. | $1.37-1.51$ | $1.24-1.28$ |



Reduces size of dominant corrections
No momentum dependent systematics
Rate nearly constant for protons
Sensitivity to angle momentum reduce
Luminosity monitor (second arm)
Background small

## A Promise Fulfilled

$\checkmark$ A high current, high duty factor electron machine would allow the study of the nucleon form factors out to large momentum transfers, with high precision.

- Outstanding data on $G_{E}^{p}$ out to high momentum transfer - spawning a tremendous interest in the subject and the reexamination of our long held conception of the proton.
- For the first time, $G_{E}^{n}$ data of very high quality out to $1.5(\mathrm{GeV} / \mathrm{c})^{2}$, allowing rigorous tests of theory.
- A high quality data set on $G_{M}^{n}$ at moderate $Q^{2}$ from Hall A and a forthcoming data set from Hall B out to large $Q^{2}$, which together further constrain any model which attempts to describe the nucleon form factors.
- A resolution of the $G_{E}^{p}$ data from recoil polarization and Rosenbluth techniques will have applications in similar experiments from nuclei and deepen our understanding of physics and experiment.


## Prospects

Future measurements at Jefferson Lab

* E02-013: ${ }^{3} \overrightarrow{\mathrm{He}}\left(\vec{e}, e^{\prime} n\right)$ out to $Q^{2}=3.4(\mathrm{GeV} / \mathrm{c})^{2}$
- Extension to $5(\mathrm{GeV} / \mathrm{c})^{2}$ in Hall A with 12 GeV upgrade.
* E01-109 in Hall C will measure form factor ratio out to $9(\mathrm{GeV} / \mathrm{c})^{2}$ with 6 GeV beam.
- Possible to extend measurement out to $12.4(\mathrm{GeV} / \mathrm{c})^{2}$ with 12 GeV upgrade.
* $G_{M}^{n}$ out to $14(\mathrm{GeV} / \mathrm{c})^{2}$ with an upgraded CLAS and 12 GeV upgrade.
* $G_{M}^{p}$ to $8(\mathrm{GeV} / \mathrm{c})^{2}$ (as part of new proposal to measure $B\left(Q^{2}\right)$ at 180 degrees in Hall A).


## Credits

* The early proponents of this facility.
* The spokespersons and collaborations who committed themselves to the physics.
* Laboratory management and Hall leaders who provided the necessary resources.
* Jefferson Lab staff, especially the accelerator division that built the facility, the target group and the hall engineering staffs that managed and executed the big installations.
* Nathan Isgur, who encouraged, promoted and supported this experimental program.

