Parity Violation: Past, Present, and Future

M.J. Ramsey-Musolf
NSAC Long Range Plan

• What is the structure of the nucleon?
• What is the structure of nucleonic matter?
• What are the properties of hot nuclear matter?
• What is the nuclear microphysics of the universe?
• What is to be the new Standard Model?
NSAC Long Range Plan

• What is the structure of the nucleon?
• What is the structure of nucleonic matter?
• What are the properties of hot nuclear matter?
• What is the nuclear microphysics of the universe?
• What is to be the new Standard Model?

Parity-Violating Electron Scattering
Outline

• PVES and Nucleon Structure
• PVES and Nucleonic Matter
• PVES and the New Standard Model
Parity-Violating Asymmetry

\[A_{LR} = \frac{N_+ - N_-}{N_+ + N_-} = \frac{2 \text{Re} \ A_{PV} A_{PC}^*}{|A_{PC}|^2} \]

\[= \frac{G_F |Q^2|}{4\sqrt{2}\pi\alpha} \left[Q^P_W + F(Q^2, \theta) \right] \]
PV Electron Scattering Experiments

MIT-Bates

Mainz

SLAC

Jefferson Lab
PV Electron Scattering Experiments

Deep Inelastic eD (1970’s)
PV Moller Scattering (now)
Deep Inelastic eD (2005?)
PV Electron Scattering Experiments

MIT-Bates

Elastic e^{12}C (1970’s - 1990)
Elastic ep, QE eD (1990’s - now)
PV Electron Scattering Experiments

Mainz

QE e \(^9\)Be (1980’s)
Elastic ep (1990’s - now)
PV Electron Scattering Experiments

Elastic ep: HAPPEX, G0 (1990’s - now)
Elastic e 208Pb: PREX
QE eD, inelastic ep: G0 (2003-2005?)
Moller, DIS eD (post-upgrade?)

Jefferson Lab
PVES and Nucleon Structure

What are the relevant degrees of freedom for describing the properties of hadrons and why?

Constituent quarks (QM)

\[Q^p, \mu^p \]

Current quarks (QCD)

\[F^p_2(x) \]
PVES and Nucleon Structure

Why does the constituent Quark Model work so well?

- Sea quarks and gluons are “inert” at low energies
- Sea quark and gluon effects are hidden in parameters and effective degrees of freedom of QM (Isgur)
- Sea quark and gluon effects are hidden by a “conspiracy” of cancellations (Isgur, Jaffe, R-M)
- Sea quark and gluon effects depend on C properties of operator (Ji)
PVES and Nucleon Structure

What are the relevant degrees of freedom for describing the properties of hadrons and why?

Strange quarks in the nucleon:

- Sea quarks
- $m_s \sim \Lambda_{QCD}$
- 20% of nucleon mass, possibly -10% of spin

What role in electromagnetic structure?
We can uncover the sea with G^p_w

Light QCD quarks:
- u: $m_u \sim 5$ MeV
- d: $m_d \sim 10$ MeV
- s: $m_s \sim 150$ MeV

Heavy QCD quarks:
- c: $m_c \sim 1500$ MeV
- b: $m_b \sim 4500$ MeV
- t: $m_t \sim 175,000$ MeV

Effects in G^p suppressed by

$$(\Lambda_{QCD}/m_q)^4 < 10^{-4}$$

$\Lambda_{QCD} \sim 150$ MeV

Neglect them
We can uncover the sea with G^p_w

Light QCD quarks:

<table>
<thead>
<tr>
<th>Quark</th>
<th>Mass (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$m_u \sim 5$</td>
</tr>
<tr>
<td>d</td>
<td>$m_d \sim 10$</td>
</tr>
<tr>
<td>s</td>
<td>$m_s \sim 150$</td>
</tr>
</tbody>
</table>

Heavy QCD quarks:

<table>
<thead>
<tr>
<th>Quark</th>
<th>Mass (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>$m_c \sim 1500$</td>
</tr>
<tr>
<td>b</td>
<td>$m_b \sim 4500$</td>
</tr>
<tr>
<td>t</td>
<td>$m_t \sim 175,000$</td>
</tr>
</tbody>
</table>

$m_s \sim \Lambda_{\text{QCD}}$: No suppression

not necessarily negligible
We can uncover the sea with G^P_w

Light QCD quarks:

- u: $m_u \sim 5$ MeV
- d: $m_d \sim 10$ MeV
- s: $m_s \sim 150$ MeV

Heavy QCD quarks:

- c: $m_c \sim 1500$ MeV
- b: $m_b \sim 4500$ MeV
- t: $m_t \sim 175,000$ MeV

Lives only in the sea
Parity-Violating Electron Scattering

Neutral Weak Form Factors

\[G^P = Q_u \, G^u + Q_d \, G^d + Q_s \, G^s \]

\[G^n = Q_u \, G^d + Q_d \, G^u + Q_s \, G^s \]

\[G^P_W = Q_{uw} \, G^u_W + Q_{dw} \, G^d_W + Q_{sw} \, G^s_W \]

SAMPLE (MIT-Bates), HAPPEX (JLab), PVA4 (Mainz), G0 (JLab)

\[G^u, G^d, G^s \]
Parity-Violating Electron Scattering

Separating G^E_w, G^M_w, G^A_w

G^M_w, G^A_w SAMPLE

G^M_w, G^E_w HAPPEX, PVA4

$G^M_w, G^E_w, G^A_w : Q^2$-dependence G_0

Published results: SAMPLE, HAPPEX
• s-quarks contribute less than 5% (1σ) to the proton’s magnetic form factor.

• proton’s axial structure is complicated!

\[G_M^s = 0.14 \pm 0.29 \pm 0.31 \]
\[G_A^e(T = 1) = 0.22 \pm 0.45 \pm 0.39 \]

Models for \(\mu^s \)

Radiative corrections

Axial Radiative Corrections

"Anapole" effects: Hadronic Weak Interaction

Nucleon Green’s Fn: Analogous effects in neutron β-decay, PC electron scattering...
“Anapole” Effects

Zhu, Puglia, Holstein, R-M (χPT)
Maekawa & van Kolck (χPT)
Riska (Model)

Can’t account for a large reduction in G^e_A
Nuclear PV Effects

PV NN interaction

Suppressed by ~ 1000

Carlson, Paris, Schiavilla
Liu, Prezeau, Ramsey-Musolf
SAMPLE Results

- **125 MeV:**
 - no π background
 - similar sensitivity to $G_A^{e}(T=1)$

- **200 MeV data Mar 2003**
 - s-quarks contribute less than 5% (1σ) to the proton’s magnetic moment.

200 MeV update 2003:
- Improved EM radiative corr.
- Improved acceptance model
- Correction for π background

- **Radiative corrections**

 E. Beise, U Maryland
Strange Quark Form Factors

Theoretical Challenge:

- Strange quarks don’t appear in Quark Model picture of the nucleon
- Perturbation theory may not apply

\[\frac{\Lambda_{\text{QCD}}}{m_s} \sim 1 \quad \text{No HQET} \]
\[\frac{m_K}{\Lambda_\chi} \sim \frac{1}{2} \quad \chi\text{PT ?} \]

- Symmetry is impotent

\[J_{\mu}^s = J_{\mu}^B + 2 J_{\mu}^{\text{EM, I=0}} \]
Theoretical predictions

\[\mu_s \equiv G_M^s (Q^2 = 0) \]
Q^2 -dependence of G^s_M

Happex projected

G0 projected

Lattice QCD theory

Dispersion theory

Chiral perturbation theory

“reasonable range” for slope
What χPT can (cannot) say

Strange magnetism as an illustration

\[G_M^s(q^s) = \mu_s + \frac{1}{6} q^2 r_{s,M}^2 + \cdots \]

\[\mu_s = \left(\frac{2M_N}{\Lambda} \right) b_s + \cdots \]

Unknown low-energy constant (incalculable)

Kaon loop contributions (calculable)
What χPT can (cannot) say

Strange magnetism as an illustration

\[G_M^s(q^s) = \mu_s + \frac{1}{6} q^2 r_{s,M}^2 + \cdots \]

\[r_{s,M}^2 = -\frac{6}{\Lambda_\chi} \left\{ \left(\frac{2 M_N}{\Lambda_\chi} \right) b_s^r \right\} \]

\[+ \frac{1}{18} \left(5D^2 - 6DF + 9F^2 \right) \left(\frac{\pi M_N}{m_K} + 7 \ln \frac{m_K}{\mu} \right) + \cdots \]

LO, parameter free

NLO, unknown LEC

NLO, cancellation
Dispersion theory gives a model-independent prediction

\[r_{s,M}^2 = \frac{6}{\pi} \int_{9m_{\pi}^2}^{\infty} dt \frac{\text{Im} G_M^s(t)}{t^2} \]

Slope of \(G_M^s \)

Strong interaction scattering amplitudes

\(e^+ e^- \rightarrow K^+ K^-, \text{ etc.} \)

Jaffe
Hammer, Drechsel, R-M
Dispersion theory gives a model-independent prediction

\[r_{s,M}^2 = \frac{6}{\pi} \int_0^\infty dt \frac{\text{Im} G_M(t)}{t^2} \]

Perturbation theory (1-loop)
Dispersion theory gives a model-independent prediction

\[r_{s,M}^2 = \frac{6}{\pi} \int_{4m_K^2}^{\infty} dt \frac{\text{Im} G_M(t)}{t^2} \]

Perturbation theory (1-loop)

Hammer & R-M
Dispersion theory gives a model-independent prediction

\[r_{s,M}^2 = \frac{6}{\pi} \int_0^\infty \frac{d t}{4m_k^2 t^2} \text{Re}G_M^s(t) \]

Can’t do the whole integral

- Are there higher mass excitations of s s pairs?
- Do they enhance or cancel low-lying excitations?

Experiment will give an answer
PVES and Nucleonic Matter

What is the equation of state of dense nucleonic matter?

We know a lot about the protons, but lack critical information about the neutrons.
PVES and Nucleonic Matter

The Z^0 boson probes neutron properties

\[Q_W = Z(1 - 4 \sin^2 \theta_W) - N \]

\[\sim 0.1 \]

PREX (Hall A): 208Pb

Donnelly, Dubach, Sick

Horowitz, Pollock, Souder, & Michels
Neutron star

Crust thickness decreases with P_n

Skin thickness $(R_n - R_p)$ increases with P_n

208Pb

Horowitz & Piekarewicz

PVES and Neutron Stars
Neutron star properties are connected to density-dependence of symmetry energy.

PREX probes $R_n - R_p$ a meter of $E(\rho)$
PVES and the New Standard Model

We believe in the Standard Model, but it leaves many unanswered questions

- What were the symmetries of the early Universe and how were they broken?
- What is dark matter?
- Why is there more matter than anti-matter?
PVES and the New Standard Model

Present universe

Early universe

Weak scale

Planck scale

High energy desert

\[\frac{4 \pi}{g_i^2} \]

\[\log_{10} \left(\frac{\mu}{\mu_0} \right) \]
PVES and the New Standard Model

Present universe

A “near miss” for grand unification

Early universe

Weak scale

Planck scale

\[\log_{10} \left(\frac{\mu}{\mu_0} \right) \]

Standard Model

High energy desert
PVES and the New Standard Model

Present universe

Weak scale is unstable against new physics in the desert

G_F would be much smaller

Early universe

High energy desert

Planck scale

Weak scale

$\log_{10} \left(\frac{\mu}{\mu_0} \right)$

Planck scale

Weak scale

High energy desert

Early universe

Present universe

Weak scale is unstable against new physics in the desert

G_F would be much smaller

$\log_{10} \left(\frac{\mu}{\mu_0} \right)$
PVES and the New Standard Model

Present universe

Not enough CP-violation for weak scale baryogenesis

\[n_B - n_{\bar{B}} \sim 10^{10} n_\gamma \]

Early universe

Weak scale

Planck scale

High energy desert

\[\log_{10} \left(\frac{\mu}{\mu_0} \right) \]

Standard Model
Neutral current mixing depends on electroweak symmetry

\[J_{\mu}^{\text{WNC}} = J_{\mu}^0 + 4Q \sin^2 \theta_W \cdot J_{\mu}^{\text{EM}} \]

\[\sin^2 \theta_W = \frac{g_Y^2}{g^2 + g_Y^2} \]

SU(2)_L \quad \quad \quad \quad \quad \quad \quad \quad \quad U(1)_Y
Weak mixing also depends on scale

\[\sin^2 \theta_W \]

\[\mu \text{ (GeV)} \]

\[M_Z \]

Czarnecki & Marciano
Erler, Kurylov, R-M
$\sin^2 \theta_W(\mu)$ depends on particle spectrum

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]

\[
\begin{align*}
\ell & \quad p \\
\ell & \quad p \\
\ell & \quad p
\end{align*}
\]
$$\sin^2 \theta_w(\mu) \text{ depends on particle spectrum}$$
\(\sin^2 \theta_W(\mu) \) depends on particle spectrum

\[e^- + Z^0 + e^+ \] + \[e^- + Z^0 + \gamma \] + \[Z^0 + \gamma \] = \[W^+ + Z^0 + \gamma + W^- \] + \cdots
New Physics & Parity Violation

\[Q^e_W = -1 + 4\sin^2\theta_W \]

\[Q^P_W = 1 - 4\sin^2\theta_W \]

\[Q^{Cs}_W = Z(1 - 4\sin^2\theta_W) - N \]

\(\sin^2\theta_W\) is scale-dependent
Weak mixing also depends on scale

$\sin^2 \theta_W$

Atomic PV

νN deep inelastic

e^+e^- LEP, SLD

SLAC E158

JLab Q-Weak

μ (GeV)
Additional symmetries in the early universe can change scale-dependence

Supersymmetry

<table>
<thead>
<tr>
<th>Fermions</th>
<th>Bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_{L,R}$, $q_{L,R}$</td>
<td>$\tilde{e}{L,R}$, $\tilde{q}{L,R}$</td>
</tr>
<tr>
<td>$\tilde{W}, \tilde{Z}, \tilde{\gamma}, \tilde{g}$</td>
<td>W, Z, γ, g</td>
</tr>
<tr>
<td>\tilde{H}_u, \tilde{H}_d</td>
<td>H</td>
</tr>
</tbody>
</table>

$\tilde{W}, \tilde{Z}, \tilde{\gamma}, \tilde{H}_{u,d} \Rightarrow \tilde{\chi}^\pm, \tilde{\chi}^0$
Charginos, neutralinos
Electroweak & strong couplings unify with supersymmetry

Weak scale & G_F are protected

Weak scale

Planck scale

Present universe

Early universe

$\log_{10} \left(\frac{\mu}{\mu_0} \right)$

$\frac{4\pi}{g_i^2}$

Supersymmetry

Standard Model

α_y^{-1}

α_L^{-1}

α_s^{-1}
SUSY will change $\sin^2 \theta_W(\mu)$ evolution

\[e \rightarrow \tilde{e} + e \rightarrow \tilde{e} + \cdots \]

\[p \rightarrow p + p \rightarrow p + \cdots \]

\[Z^0 \rightarrow \gamma + \gamma \rightarrow \chi^+ + \cdots \]
SUSY will change $\sin^2\theta_W(\mu)$ evolution

\[e + p \rightarrow e + p + \cdots \]

\[e + \bar{e} \rightarrow e + \bar{e} + \cdots \]

\[Z^0 + \gamma \rightarrow Z^0 + \gamma + \cdots \]
Comparing Q_w^e and Q_w^p

3000 randomly chosen SUSY parameters but effects are correlated

SUSY loops

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Can SUSY explain dark matter?

Expansion

Rotation curves

Cosmic microwave background
SUSY provides a DM candidate

\[\tilde{\chi}^0 \]

Neutralino

- Stable, lightest SUSY particle if baryon (B) and lepton (L) numbers are conserved

- However, B and L need not be conserved in SUSY, leading to neutralino decay

\[\tilde{\chi}^0 \rightarrow e^+ \mu^- \nu_e \]

e.g.
B and/or L Violation in SUSY can also affect low-energy weak interactions

$\bar{\nu}_e$ \hspace{1cm} $\tilde{\nu}_R^k$ \hspace{1cm} \tilde{e}_R^k \hspace{1cm} ν_{μ}

λ_{12k} \hspace{2cm} e^-

μ^- \hspace{2cm} λ_{12k} \hspace{2cm} ν_{μ}

$\Delta L = 1$

β-decay, μ-decay, ...

d \hspace{1cm} \tilde{q}_L^j \hspace{1cm} ν_{μ}

λ'_{1j1} \hspace{2cm} e^-

λ'_{1j1} \hspace{2cm} d

$\Delta L = 1$

Q^P_W in PV electron scattering
Comparing Q_w^e and Q_w^p

No SUSY dark matter

$\chi^0 \rightarrow e\mu^+\nu_e$

ν is Majorana

SUSY loops

RPV 95% CL

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Comparing Q_w^e and Q_w^p

Can be a *diagnostic tool* to determine whether or not

- the early Universe was *supersymmetric*
- there is *supersymmetric* dark matter

The weak charges can serve a similar diagnostic purpose for other models for high energy symmetries, such as *left-right symmetry, grand unified theories with extra $U(1)$ groups*, etc.
Weak mixing also depends on scale

\[\sin^2 \theta_W \]

\[\mu \text{ (GeV)} \]

Atomic PV

\(e^+e^- \text{ LEP, SLD} \)

\(\nu N \text{ deep inelastic} \)

DIS-Parity, SLAC

DIS-Parity, JLab

JLab Q-Weak

Moller, JLab

SLAC E158
Comparing Q_w^e and Q_w^p

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

No SUSY dark matter

SUSY loops

E158 & Q-Weak

JLab Moller

RPV 95% CL

Kurylov, R-M, Su
Interpretation of precision measurements

How well do we now the SM predictions? Some QCD issues

Proton Weak Charge

\[A_{LR} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[Q_W^p + F^p(Q^2, \theta) \right] \]

Weak charge

Form factors: MIT, JLab, Mainz

\[Q^2 = 0.03 \text{ (GeV/c)}^2 \]

\[Q^2 > 0.1 \text{ (GeV/c)}^2 \]
Interpretation of precision measurements

How well do we now the SM predictions? Some QCD issues

Proton Weak Charge

\[A_{LR} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[Q^p_W + F^p(Q^2, \theta) \right] \]

\[F^p(Q^2, \theta \rightarrow 0) \sim Q^2 \]

Use \(\chi \)PT to extrapolate in small \(Q^2 \) domain and current PV experiments to determine LEC’s
Summary

- Parity-violating electron scattering provides us with a well-understood tool for studying several questions at the forefront of nuclear physics, particle physics, and astrophysics:
 - Are sea quarks relevant at low-energies?
 - How compressible is neutron-rich matter?
 - What are the symmetries of the early Universe?
- Jefferson Lab is *the* parity violation facility
- We have much to look forward to in the coming years
QCD Effects in Q_W^P

Box graphs

$\delta Q_W \sim 26\%$

$\delta Q_W \sim 3\%$

$\delta Q_W \sim 6\%$

$k_{\text{loop}} \sim M_W$: pQCD

$\Lambda_{\text{QCD}} < k_{\text{loop}} < M_W$: non-perturbative
Box graphs, cont’d.

\[
M_{WW} = -\frac{G_F}{2\sqrt{2}} \frac{\hat{\alpha}}{4\pi S^2} \left[2 + 5 \left(1 - \frac{\alpha_s(M_W^2)}{\pi} \right) \right]
\]

Protected by symmetry

Short-distance correction: OPE

\[
\delta Q_{Wp}^{\text{QCD}}(\text{QCD}) \sim -0.7\% \quad \text{WW}
\]

\[
\delta Q_{Wp}^{\text{QCD}}(\text{QCD}) \sim -0.08\% \quad \text{ZZ}
\]
Box graphs, cont’d.

\[M_{Z\gamma} = -\frac{G_F}{2\sqrt{2}} \frac{5\hat{\alpha}}{2\pi} (1 - 4s^2) \left[\ln \left(\frac{M_Z^2}{\Lambda^2} \right) + C_{\gamma Z}(\Lambda) \right] \]

Fortuitous suppression factor: box + crossed \(\sim \) \(\varepsilon^{\mu\nu\alpha\beta} k_{\nu} J^\alpha_{\gamma} J^Z_{\beta} \sim A_\mu \) \(\rightarrow \) \(g_v^e = (-1 + 4 \sin^2 \theta_W) \)

Long-distance physics: not calculable
Neutron β-decay

\[M_{W\gamma} = \frac{G_F}{\sqrt{2}} \frac{\hat{\alpha}}{2\pi} \left[\ln \left(\frac{M_Z^2}{\Lambda^2} \right) + C_{\gamma W}(\Lambda) \right] \]

\[|\delta C_{\gamma W}| < 2 \quad \text{to avoid exacerbating CKM non-unitarity} \]

\[|\delta C_{\gamma Z}| < 2 \quad \Rightarrow \quad \delta Q_{W}^p < 1.5\% \]