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Outline
• Review of two-photon exchange (TPE): Rosenbluth vs 

polarization measurements of GE and GM of nucleon 

• Hadronic model of two-photon exchange (TPE)
• pQCD results at high Q2

• Parity violating asymmetry APV (γγ and γZ)

– utility of generalized form factors
– relation to atomic PV, MS calculation

• TPE effect on pion form factor
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II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:
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where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,
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where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:
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where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2
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Radiative corrections

 dσ0 →dσ = dσ0 (1+δRC)

Missing effect is

• approximately linear in ε

• not strongly Q2 dependent

Two-photon exchange

Bremsstrahlung

• SuperRosenbluth
(detect proton)
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Two-photon exchange

interference between Born and two-photon exchange amplitudes

X

contribution to cross section:

δ(2γ) =
2Re

�
M†

0 Mγγ

�

|M0|2

standard “soft photon approximation” (used in most data analyses)

Mo, Tsai (1969)

MγγM0

neglect nucleon structure (no form factors)

approximate integrand in          by values at      polesMγγ γ∗
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Various Approaches
Rely on Models
• Low to moderate Q2: hadronic: N + Δ + N* etc.

• more and more parameters, less and less reliable 

• Moderate to high Q2:

• GPD approach: assumption of 1 active quark

• Valid only in certain kinematic range

• pQCD: recent work indicates 2 active quarks dominate

Rely on data
• Use dispersion integrals to relate Real and Imaginary parts. Imaginary 

parts fixed by cross section data

• Valid at forward angles: must use models to extrapolate

• Incomplete: not all data is available (e.g. axial hadron coupling and 
isospin dependence in γZ diagrams
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Partonic (GPD) calculation of 
two-photon exchange contribution

(Chen et al.)

“handbag” “cat’s ears”

valid at large Q2 : δhard

   handbag diagrams (one active quark)
to reproduce the IR divergent contribution at nucleon 

correctly (Low Energy Theorem): δsoft

   need cat’s ears diagrams (two active quarks) 
Monday, December 7, 2009



Nucleon elastic contribution (BMT)

magnetic proton form factor
Brash et al. (2002)  

electric proton form factor : 

GE/GM of proton fixed from 
polarization data
Gayou et al. (2002)  

Parametrize as sum of monopoles
 maintains analytic form of result (Passarino-Veltman functions)

Numerical results not terribly sensitive to model for GE, or to details 
of GM; dipole form factors work well too

Model form factors used as input 
in calculation
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proton correction at low Q2 

•Essentially independent of mass (same for muon, free quarks)
•At high Q2, GM dominates the loop integral
•At low Q2, GE dominates
•neutron correction vanishes at low Q2 (pointlike neutron)
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Effect largest at 
small ε (backward 
angles)

Vanishes as ε ->1

Nonlinearity grows 
with Q2

JLAB E05-017 
(Arrington) will 
set limits on 
nonlinearity

Corrections to unpolarized cross sections for Q2=1 to 6 GeV2
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Effect on SLAC reduced cross sections at different Q2

   (normalized to dipole GD
2)

Nonlinearity in ε is 
displayed here

JLAB proposals to 
measure 
nonlinearity
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SuperRosenbluth (JLAB) data

Curves shifted by
 +1.0%    2.64
 +2.1%    3.20
 +3.0%    4.10

(Effect on 
determination of GM)
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Effect on ratio of e+p to e-p cross sections (SLAC, Q2 from 
0.01 to 5 GeV2) MBorn opposite sign for e+p 

vs. e-p, so enhancement 
instead of suppression as 
ε→ 0

R(e+p/e-p) = (1-Δ)/(1+Δ)
       = 1-2Δ
Curves are elastic results 

for Q2=1, 3, 6 GeV2

Expts.
E04-116  Q2 < 2 GeV2

VEPP-3 Q2=1.6 GeV2, ε~0.4
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Effect on ratio R

Without TPE

With TPE

Global Analysis:
(Arrington, Melnitchouk & 
Tjon, PRC, 2007)
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Resonance (Δ) contribution:
 γ(qα) + Δ(pµ) → N pµ!

qα+

• Lorentz covariant form
• Spin ½ decoupled
• Obeys gauge symmetries

3 coupling constants g1, g2, and g3

At Δ pole: g1   magnetic 
  (g2-g1)   electric
        g3  Coulomb

Take dipole FF   FΔ(q2) = 1/(1-q2/ΛΔ
2)2  with ΛΔ = 0.84 GeV

γNΔ vertex
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Other resonances

 N (P11), Δ (P33) + D13, D33, P11, S11, S31
 Parameters from dressed K-matrix model

Results

• contribution of heavier 
resonances much smaller
than N and Δ 
• D13 next most important 
(consistent with second 
resonance shape of Compton 
scattering cross section)
• partial cancellation between 
spin 1/2 and spin 3/2
• leads to better agreement, 
especially at high Q2
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Phenomenology: Generalized form factors

Generalized (complex) form factors

Kinematical invariants :

In limit me →0 (helicity conservation) general amplitude can be put in form

In general, 16 independent amplitudes:

 parity 16 → 8; time reversal 8 → 6; helicity conservation (me=0) 6 → 3
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Observables including two-photon exchange

Real parts of two-photon amplitudes

Caution needed about assumptions (generalized FF’s are not 
observables)

 Parametrization of amplitude NOT unique
Axial parametrization: GA’ (γµγ5)(e) (γµγ5)(p) instead of F3 (or Y2) term

 shifts some F3 into δF1 (and hence into δGE and δGM)
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Real part of elastic results
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Corrections to PL and PT at Q2=1, 3, and 6 GeV2

PT/PL will show some variation with ε, esp. at low ε
  JLab data taken at ε~0.7
JLAB expt (Gilman) measures PT/PL at low ε

GPD calculation predicts suppression of PT/PL
Monday, December 7, 2009



SSA in elastic eN scattering

on-shell intermediate state (MX = W) 

spin of beam OR target 

OR recoil proton 

NORMAL to scattering 

plane  

involves the imaginary part of two-photon exchange amplitudes

Target:  general formula of order e2

• GPD model allows connection of real and imaginary amplitudes
• Hadronic models sensitive to intermediate state contributions,
     no reliable theoretical calculations at present
Beam:   general formula of order me e

2  (few ppm)
• Measured in PV experiments (longitudinally polarized electrons)
      at SAMPLE and A4 (Mainz)
• Only non-zero result so far for TPEX
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TPE contribution to proton FF’s in time-like region:

Chen, Zhou & Dong, PRC 78 (2008)
e+ + e− → p + p̄

D. Y. CHEN, H. Q. ZHOU, AND Y. B. DONG PHYSICAL REVIEW C 78, 045208 (2008)

FIG. 3. Cosine θ dependences of the finite 2γ contribution to the unpolarized differential cross section. The full circles are the results of
full calculation, the dotted curves are those with soft approximation, and the solid lines are the polynomial fit for the full calculation. The left
panel is the result at q2 = 4 GeV2 and right one is at q2 = 5 GeV2.

terms of the four-point Passarino-Veltman functions [27] using
the package FeynCalc [28]. Then, the Passarino-Veltman
functions were evaluated numerically with LoopTools [29].
The IR divergence in the 1γ ⊗ 2γ is proportional to ln λ.
This conclusion can be drawn by analyzing the integral in
Eq. (35) as well as by crossing symmetry and previous
results in the scattering channel. Furthermore, the previous
calculations in the scattering channel have shown that the IR
divergence in the two-photon exchange contribution is exactly
canceled by the corresponding terms in the bremsstrahlung
cross section involving the interference between the real
photons emitted from the electron and from the proton [30].
By the cross symmetry, the IR divergence in the annihilating
channel from the two-photon exchange will also be canceled by
the IR divergence of the soft bremsstrahlung. Then, the finite
corrections we calculated are the full calculations of Eq. (36)
minus the IR part of Eq. (42); these finite corrections are
independent of the λ. Our numerical results verify such
cancellation.

From our previous analysis, the two-photon contribution
to unpolarized differential cross section δ2γ is identical to the
angular asymmetry A2γ , which means δ2γ is also the odd
function of cos θ . The numerical results of the two-photon
contribution to unpolarized differential cross section δ2γ are
presented in Fig. 3, where we show a comparison of δ2γ

[defined as in Eq. (35)] between the results of the full
calculation and the soft approximation. The full circles in
the figure are the full calculation, the dotted curves are the
results with soft approximation, and the full curves are the
polynomial fits to the full calculation. We find a polynomial
in the form of cos θ [a0(t) + a1(t) cos2 θ + a2(t) cos4 θ + · · ·]
can give a good fit with a power series of cos θ (no more
than cos5 θ ). The left panel of Fig. 3 shows the results
with momentum transfer q2 = 4 GeV2, which is near the
threshold of the reaction e+ + e− → p + p̄. We see that
the two-photon exchange contribution to the unpolarized
differential cross section is rather small, only about ±0.6%

at θ = π (0). In addition, with the coefficients a0 = −9.6 ×
10−3, a1 = 4.9 × 10−3, and a2 = −1.5 × 10−3 we see that
the polynomial gives a good fit of the full calculation. The
right panel of Fig. 3 shows the results at q2 = 5 GeV2; the
contribution of the two-photon exchange is relatively large,
nearly 0.8% at θ = π , and the parameters of the fit for the
full calculation are a0 = −1.1 × 10−2, a1 = 4.1 × 10−3, and
a2 = −3.3 × 10−4. We conclude that at a fixed momentum
transfer, the contribution of the two-photon exchange is
strongly dependent on cos θ . In magnitude, the contribution
is rather limited in small momentum transfer region; with q2

increasing, the contribution becomes larger. This conclusion
is consistent with the results in the space-like region.

In Fig. 4, we show the cos θ dependence of the real part
of corrections to the proton time-like form factors caused
by the two-photon exchange at q2 = 4 GeV2. For &GE/G
and &GM/G, significant cos θ dependences are observed,

˜

FIG. 4. Cosine θ dependence of the two-photon contribution to
the proton form factors in the time-like region at q2 = 4 GeV2.

045208-6
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TPEX using dispersion relations
(Borisyuk & Kobushkin, PRC 78, 2008)

• Imaginary part determined by
   unitarity
• Only on-shell form factors
• Real part determined from
  dispersion relations
• Numerical differences between
  naive (solid) and dispersion
  (dashed) analyses are small

• Similar insensitivity seen for Δ
   (Tjon, Blunden, Melnitchouk)

�
dk�� �

h
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α/αs

3

(a)

(b) (c) (d)

FIG. 1: pQCD diagrams for eN → eN : one-photon exchange (a), two-photon exchange, leading order (b), subleading or-
der (c,d).

is a color factor (here λa are Gell-Mann matrices and 〈 〉 means averaging over totally antisymmetric color wavefunc-
tion). In the last equation as well as in Eq. (8) we separate matrices, acting on different quarks, by a ⊗ sign. Thus
in the expression for color factor 1

2λa 1
2λb acts on the first, 1

2λa on the second and 1
2λb on the third quark.

Adding up contributions from all diagrams and using the fact that spin-flavor-coordinate wavefunction is totally
symmetric under quark interchange, we obtain

M = −
4πα

q2
ū′γµu · Ū ′γµU · GM (q2) (10)

where U and U ′ are initial and final nucleon spinors and

GM =
16

3

(

4παs

q2

)2

〈φ(yi)|(1 + h1h3)

{

2e1

x3y3(1 − x1)2(1 − y1)2
+

2e1

x2y2(1 − x1)2(1 − y1)2
+ (11)

e2

x1y1x3y3(1 − x1)(1 − y3)
−

e1

x2y2x3y3(1 − x1)(1 − y3)
−

e1

x2y2x3y3(1 − x3)(1 − y1)

}

|φ(xi)〉

where hi = ±1 are signs of quark helicities; the helicities of initial and final quarks should be equal. This is equivalent
to well-known result [15, 16].

B. Two-photon exchange

For the case of TPE, there are only 4 distinct diagrams in the leading order (Fig. 1b), in which photons are
connected to different quarks. The diagrams in which both photons interact with the same quark (Fig. 1c), need one
more gluon to turn all quarks’ momenta and thus are subleading in αs. Moreover, the evaluation of such diagrams
alone is inconsistent, since the contribution of the same order in αs comes from one-gluon corrections to the leading
diagrams (e.g. Fig. 1d).

One point needs to be clarified here. If we remove the electron line, the diagrams Fig. 1b-d will represent Compton
scattering of virtual photons on the nucleon (doubly virtual Compton scattering, VVCS). And vice versa, TPE can
be viewed as a process in which the virtual photon, emitted by the electron, is scattered from the proton and then
absorbed back by the electron. VVCS has an important qualitative difference from the well-studied real Compton
scattering (RCS). Since the momentum r of the real photon satisfies r2 = 0, it cannot alone turn quark’s momentum:
(xip − yip′)2 %= 0 = r2. Therefore diagrams with the structure like (Fig. 1b) vanish for RCS, and the amplitude
expansion begins with O(α2

s) terms (diagrams like Fig. 1c,d). On contrary, VVCS photons may be highly virtual,
diagrams Fig. 1b contribute, and leading terms in VVCS amplitude are O(αs). Hence one cannot employ an analogy
with RCS in the analysis of TPE (cf. Ref. [14]).

We write down the expression for the first diagram in Fig. 1b, the rest are analogous. We have

δM =

(

4πα

q2

)2 4παs

q2
· 6 · (−2/3) · (−q2) × (12)

〈φ(yi)|e1e2
ū′γµ(k̂ + x2p̂ − y2p̂′)γνu

(k + x2p − y2p′)2 + i0
·
γα(y1p̂′ + y3p̂′ − x3p̂)γµ ⊗ γν ⊗ γα

x2y2x2
3y3(x1 + x3)(y1 + y3)2q2

|φ(xi)〉

(a) one-photon exchange: need 2 hard gluons to turn momentum of all 3 quarks

(b) two-photon exchange:
leading order needs 1 hard gluon

αα2
s/Q6

α2αs/Q6 TPE/OPE ~

subleading order (both photons on one quark) requires 2 hard gluons

TPE

OPE

Recent pQCD calculation: Borisyuk & Kobushkin, PRD 79, 2009
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Contribution to ep for 
different quark 
wavefunctions

Approx linear in ε

e+e−ratio
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FIG. 2: TPE amplitude δGM/GM vs. ε at Q2 = 10 GeV2

0 0.2 0.4 0.6 0.8 1
!0.35

!0.3

!0.25

!0.2

!0.15

!0.1

!0.05

0

!

"
G
M
/G

M

COZ

GS

Het

FIG. 3: TPE amplitude δGM/GM vs. ε for neutron at
Q2 = 5 GeV2
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FIG. 4: Positron/electron cross section ratio for Q2 = 2, 5, 10 and 20 GeV2 (shown near the curves). Data are from Ref. [21]
at 1.5 < Q2 < 5 GeV2.

IV. NUMERICAL RESULTS

There are two independent kinematical variables in any elastic process. For eN scattering Q2 and ε [Eq. (3)] are
generally used. The ε-dependence of the obtained TPE amplitude δGM is shown in Fig. 2. It turns out to be universal
for all Q2 (except for slow logarithmic evolution, which we neglect here). We see that the amplitude δGM , calculated
with COZ and Het wavefunctions, is very close to the linear function of ε. Slight deviations from linearity are present
near the endpoints ε = 0, ε = 1 only. In contrast, GS wavefunction yields much larger and highly nonlinear TPE
amplitude. In light of this it is worth noting that linear ε-dependence of δGM is necessary and sufficient for Rosenbluth
plots to remain linear even under the influence of TPE [22]. Since careful analysis of experimental data do not reveal
any nonlinearity in Rosenbluth plots [23], we conclude that the experiment disfavors GS wavefunction.

For the neutron target, both GS and Het wavefunctions yield nonlinear and anomalously huge TPE corrections, up
to 25% (Fig. 3). Taking into account the smallness of neutron electric form factor, these corrections would manifest as
severe nonlinearities of Rosenbluth plots, that is, strong ε-dependence of the elastic cross section. Though such cross
section behaviour seems unlikely, the high-Q2 neutron form factor data are too poor to draw a final conclusion. Further
experimental study of electron-neutron elastic scattering at high Q2 and different ε can show definitely whether the
nucleon is described by Het or by COZ wavefunction. For the present moment we take the COZ wavefunction as the
most plausible.

The amplitude δG3, which determines the correction to longitudinal recoil polarization [Eq. (7)], is small (< 1%)
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IV. NUMERICAL RESULTS

There are two independent kinematical variables in any elastic process. For eN scattering Q2 and ε [Eq. (3)] are
generally used. The ε-dependence of the obtained TPE amplitude δGM is shown in Fig. 2. It turns out to be universal
for all Q2 (except for slow logarithmic evolution, which we neglect here). We see that the amplitude δGM , calculated
with COZ and Het wavefunctions, is very close to the linear function of ε. Slight deviations from linearity are present
near the endpoints ε = 0, ε = 1 only. In contrast, GS wavefunction yields much larger and highly nonlinear TPE
amplitude. In light of this it is worth noting that linear ε-dependence of δGM is necessary and sufficient for Rosenbluth
plots to remain linear even under the influence of TPE [22]. Since careful analysis of experimental data do not reveal
any nonlinearity in Rosenbluth plots [23], we conclude that the experiment disfavors GS wavefunction.

For the neutron target, both GS and Het wavefunctions yield nonlinear and anomalously huge TPE corrections, up
to 25% (Fig. 3). Taking into account the smallness of neutron electric form factor, these corrections would manifest as
severe nonlinearities of Rosenbluth plots, that is, strong ε-dependence of the elastic cross section. Though such cross
section behaviour seems unlikely, the high-Q2 neutron form factor data are too poor to draw a final conclusion. Further
experimental study of electron-neutron elastic scattering at high Q2 and different ε can show definitely whether the
nucleon is described by Het or by COZ wavefunction. For the present moment we take the COZ wavefunction as the
most plausible.

The amplitude δG3, which determines the correction to longitudinal recoil polarization [Eq. (7)], is small (< 1%)

Q2 = 10 Gev2
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FIG. 5: TPE amplitude δGM vs. Q2 at ε = 0.5 (left) and ε = 0.1 (right). Dashed curves show hadronic calculations, with form
factors parameterizations: dipole (red) and Ref. [24] (black).

for both proton and neutron, and unfortunately lies below the precision of today’s experiments.
The positron/electron cross section ratio is shown in Fig. 4. The calculation is done with COZ wavefunction at

Q2 = 2, 5, 10 and 20 GeV2. The experimental data in the range 1.5 < Q2 < 5 GeV2 from Ref. [21] are also shown.
Though the data points are well near the curves, the errors are very large. More precise data would be helpful,
preferably in the low-ε region, where the predicted ratio is higher.

The Q2 dependence of ”normalized” TPE amplitudes at fixed ε is completely determined by evolution of strong
coupling constant αs. We have used simple parameterization

αs =
4π

β ln(Q2/Λ2)
(20)

with Λ = 0.2 GeV. The resulting shape of TPE amplitude δGM for proton, calculated with COZ wavefunction, is
plotted in Fig. 5. At Q2 ≈ 30 GeV2, which is today the maximal Q2 ever investigated, the relative value of TPE
amplitude reaches 3.5%, which corresponds to cross section correction of about 7%. Such a correction is however
smaller than the errors of available data. On the other hand, TPE can be seen in recently proposed high-Q2 JLab
experiment [9], where the estimated errors are at 1% level.

The results of ”hadronic” calculation [11, 13] are also shown in Fig. 5 for comparison. Probably, the amplitude
undergoes some gradual transition from this curve at lower Q2 to pQCD prediction at higher Q2 (recall that ε-
dependence in both cases is the same, approximately linear with positive slope). The figure suggests that a reasonable
interpolation is possible between the ”hadronic” result for Q2 below ∼ 3 GeV2 and pQCD result above this value.
But we also see a strong disagreement of these two curves at higher Q2. The most likely reason for such behaviour is
that the ”hadronic” approach, i.e. saturation of the intermediate hadronic states by the bare nucleon and the lowest
resonances, is inadequate at high Q2. The multi-particle intermediate states yield a substantial part of the amplitude.

V. CONCLUSIONS

We have considered TPE for the elastic electron-nucleon scattering in the framework of pQCD. The calculations are
done in the leading order with several model wavefunctions. For the proton target and wavefunctions based on QCD
sum rules (CZ [16], KS [17] and COZ [18]), the TPE amplitude δGM , which determines cross section correction, has
linear ε-dependence. Its value is of order α/αs, grows logarithmically with Q2 and at Q2 = 30 GeV2 reaches 3.5% of
Born amplitude. At lower Q2 a smooth connection is possible with previous ”hadronic” calculations, in which TPE
amplitudes were calculated taking into account just the nucleon intermediate state [11]. On the other hand, at high
Q2 the results of these two methods are very different, which implies that ”hadronic” approach becomes inadequate
at Q2 ! 3 GeV2.

The size and ε-dependence of TPE amplitudes are sensitive to the choice of nucleon wavefunction (quark distri-
bution amplitude). At the same time, they are directly measurable: δGM/GM via cross section or positron/electron
cross section ratio and δG3/GM — via longitudinal recoil polarization. Thus an accurate measurement of TPE ob-
servables opens a new efficient way to study quark distribution amplitude in the nucleon. For example, the existing

Comparison of hadronic and pQCD results

Connect smoothly around Q2 = 3 GeV2
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In the above (as well as in the equation below), it is implicitly understood that the complex conjugate, and exchange of
labels $1; 3% ! $3; 1% are to be added on. The charges ei are in units of the electron charge e $'e & e2=4$%. Inserting this
and the single-photon results into Eq. (39) yields,

$N$";#% & " 64$3's'e

9$"t%2GM$t%

"
cos"# e"i# M!!!!!!

"t
p sin"

#Z
'dx('dy(
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x1x2x3y1y2y3'y1y1 ##(y12

: (42)

As a check on the correctness of the calculations for
scattering amplitudes for both the meson and baryon cases,
we have verified that the Ward identity is satisfied in all
different ways. Perturbatively $"t%2GM$t% $$$! constant at
large t, and so again one has approximate scale invariance.
In Fig. 7 we have plotted the asymmetry off a proton target.
In this exploratory calculation we have used the Chernyak-
Zhitnitsky wavefunction in Ref. [9]. In this paper we have
calculated asymmetries, not cross sections because the
latter involve a 3-body phase space. Since J-Psi photo-
production has been measured in exclusive reactions [9],
lepton pair production should also be possible.

Finally we remark that Sudakov effects, which arise
from the bremstrahlung of widely separated quarks that
undergo large changes in momentum, will lead to a weak-
ening of the effective coupling. Thus, although the angular
structure of the amplitude will probably be similar, one
must investigate diagrams that are of one order higher in
's. For the proton case this will involve a very large
number of diagrams that will require a machine computa-
tion. We have not attempted this calculation.

The author thanks Stanley J. Brodsky and Xiangdong Ji
for valuable comments and encouragement.
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FIG. 7. Lepton pair asymmetry from a proton target.

FIG. 6. Typical diagrams for lepton pair production from a 3-
quark proton.

TWO-PHOTON EFFECTS IN LEPTON-ANTILEPTON . . . PHYSICAL REVIEW D 73, 054027 (2006)

054027-5

Lepton-antilepton 
photoproduction using real 
photons
(Pervez Hoodbhoy, PRD 2006)

q! ! "!; 0; 0; !#; (1)

P! ! ""; " sin ; 0; " cos #; (2)

P0! ! ""$!%M; " sin ; 0; !$ " cos #; (3)

K! ! "M; 0; 0; 0#; (4)

where the incoming hadron energy ", incoming photon
energy !, and angle  are

" ! s$ t
2M

; (5)

! ! M2 % t
2M

; (6)

cos ! 1% s
2!"

: (7)

The outgoing lepton and antilepton, also taken to be
massless, have spinors !u"l# and v"l0#. The lepton and
antilepton momentum vectors are

l! ! M
2
"1; sin# cos$; sin# sin$; cos##; (8)

l0! ! M
2
"1;% sin# cos$;% sin# sin$;% cos##: (9)

The azimuthal angle $ is measured relative to the plane

formed by P
!

and q! (which defines the z axis and hence #).

In the center-of-mass frame used here P
!0 also lies in this

plane. By angular momentum conservation, the two mass-
less leptons have opposite helicities. Since we shall work at
the amplitude level, we need simple, covariant expressions
for the matrix v"l0# !u"l# in the helicity basis. The method
developed by Vega and Wudka [10] is especially conve-
nient when used in the cm frame:

v #"l0# !u""l# ! %M
4
%6 $ $M

4
%6 $&5; (10)

v ""l0# !u#"l# ! %M
4
%6 % %M

4
%6 %&5: (11)

since it will not enter the cross sections. The auxiliary
vector %!

& is defined as,

%!
& ! "0; cos# cos$& i sin$; cos# cos$

' i cos$;% sin##: (12)

Here & refers to the lepton helicity. %! satisfies

%% ! %(
$; (13)

%$ ) %$ ! %% ) %% ! 0; (14)

%& ) l ! %& ) l0 ! 0: (15)

Consider now lepton pair production from a pion via the
form-factor diagram (Fig. 2). This, together with its
crossed counterpart, is easily calculated in the large s limit.

With the pion factor normalized such that F'"0# ! 1,
the amplitude for producing a positive helicity lepton from
a positive helicity real photon is

A""
1 * A1"#;$;&"; l"; !l##
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!!!
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s
M3 !!!!

(
p "1$ (#2 e

%i#+i !!!!
(
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$ ei$"ei# $ 1#,2 csc#F'"t#: (16)

For convenience we have defined the dimensionless mo-
mentum transfer,

( ! % t
M2 : (17)

By examining the &-matrix structure, the other helicity
amplitudes are easily obtained from,

A#"
1 * A1"#;$;&#; l"; l0## ! A1"#$ ';%$;&"; l"; l0##;

(18)

A"#
1 * A1"#;$;&"; l#; l0"# ! A1"#$ ';$;&"; l"; l0##; (19)

A##
1 * A1"#;$;&#; l#; l0"# ! A1"#;%$;&"; l"; l0##: (20)

For momentum transfers much higher than the invariant
mass of the produced lepton pair

A""
1 ! %i

!!!
8

p
e3

"%t#3=2
s tan

#
2
F'"t# "s- %t- M2#:

(21)

Note that the $ dependence entirely disappears in this
limit. The singular behavior for # ! 0 comes from the
lepton propagator in Fig. 2 and disappears upon including
the lepton mass. However, for purposes of comparing with
the other amplitudes to be computed below, where includ-
ing the mass would make the formulae less transparent,
this mass will be kept at zero in this preliminary
calculation.

FIG. 2. Form-factor contribution to lepton pair production at
lowest order.

PERVEZ HOODBHOY PHYSICAL REVIEW D 73, 054027 (2006)
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GZ
A = −GAτ3 + Gs

A

Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

using relations between weak and e.m. form factors

GZp
E,M = (1− 4 sin2 θW )Gγp

E,M −Gγn
E,M −Gs

E,M

radiative corrections,
including TBE

AV = ge
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�
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M )/σγp

�

APV =
σL − σR
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= −

�
GF Q2

4
√
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�
(AV + AA + As)
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do not include hadron structure effects
(parameterized via VNN form factors)  

Two-boson exchange corrections

Marciano, Sirlin (1980)

X

X

Erler, Ramsey-Musolf (2003)

current PDG estimates (of               ) computed at           Q2 = 0

Zhou, Kao & Yang, PRL 2007; Tjon & Melnitchouk, PRL 2008;
Tjon, Melnitchouk & Blunden, PRC 2009
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K = 8.58 for µ = 1 GeV, and (ξ1)p
B = 2.55 using dipole proton form factors,

showing that the quark contribution dominates.
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Marciano-Sirlin (PV in atoms)

Perturbative (free quark result)

Nonperturbative
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Effect on Parity-violating asymmetry in elastic e+p
Electromagnetic radiative corrections 

interfere with MZ (Mγ → Mγ + Mγγ)

plus weak radiative corrections interfere 
with Mγ (MZ → MZ + MγZ)

Afanasev and Carlson (PRL 2005) used generalized form 
factors to analyze effect of γγ on A (GPD model)

Equivalently,

Therefore, AV = (1-4sW
2) + …
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 APV vs. ε for Q2 = 0.1, 0.5, 1.0, 3.0 GeV2 (TPE only)
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T = (γµγ5)(e) ⊗
�

F̃1γ
µ + iF̃2

σµνqν

2M

�(p)

+ (γµ)(e) ⊗
�
G̃Aγµγ5

�(p)

F̃1(ν, Q2) = FZ
1 + δF1

F̃2(ν, Q2) = FZ
2 + δF2

G̃A(ν, Q2) = GZ
A + δGA

At Q2 = 0 only 2 needed: related to Cp
1 and Cp

2 of Marciano-Sirlin

Phenomenology: Generalized form factors

Generalized (complex) form factors

In general, 16 independent amplitudes:

parity NC 16 → 8; time reversal 8 → 6; helicity conservation (me=0) 6 → 3

No new terms arise in Afanasev-Carlson expression
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CVC and isospin symmetry relate γN∆ to ZN∆ form factors

gV
i = 2(1− 2s2

w)gi

For N: gZ
i = 2(1− 2s2

w)g(1)
i − 2s2

wg(0)
i = (1− 4s2

w)gp
i − gn

i

Delta resonance contribution
Vector coupling

Axial vector coupling

Take from neutrino scattering parametrization of Lalakulich & Paschos
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ge
A2(1− 2s2

w)/(1− 4s2
w) = (1 + Qp

w)/Qp
w ≈ 14

! " # $ % &
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!'!#

!'!%

"
#(
)#

Z
*

Q
2
 = 0

Q
2
 = 0.03 GeV

2

Δ contribution enhanced at forward angles and low Q2δγ(γZ)

enhancement:

+ energy dependence (this correction vanishes at E=0, not in Marciano-Sirlin)
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4

part to fit the real Compton data (for the parameters see
[8]),

σγp(W 2, 0) =
�

R

σRΓRΓγ
RM2

R

(W 2 −M2
R)2 + M2

RΓ2
R

+ σRegge
γp (W 2)

(13)

Further, we employ two different forms of Q2 depen-
dence for the two contributions. Ref. [10] gives an-
alytical form of W 2 and Q2 dependence of the longi-
tudinal and transverse virtual photon cross sections as
σRegge

L,T (W 2, Q2) = σRegge
γp (W 2) IL,T (η,η0)

IT (η0,η0)
, with the scal-

ing variable η = m2
0+Q2

Λ2(W 2) and η0 = η(Q2 = 0), so that
for the real photons the known Regge asymptotics is re-
covered, and we refer the reader to Ref. [10] for fur-
ther details. For the resonances, transition form fac-
tors are used. The latter are to some extent known for
a number of resonances and we assume a dipole form,
FT (Q2) = 1

(1+Q2/Λ2)2 , and FL(Q2) = Q/Λ
(1+Q2/Λ2)2.5 , with

Λ ≈ 1 GeV. Finally, the form that is used for numerical
estimates is

σT,L(W 2, Q2) =
�

R

σRΓRΓγ
RM2

R

(W 2 −M2
R)2 + M2

RΓ2
R

F 2
T,L(Q2)

+ σRegge
T,L (W 2, Q2) (14)

We present results of the dispersion calculation in Fig.
3. It can be seen that starting from Elab ≈ 1 GeV,
high energy (Regge) contribution dominates the contri-
bution from the resonances. This is the consequence of
a relatively slow convergence of the dispersion integral
for Regge part, while the resonances drop very fast. In
the presented calculation, the upper limit of the inte-
gration over ν� was chosen to be 500 GeV, although the
1/ν�2 weighting ensures the convergence already at lower
values. While at very low energies the correction is in-
deed very small, at the 1.16 GeV energy of the QWEAK
experiment the correction is 5.7%. More specifically,
QWEAK aims at comparing the measured weak charge
of the proton, 4πα

√
2

GF t APV to its value as given in SM,
Qp

W [1 + δRC + ReδγZ ] and from this comparison draw
conclusions about the New Physics contributions. The

current estimate of the uncertainty due the the correc-
tions in the square brackets is 2.2%, and this estimate
relies on the assumption that δγZ is highly suppressed
(≤0.65%). As explained above, this estimate is taken
over from low energy estimates for PV in atoms, and is
not based on any microscopic calculation. Although the
numbers presented here are themselves model-dependent,
our calculation shows that the γZ box diagrams can be
almost an order of magnitude larger than it was believed
to date, and this result suggests larger possible theoreti-
cal errors for the QWEAK experiment. If the uncertainty
in the dispersion correction is to be comparable to the
proposed 2% experimental error in APV , one may need
to calculate the dispersion γZ correction (that we think is
near 6%) to a fractional accuracy of order 30%. Alterna-
tively, uncertainties in these dispersion corrections could
provide a limit on the precision of a Standard Model test.
Since the calculation uses the PVDIS structure functions
as input, it would be extremely helpful to have experi-
mental data on PVDIS to check the model adopted here.
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FIG. 3: Results for ReδγZA as function of energy. The con-
tributions of nucleon resonances (dashed line), Regge (dash-
dotted line) and the sum of the two (solid line) are shown.
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dΩ = σMottF 2

π (q2)
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FIG. 1: Two-photon exchange correction to the pion form factor as a function of ε for various Q2,

relative to the Mo & Tsai (MT) [8] contribution. A monopole parametrization is used for Fπ in

the full calculation.

increasing Q2 the correction becomes smaller (more negative) up to Q2 ∼ 1 − 2 GeV2,

especially in the extreme backward region (ε → 0), but changes sign at intermediate ε.

Note, however, that unlike electron-proton scattering, the electron-pion scattering cross

section vanishes at the extreme backward angles limit (ε = 0). Above Q2 ∼ 2 GeV2 the

correction grows once again, reaching ∼ 1% at Q2 = 10 GeV2.

The Q2 dependence is more clearly illustrated in Fig. 2, where δ is shown for fixed ε

over the range Q2 = 1− 6 GeV2. Interestingly, the correction is most positive at very small

Q2 $ 1 GeV2 and large Q2 % 1 GeV2, reaching its minimum values at Q2 ∼ 1 − 2 GeV2.

At small ε the Q2 dependence is seen to change most rapidly.

While the monopole parametrization is known to give a good description of the pion form

factor data at low Q2, it overestimates Fπ(q2) at larger Q2. An alternative parametrization

to the monopole which fits the available data and builds in gauge invariance constraints for

the Q2 → 0 limit and perturbative QCD expectations for the Q2 → ∞ behavior was given in

Ref. [11]. Using this parametrization the TPE correction δ is shown in Fig. 2 (right panel).

As expected, the differences at low Q2 are negligible, but become noticeable at high Q2. The

qualitative behavior of the corrections, however, is not affected by the specific form chosen.

We should note that the effects illustrated in Figs. 1 and 2 are not physical, but merely

reflect the accuracy with which the full result can be approximated by the particular prescrip-

5

TPE effect on Pion Form Factor: BMT 2009

TPE:

Current is:

Form factor in loop: used both VMD (ρ meson), and VMD + pQCD
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Outlook

– Use phenomenological form factors in analyzing data, 
extracting strange form factors, etc.

– Merge hadronic models with GPD or pQCD calculations for γγ 
and γZ?

– Recent work on TPE seems to indicate insensitivity to off-shell 
form factors

– Dispersion relations that use cross section data are useful at 
forward angles, however still need for models to extrapolate 
(not all data is available, e.g. γZ interference, axial part)

Collaborators: Melnitchouk, Tjon + Kondratyuk
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