Nucleon-Nucleon Interactions from the Quark Model

Clark Downum (Oxford/Barcelona)

Jirina Stone(Oxford/UTK), Ted Barnes(ORNL/UTK), Eric Swanson(Pitt.), and Isaac Vidaña (Coimbra)

Talk Outline

- Review NN Models and the Force
- The 3P0 Model of NNm Coupling Constants and Form Factors
- One Gluon Exchange
- Oxford Model of NN Force (Initial Results)
 - Phase Shifts
 - Deuteron
 - Nuclear Matter
 - Looking at the Potential
- Conclusions, Thoughts, etc.

NN Models

- Phenomenological Density Dependent Models
 - Skyrme and Gogny.
- Nucleon-Nucleon Models
 - Operator Channel Models (Argonne v18, Reid)
 - N3LO Chiral Perturbation Theory
 - Meson Exchange Models (Bonn, Paris, Nijmegen)

Meson Exchange Theory of Nuclear Forces

- Choose the set of mesons.
- Choose a form-factor (dipole, exponential, etc.)
- Fit couplings and form-factor parameters

NN Models and Quarks/Gluons

- NN Models take little guidance from quark/gluon substructure of nucleons.
- These models work!
- QCD is non-perturbative ⇒ a proper derivation of NN forces is impossible.
- Constituent Quark Model often estimates strong physics
 - 3P0 Decay Model
 - Quark Cluster Model studies of One Gluon Exchange

Can the Quark Model Estimate NN Dynamics?

Schematic Picture of NN Forces

3P0 Model and Effective Strong 3-Point Vertices

$$H_{^{3}\mathrm{P}_{0}}=\gamma\sigma.\vec{p}\left|q\bar{q}\right\rangle\left\langle 0
ight|$$

Equating the Two
$$\Longrightarrow g_{NNm}(q^2) = \cdots$$

3P0 NNm Coupling Constants

$$g_{\rm NN\pi} = \gamma 40\sqrt{3}\pi^{3/4} m_N \sqrt{m_\pi} \frac{\beta^{3/2} (4\beta^2 + \alpha^2)}{(3\beta^2 + \alpha^2)^{5/2}}$$

$$g_{\rm NN\sigma} = \gamma 108 \sqrt{2} \pi^{3/4} \frac{\alpha^4 \beta^{5/2} \sqrt{m_{\sigma}}}{(\alpha^2 + 3\beta^2)^{5/2}}$$

3P0 Coupling Constants and Form Factors

$$g_{\rm NN\pi} = \gamma 40\sqrt{3}\pi^{3/4} m_N \sqrt{m_\pi} \frac{\beta^{3/2} (4\beta^2 + \alpha^2)}{(3\beta^2 + \alpha^2)^{5/2}}$$
$$\mathcal{F}_{\rm S} = \exp\left\{-\frac{(\vec{P}_i + \vec{P}_f)^2}{24(3\beta^2 + \alpha^2)} - \frac{(\vec{P}_i - \vec{P}_f)^2}{6\alpha^2}\right\}$$
$$g_{\rm NN\sigma} = \gamma 108\sqrt{2}\pi^{3/4} \frac{\alpha^4 \beta^{5/2} \sqrt{m_\sigma}}{(\alpha^2 + 3\beta^2)^{5/2}}$$

$$\mathcal{F}_{\rm P} = \left(1 + \frac{4\beta^2 + \alpha^2}{12\alpha^2(\alpha^2 + 3\beta^2)}(\vec{P}_f - \vec{P}_i)^2\right) \exp\left\{-\frac{(\vec{P}_i + \vec{P}_f)^2}{24(3\beta^2 + \alpha^2)} - \frac{(\vec{P}_i - \vec{P}_f)^2}{6\alpha^2}\right\}$$

Parameter Free Relations
Among Coupling Constants
$$g_{NN\eta(')} = \frac{3}{10\sqrt{2}} \left(\frac{m_{\eta(')}}{m_{\pi}}\right)^{1/2} g_{NN\pi}$$
$$g_{NN\omega} = \frac{9}{10} \left(\frac{m_{\omega}}{m_{\pi}}\right)^{1/2} g_{NN\pi}$$
$$\kappa_{\omega} = -\frac{3}{2}$$
$$g_{NN\rho} = \frac{1}{6} \left(\frac{m_{\rho}}{m_{\omega}}\right)^{1/2} g_{NN\omega}$$
$$\kappa_{\rho} = +\frac{3}{2}$$
$$g_{NNa_0} = \frac{1}{3} \left(\frac{m_{a_0}}{m_{\sigma}}\right)^{1/2} g_{NN\sigma}$$

Numerical Values of Coupling Constants

Coupling	This Work	This Work	Paris	Nijmegen'93	CD-Bonn
$g_{NN\pi}$	14.2	[13.5]	[13.3]	13.3	[13.1]
8NNn	6.0	5.7	_	9.8	_
$g_{NN\eta}$	7.9	7.5	_	10.5	_
$g_{NN\sigma}$	5.0	N/A	_	17.9	(7.3; 14.9)
g_{NNa_0}	2.7	N/A	_	3.3	_
$g_{NN\omega}(\gamma_{\mu})$	30.2	28.7	12.2	12.5	15.9
$g_{NN\rho}/g_{NN\omega}(\gamma_{\mu})$	+.33	+.33	_	0.22	0.20
$\kappa_{\omega}(\sigma_{\mu\nu}/\gamma_{\mu})$	-3/2	-3/2	-0.12	0.66	0
$\kappa_{ ho}(\sigma_{\mu u}/\gamma_{\mu})$	+3/2	+3/2	_	6.6	6.1

Downum et al. Phys. Lett. B (638) 455-460 (2006).

CLAS Measurement!

• Mike Williams reports (2007):

$$g_{\rm NN\omega} = 1.04$$
$$\kappa_{\omega} = -2.10$$

• Which is significantly different than our values for the coupling constant, but not the ratio.

Back to NN Force Schematic

Quark Cluster Model Studies of One Gluon Exchange

- Date back to Liberman in 1977.
- Uses the Breit-Fermi Hamiltonian for perturbative QCD effects and a confining potential for non-perturbative QCD effects.
- Solve the Schrödinger Equation
- Extract a potential.
- They find: Tensor, Coulomb, Central and Spin-Orbit forces approximately cancel.
- Therefore, spin-spin contact interaction dominates.

Simple OGE Potential

Barnes et al. PRC 48 539(1993)

$$H_{\text{OGE Hyp}} = \sum_{i < j; i, j=1}^{3} -\frac{8\pi\alpha_S}{3m_im_j}\vec{s}_i \cdot \vec{s}_j \sum_{a=1}^{8} \frac{\lambda_i^a}{2} \frac{\lambda_j^a}{2}$$

$$\mathcal{V}_{\text{OGE+CI}} = \frac{\alpha_S m}{3m_q^2} \sum_{n=1}^8 \omega_n \eta_n \exp\left\{-A_n p_i^2 - C_n p_f^2 + B_n \vec{p}_i \cdot \vec{p}_f\right\}$$

Oxford Model

 $\mathcal{L}_{\text{Oxf}} = -ig_{\text{NN}\pi}\mathcal{F}_{S}\bar{\psi}\gamma_{5}\vec{\tau}\psi\cdot\vec{\pi} - ig_{\text{NN}\sigma}\mathcal{F}_{S}\bar{\Psi}\Psi\sigma + i\mathcal{V}_{\text{OGE+CI}}[\bar{\psi}\bar{\psi}\bar{\psi}\psi\psi].$

- Wanted to try a simple model
- Introduced Charge Independence Breaking and Charge Symmetry Effects.
- Gave ourselves the freedom to vary m_{σ} and $\alpha = \beta$ by partial wave.
- Found a need for additional repulsion in the 1P1, 3P0, and 3P1 channels so we added an ω exchange to those channels.

NN Free Scattering Phase Shifts

$$(T+V)\Psi = H\Psi = E\Psi = \frac{p^2}{2m}\Psi$$

$$r \to \infty \Rightarrow \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{l(l+1)}{2mr^2} + \frac{p^2}{2m}\right)\frac{u_l(r)}{r} \approx 0$$
Thus as $r \to \infty \Rightarrow u_l(r) \approx \sin(pr + \frac{1}{2}l\pi + \delta_l(p))$
Spin 1 $\Rightarrow \delta$ for ${}^1S_0, {}^3S_1, {}^3P_0, \dots$ etc. and $\varepsilon_1, \varepsilon_2, \dots$ etc

T=0 Phase Shifts

T=1 Phase Shifts

Scattering Lengths, Effective Ranges

$$(T+V)\Psi = H\Psi = E\Psi = \frac{p^2}{2m}\Psi$$

$$r \to \infty \Rightarrow \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{l(l+1)}{2mr^2} + \frac{p^2}{2m}\right)\frac{u_l(r)}{r} \approx 0$$
Thus as $r \to \infty \Rightarrow u_l(r) \approx \sin(pr + \frac{1}{2}l\pi + \delta_l(p))$
Spin 1 $\Rightarrow \delta$ for ${}^1S_0, {}^3S_1, {}^3P_0, \dots$ etc. and $\varepsilon_1, \varepsilon_2, \dots$ etc.
 $p\cot(\delta_S(p)) \approx -\frac{1}{a} + \frac{1}{2}r_{\rm eff}p^2 + O(p^4)$

Scattering Lengths and Effective Ranges by Channel

	Oxford	CD-Bonn	Experiment
		${}^{1}S_{0}$	
a_{pp}^{C}		-7.8154	-7.8149 ± 0.0029
r_{pp}^{C}		2.773	2.769 ± 0.014
a_{pp}^{N}	$-17.33 {\pm} 0.03$	-17.4602	
r_{pp}^{N}	$2.806{\pm}0.004$	2.845	
a_{nn}^N	-18.63 ± 0.03	-18.9680	-18.9 ± 0.4
r_{nn}^N	$2.788{\pm}0.004$	2.819	2.75 ± 0.11
a_{np}^N	-23.6 ± 0.1	-23.7380	-23.74 ± 0.020
r_{np}^{N}	$2.714{\pm}0.006$	2.671	$2.77{\pm}0.05$
		${}^{3}S_{1}$	
a_t^N	$5.498 {\pm} 0.008$	5.4196	$5.419{\pm}0.007$
r_t^N	$1.763 {\pm} 0.007$	1.751	$1.753{\pm}0.008$

Dependence of T=1 Scattering Length Against Mass of the Sigma

Deuteron Properties

$$H\Psi = (T+V)\Psi = E\Psi = \frac{(iq)^2}{2\mu}\Psi$$

$$\Rightarrow \begin{bmatrix} \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} + \begin{pmatrix} V_{\rm SS} & V_{\rm SD} \\ V_{\rm DS} & V_{\rm DD} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{\rm S} \\ \psi_{\rm D} \end{pmatrix} = \frac{(iq)^2}{2\mu} \begin{pmatrix} \psi_{\rm S} \\ \psi_{\rm D} \end{pmatrix}$$

$$r_m = \frac{1}{2}\sqrt{\int (\psi_{\rm S}^2 + \psi_{\rm D}^2)r^2dr} \qquad P_D = \int \psi_{\rm D}^2 r^2dr$$

$$Q_D = \frac{1}{20}\int \sqrt{8}\psi_{\rm D}^{\dagger}r^2\psi_{\rm S} - \psi_{\rm D}^{\dagger}r^2\psi_{\rm D}dr$$

$$\begin{aligned} & \text{Deuteron Properties (Cont'd)} \\ & H\Psi = (T+V)\Psi = E\Psi = \frac{(iq)^2}{2\mu}\Psi \\ \Rightarrow \left[\begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} + \begin{pmatrix} V_{\text{SS}} & V_{\text{SD}} \\ V_{\text{DS}} & V_{\text{DD}} \end{pmatrix} \right] \begin{pmatrix} \psi_{\text{S}} \\ \psi_{\text{D}} \end{pmatrix} = \frac{(iq)^2}{2\mu} \begin{pmatrix} \psi_{\text{S}} \\ \psi_{\text{D}} \end{pmatrix} \\ & \text{In the } \lim_{r \to \infty} \Rightarrow \begin{pmatrix} \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{0}{2\mu r^2} + \frac{(iq)^2}{2\mu} \end{pmatrix} \psi_{\text{S}} = 0 \\ & \begin{pmatrix} \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{2(2+1)}{2\mu r^2} + \frac{(iq)^2}{2\mu} \end{pmatrix} \psi_{\text{D}} = 0 \\ & \text{Im } \psi_{\text{S}}(r) \approx A_{\text{S}}h_0(iqr) = A_{\text{S}}\frac{e^{-qr}}{qr} \qquad \eta = \frac{A_{\text{D}}}{A_{\text{S}}} \quad N^2 = A_{\text{S}}^2 + A_{\text{D}}^2 \\ & \lim_{r \to \infty} \psi_{\text{D}}(r) \approx A_{\text{D}}h_2(iqr) = A_{\text{D}}\frac{e^{-qr}}{qr} \left(1 + \frac{3}{qr} + \frac{3}{(qr)^2}\right) \end{aligned}$$

Deuteron Results

Property	Oxford	CD-Bonn	Nijmegen	Experiment
$B_D[MeV]$	2.226(2)	2.224575	2.224575	2.224575 ± 0.000009
$A_{S}[{ m fm}^{1/2}]$?	0.8846	0.8845	$0.8848{\pm}0.0009$
η	?	0.0256	0.0256	$0.0256 {\pm} 0.004$
r_m [fm]	?	1.966	1.9676	$1.971 {\pm} 0.006$
Q_d [fm ²]	?	0.270	0.271	$0.28590{\pm}0.00030$
P _D [%]	6.75(1)	4.85	5.67	

Obviously we still have some things to calculate here. The efforts are underway!

Nuclear Matter

Imagine a Volume V with A nucleons. We assume that the system has periodic boundary conditions and has translational invariance. The the limit as V and A $\rightarrow \infty$ but $\rho = A/V =$ constant of this matter is called Nuclear Matter.

Two variables: •Density (ρ) •Proton Fraction: x_p $X_p = 1/2$ is Symmetric Nuclear Matter (SNM) $X_p = 0$ is Pure Neutron Matter (PNM) $X_p = else$ is Asymmetric Nuclear Matter (ANM) We are interested in E/A, the Equation of State (EOS).

Properties of Nuclear Matter from Heavy Nuclei

$$\frac{E}{A} = a_1 + a_2 A^{-\frac{1}{3}} + a_3 x_p^2 A^{-\frac{10}{3}} + a_4 (1 - 2x_p)^2 + a_5 A^{-\frac{7}{4}}$$

$$\lim_{A \to \infty} \frac{E}{A} \Big|_{x_p = \frac{1}{2}} = a_1 \approx -16.1 \,\mathrm{MeV}$$

$$\lim_{A \to \infty} \frac{\partial^2}{\partial x_p^2} \frac{E}{A} = 8a_4 \Rightarrow \frac{1}{8} \lim_{A \to \infty} \frac{\partial^2}{\partial x_p^2} = a_4 \approx 23 \text{MeV}$$

$$\lim_{A \to \infty} \frac{\partial^2}{\partial x_p^2} \frac{E}{A} \approx \lim_{A \to \infty} \frac{E}{A} \Big|_{x_p = \frac{1}{2}} - \lim_{A \to \infty} \frac{E}{A} \Big|_{x_p = 0}$$

Qualitative EOS for SNM

Change of EOS from SNM to PNM

Calculating the EOS

$$H\psi = (T+V)\psi = E\psi$$

- Need to solve the many body Schrödinger equation.
- Non-trivial but technical.
- First person to try perturbation theory techniques to nuclear matter: Brueckner. Hence the Brueckner Hartree Fock formalism.

Formalism and Interaction Matter!

PHYSICAL REVIEW C 74, 047304 (2006)

Nuclear matter saturation point and symmetry energy with modern nucleon-nucleon potentials

Z. H. Li,¹ U. Lombardo,² H.-J. Schulze,³ W. Zuo,⁴ L. W. Chen,¹ and H. R. Ma¹

Making a 2-body Interaction Fit EOS Phenomenology

EOS Results

EOS Results (Cont'd.)

EOS Results (Cont'd)

Comparison of EOS Results

Model	ρ_0 [fm ⁻³]	Symmetry Energy	B/A[MeV]
Paris	0.270	29.4	-17.6
Argonne 18	0.270	29.9	-17.3
Bonn A	0.259	32.1	-28.4
Bonn B	0.419	31.8	-22.0
Bonn C	0.341	28.5	-16.4
CD-Bonn	0.257	31.1	-21.9
Reid '93	0.328	30.0	-19.8
Nijmegen '93	0.285	30.4	-19.6
Nijmegen I	0.348	30.5	-20.7
Nijmegen II	0.326	29.5	-19.4
N ³ LO	0.408	31.2	-24.5
NSC97e	0.25	38.0	-17.48
Oxford	0.21	36.4	-16.38

Phase Shifts and Potential Contributions

Phase Shifts and Potential Contributions (Cont'd.)

Mind the Gap.

Oxford and Nijmegen Potential by Partial Wave

Oxford and Nijmegen Potential by Partial Wave (Cont'd.)

Thoughts, Conclusions, etc.

- The most significant failure of the model is the necessity of including an ad-hoc ω exchange in some P-waves.
- The range of parameter variation by partial wave, while not extreme, is disappointing.
- We can alter the physics of the model selfconsistently to explore other mechanisms (2π exchange, etc.)

Thoughts, Conclusions, etc. (Cont'd.)

- The ability of the simple and constrained model to well reproduce so many observables connected to the NN interaction is surprising and encouraging.
- The model raises important physics issues:
 - Non-locality
 - ρ exchange
 - High momentum behavior, etc.
- Work continues.

Thank you for your attention!

Questions?

Feedback?