
T-Odd Effects From Color Gauge Inv. via Wilson Line

P

ν µq

k

∆(k)

Ph

p1

p−p1

Φ
aρ
A (p,p1)

H †µHρν;a

p

∫
d4pd4kδ4(p + q − k)Tr

[
Φ[UC

[∞;ξ](p)H†
µ(p, k)∆(k)Hν(p, k)

]
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• Leading twist Gauge Invariant Distribution and Fragmentation Functions
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• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]
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• The path [C] is fixed by hard subprocess within hadronic process.
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Fig. 1. Kinematics of semi-inclusive deeply inelastic scattering.

The deep inelastic region is where Q is made large, with XBj and z held fixed

and not close to their endpoints 0 and 1. We will always assume in this paper that

the scattering is taken to lowest order in QED, with a single photon being

exchanged between the lepton and the hadronic system, fig. 1.

The reason for defining the variables XBJ, z and q
1 is that they have a simple

interpretation in the parton model. There, it is assumed that the dominant

contributions to the cross section have the form of fig. 2. The virtual photon

interacts in Born approximation with a single quark, which is close to its mass shell

and which has low transverse momentum on the scale Q. Then when hadron B is

part of the “current quark jet” produced in the hard scattering, z has the

interpretation of the fraction of the jet’s momentum that is carried by the hadron.

As usual, ~ has the interpretation of the fraction of the momentum of the

incoming hadron A that is carried by the parton that enters the hard scattering.

To treat intrinsic transverse momentum for the initial state and for the fragmen-

tation, we need a suitable frame in which to define them. First we define what we

will call the “parton model jet axis”:

p~
2_qP+x~~p~. (10)

This would be the jet momentum if there were no intrinsic transverse momentum.

Even in the presence of transverse momentum, the definition (10) gives a conve-

Fig. 2. Parton model for semi-inclusive deeply inelastic scattering.
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The picture that goes with these results is fig. 2. All that we have done is to take

account of the transverse momentum of the quarks relative to the measured initial-

and final-state hadrons. This intrinsic transverse momentum has the effect of

smearing out the delta function of q
1 that we remarked on earlier. The only

generalization needed compared with the parton model is that the hard scattering

can contain higher-order virtual corrections. In the absence of gauge bosons in the

strong interactions, this formula in the exact form given in eq. (13) is a theorem,

that can be proved as in the Drell—Yan case [191.

The spin-i gluons of QCD modify the theorem, by causing Sudakov form-factor

effects. We expect that a proof can be given just as in the Drell—Yan case [17]. The

effect is to broaden the transverse momentum distribution as Q increases, but in a

spin-independent way: the broadening is due to recoil against the transverse

momentum of soft gluon emission. This will have the effect of diluting the spin

asymmetry we will discuss next.

3.4. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM AND POLARIZATION

We now explain factorization for the semi-inclusive deep inelastic cross section

when the incoming hadron A is transversely polarized but the lepton remains

unpolarized. (It is left as an exercise to treat the most general case.) The

factorization theorems, eq. (12) and eq. (14), continue to apply when we include

polarization for the incoming hadron, but with the insertion of helicity density

matrices for in and out quarks; this is a simple generalization of the results in refs.

[10,231.

The cross section will be linear in the transversity s~of the hadron (and also

linear in its helicity A). Because transverse spin for a spin- ~ particle corresponds to

off-diagonal terms in the helicity density matrix, the other primary constraint

comes from quark helicity conservation in the hard scattering, and this simplifies

the factorization theorem.

First, it is well known that at large transverse momentum, the transverse spin

asymmetry is higher twist, as I now review. In that region, we use distribution and

fragmentation functions integrated over intrinsic transverse momentum. Now, in

the absence of a measurement of the polarization of the outgoing hadron, the

single-particle fragmentation is spin independent. On the other hand, the trans-

verse-spin dependence of the distribution functions is only in the off-diagonal

elements of quark density matrices [8]. Therefore we need the part of the hard

scattering that is off-diagonal in the helicity of the initial-state quark but diagonal

in the (summed) final-state helicities. Helicity conservation at the vertices for the

gluon, photon and Z prohibits such a term, at leading twist.

But, at low transverse momentum, the fragmentation function has dependence

on transverse spin — see eq. (4). The corresponding hard scattering is just elastic

electron—quark scattering, and we need terms that are off-diagonal in the final-state
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function is sensitive to the coupling of the fragmentation process to (spontaneous) chiral

symmetry breaking.

1. Introduction

An important challenge to QCD theorists is to devise methods of measuring the

polarization state of a parton coming out of a hard scattering. In the case of

longitudinal polarization for the parton, Nachtmann [1] showed how a certain

three-particle correlation within a jet could be used. He suggested several pro-

cesses where it could be measured, in particular deep inelastic neutrino scattering.

Later, Dalitz, Goldstein and Marshall [21 and Einhorn [31showed how to probe

the helicity of a heavy quark.

Recently Efremov et al. [4] rediscovered the Nachtmann idea, which they called

the “handedness” of a jet, and they showed how to measure it in e~e annihila-

tion. They also considered the possibility of probing the transverse polarization of

quarks. This idea was independently discovered in ref. [5].

In this paper, I will present another technique sensitive to the transverse

polarization of a quark. One measures the sing/e-particle distribution as a function

of transverse momentum, in a process such as semi-inclusive deeply inelastic

scattering, where the jet axis can be precisely defined. The initial-state hadron is

transversely polarized, and the hard scattering provides a spin transfer to the final

state. There should be a spin asymmetry in the azimuthal distribution of the

outgoing hadron about the jet axis.
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scattering the approximation that the transverse momentum of the incoming

parton can be neglected with respect to the transverse momentum generated in the

scattering, and one also neglects the transverse momentum generated in the

fragmentation. (Note that to the extent that these transverse momenta are not

negligible, but are of order Q, the errors in the approximations are compensated

by a correct treatment of higher-order corrections to the hard scattering.)

3.3. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM BUT NO POLARIZA-
TION

To gain information on the q
1 dependence at small q1 , we must derive a more

powerful theorem that involves “intrinsic transverse momentum” in both the

distribution and the fragmentation functions. Such a theorem was derived for the

Drell—Yan process and for the two-particle-inclusive cross section in e~e annihi-

lation [17,28].A similar theorem should apply here. An obvious ansatz is

E’EBd3I,d3 = Efd~f~fd2ka± fd2kbl fa/A(~’ k~1)

d6~
xE’Ekh d

31’ d~kb~”~’ khl) + Y(xB~,Q, z, q
1/Q). (13)

In this formula ó~ represents the short-distance part of elastic lepton—quark

scattering. It contains a delta function for momentum conservation. The sum over

a is over all flavors of quark and antiquark.

The first term on the right of eq. (13) dominates when q1 ~ Q. The second

term, Y, is a correction term that enables eq. (13) to reproduce the ordinary

factorization theorem eq. (12) at large transverse momentum, just as in the

Drell—Yan case [17]. The Y-term has the general form of the basic factorization

theorem eq. (12), except that the low-q1 asymptote is subtracted from the hard

scattering function.

The function fa/A defined earlier gives the intrinsic transverse-momentum

dependence of partons in the initial-state hadron. Similarly, DB/a gives the

distribution of hadrons in a parton, with kbl being the transverse momentum of

the parton relative to the hadron.

Just as in ref. [17,28], the hard-scattering factor in the first term in eq. (13) can

only be a 2 —‘ 2 process. Hence the fractional momenta of the incoming quark

from hadron A and of hadron B in the outgoing quark are forced to be Xn~and Z.

After integrating out the delta-function in d~we obtain

E’EBd3I,d3 = ~ Efd ka± fa/A(XBj, kaI)~DB/a(Z, ka±+q1)

+ Y(xBJ, Q, z, q1/Q). (14)
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How to motivate the PDFs and FFs from SIDIS  at 
moderate PT
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Consider the  limit where Q2 is large and 
        assumed to scatter incoherently off 
constituents. Currents treated as in free field 
theory.   Interactions btwn. struck quark and 
target remnant are neglected at least most of the 
time---color gauge links will modify this statement



1) A “DIS” reaction where hadron in current region is detected in the final: state-rapidity sep.

2) Parton model assumption: virtual photon strikes quark inside nucleon.

3) In case of SIDIS the tagged final state hadron comes from fragmentation of  struck quark.
                                               Hand Bag” diagram
                                                                                   
4)The scattering process can be “factorized” into two soft hadronic parts connected by a hard 
scattering piece
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SIDIS and the parton model
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Kinematics and “Geometry” of SIDIS

!(l) + N(P )→ !(l′) + h(Ph) + X,

xB =
Q2

2 P · q
, y =

P · q

P · l
, zh =

P · Ph

P · q

V. Barone et al. / Physics Reports 359 (2002) 1–168 65

Fig. 21. Semi-inclusive deeply inelastic scattering.

Fig. 22. Lepton and hadron planes in semi-inclusive leptoproduction.

We de!ne the invariants

x=
Q2

2P · q ; y=
P · q
P · ‘ ; z=

P · Ph
P · q : (6.1.2)

We shall be interested in the limit where Q2 ≡ −q2; P · q; Ph · q and Ph ·P become large while
x and z remain !nite.
The geometry of the process is shown in Fig. 22. The lepton scattering plane is identi!ed

by l and l′. The virtual photon is taken to move along the z-axis. The three-momenta of the
virtual photon q and of the produced hadron Ph de!ne a second plane, which we call the hadron
plane. The spin S of the nucleon and the spin Sh of the produced hadron satisfy S2 = S2h =− 1
and S · P= Sh · Ph=0.
The cross-section for the reaction (6:1:1) is

d!=
1

4‘ · P
∑

sl′

∑

X

∫
d3PX

(2")32EX

×(2")4#4(P + ‘ − PX − Ph − ‘′)|M|2 d3l′

(2")32E′
d3Ph

(2")32Eh
; (6.1.3)

1) Interested in limit where Q2   p.q, Ph.q and P.Ph  become large 
while xB and zh remain finite

2)In case of SIDIS the tagged final state hadron comes from the 
fragmentation of the struck quark



• Interactions btwn. struck quark and target remnant are 
neglected at least most of the time---color gauge links will 
modify this statement 

• Conserved quantities Helicity and Transversity      
(will come back to this & “transversity” )

• Tree level factorization-”diagramatic”

• Agrees with Landshoff-Polkinghorne-hints at non- 
perturbative dynamics
”Covariant parton model” where non-perturbative 
dynamics are treated in terms of cuts and poles of 
soft factors.  Will come back to this in seminar in May

Comments



Light-cone kinematics Photon-Hadron Frame

V. Barone et al. / Physics Reports 359 (2002) 1–168 73

Fig. 25. Kinematics in (a) the !∗N frame and (b) the hN frame.

Note that !TD(z) is the fragmentation function analogous to the transverse polarisation distri-
bution function !Tf(x). In the literature !TD is often called H1(z) [15].
Introducing the "-integrated matrix

#(z)=
z
2

∫
d4"
(2$)4

#(";Ph; Sh)%(1=z − "−=P−
h ); (6.3.15)

the leading-twist structure of the fragmentation process is summarised in the expression of #(z),
which is

#(z)= 1
2{D(z)P=h + &h!D(z)!5P=h +!TD(z)P=h!5S=hT}: (6.3.16)

The probabilistic interpretation of D(z), !D(z) and !TD(z) is analogous to that of the
corresponding distribution functions (see Section 4.3). If we denote by Nh=q(z) the probability
of "nding a hadron with longitudinal momentum fraction z inside a quark q, then we have
(using ± to label longitudinal polarisation states and ↑↓ to label transverse polarisation states)

D(z)=Nh=q(z); (6.3.17a)

!D(z)=Nh=q+(z)−Nh=q−(z); (6.3.17b)

!TD(z)=Nh=q↑(z)−Nh=q↓(z): (6.3.17c)

6.4. !T -dependent fragmentation functions

In the collinear case (kT = !T =0) the produced hadron is constrained to have zero transverse
momentum (Ph⊥=− zqT =0). Therefore, in order to investigate its Ph⊥ distribution within the
parton model, one has to account for the transverse motion of quarks (in QCD transverse
momenta of quarks emerge at NLO owing to gluon emission). The kinematics in the !∗N and
hN frames is depicted in Fig. 25 (for simplicity the case of no transverse motion of quarks
inside the target is illustrated).

Light Cone Vectors

V + =
V 0 + V 3

√
2

, V − =
V 0 − V 3

√
2

, VT

V µ = (V +, V −,VT )

Photon−Hadron Frame

Pµ =
(

P+,
M2

2P+
, 0

)
, qµ =

(
−xBP+,

Q2

2xBP+
, 0

)
Ph = (

m2
h + P 2

h⊥
2P−h

, P−h , Ph⊥)

Pµ = P+nµ
+ +

M2

2P+
nµ
−

note from zh =
P · Ph

P · q
≈

P−h
q−

qµ =
(
−xBP+,

P−h
zh

, 0
)

=⇒ Q2

2xBP+
=

P−h
zh



Cross Section for SIDIS
•Sum over spin of out going electron
•Differential in phase space of final detected electron and hadron
•Sum over all unobserved final states “X”

Diagramatic Factorization

Leptonic & Hadronic Tensor 

Ph

!′

!

P

PX

dσ =
1

4 · P

∑

s!′

∑

X

{∫
d3PX

(2π)32EX
(2π)4δ4(P + $− PX − Ph − $′)|M |2

}
d3$′

(2π)32E′
d3Ph

(2π)32Eh

|M |2 =
e4

q4
LµνWµν

Wµν =
1

(2π)4
∑

X

∫
d3PX

(2π)32EX
(2π)4δ4(P + $− PX − Ph − $′)

×〈PS|Jµ(0)|X, PhSh〉〈X, PhSh|Jν(0)|PS〉

dσ =
1

4 · P

e4

q4
LµνWµν(2π)4

d3$′

(2π)32E′
d3Ph

(2π)32Eh

2Eh
dσ

d3PhdE′dΩ
=

α2
em

2MQ4

E′

E
LµνWµν



• Interactions btwn. struck quark and target remnant are 
neglected at least most of the time---color gauge links will 
modify this statement 
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• Tree level factorization-”diagramatic”

• Agrees with Landshoff-Polkinghorne-hints at non- 
perturbative dynamics
”Covariant parton model” where non-perturbative 
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xB =
Q2

2 P · q
, y =

P · q

P · l
, zh =

P · Ph

P · q

Cross Section for SIDIS in terms of invariants 

In terms of invariants

2Eh
dσ

dxBdyd3Ph
=

πα2
emy

Q4
LµνWµν

When Ph⊥ ! Ph ∼ Eh =⇒ d3Ph

2Eh
=

dzhd2Ph⊥
2zh

Compact expression

dσ

dxBdydzhd2Ph⊥
=

πα2
em

2Q4

y

zh
LµνWµν

.



Comment on DIS from SIDIS 

Ph

!′

!

P

PX

!′

!

P

PX

Wµν(q, P, S, Ph) =
1

(2π)4
∑

X

∫
d3PX

(2π)32EX
(2π)4δ4(P + #− PX − Ph − #′)

×〈PS|Jµ(0)|X, PhSh〉〈X, PhSh|Jν(0)|PS〉

Summing over all possible hadrons and integrating over the final state hadron

recover inclusive DIS result

∑

h

∫
d3Ph

(2π)32Eh
Wµν(q, P, S, Ph) = Wµν(q, P, S)



Parton Model  Factorization of SIDIS

Wµν =
1

(2π)4
∑

a

e2
∑

X

∫
d3PX

(2π)32EX

∑

X′

∫
d3PX′

(2π)32EX′

∫
d4p

(2π)4

∫
d4k

(2π)4

×
∫

d4k

(2π)4
(2π)4δ4(P − p− PX)(2π)4δ4(p + q − k)(2π)4δ4(k − Ph − PX′)

×[χ̄(k;Ph, Sh)γµφ(p;P, S)]† [χ̄(k;Ph, Sh)γνφ(p;P, S)]

χ(k;Ph, Sh) = 〈0|ψ(0)|PhSh;X〉

φ(p;P, S) = 〈X|ψ(0)|PS〉
〈X|ψ(0)|P 〉 PX

p

PX

P

〈0|ψ(0)|PhX ′〉 P ′
X

Ph

PX

k

Hadron Matrix element of quark fields



Non-perturbative quark-quark Correlators 
from Hadron  matrix elements of quark fields

Φji(p;P, S) =
∑

X

∫
d3PX

(2π)32EX
(2π)4δ4(P − p − PX)φi(p;P, S)φ̄j(p;P, S)

exponentiate delta function

=
∫

d4ξ eip·ξ〈PS|ψ̄j(0)ψi(ξ)|PS〉

and

∆ij(k;PhSh) =
∑

X′

∫
d3PX′

(2π)32EX′
(2π)4δ4(Ph + PX − k)χi(k;PhSh)χ̄(k;PhSh)

=
∑

X′

∫
d3PX′

(2π)32EX′

∫
d4ξeik·ξ〈0|ψi(ξ)|PhSh, X〉〈PhSh, X|ψ̄j(0)|0〉

Wµν(q, P, S, Ph) =
∑

a

e2

∫
d4p

(2π)4

∫
d4k

(2π)4
δ4(p + q − k)Tr [Φγµ∆γν ] ∆

Φ

〈X|ψ(0)|P 〉

P

p

〈0|ψ(0)|PhX ′〉

k



Light-cone kinematics quark momenta 

initial quark

fragmenting  quark

QUARK Momenta

pµ = (p+,
p2 + p2

⊥
2p+

,p⊥)

kµ = (
k2 + k2

⊥
2k−

, k−,k⊥)

Parton assumptions

p+ ∝ P+, k− ∝ P−h ⇐⇒ LARGE−Momenta ∼ Q

therefore p− ∝ 1/P+, k+ ∝ 1/P−h ⇐⇒ SMALL−Momenta ∼ 1/Q



Factorization of Long. Momenta

Wµν(q, P, S, Ph) =
∑

a

e2

∫
d4p

(2π)4

∫
d4k

(2π)4
δ4(p + q − k)Tr [Φγµ∆γν ]

δ4(p + q − k) = δ(p+ + q+ − k+)δ(p− + q− − k−)δ2(pT + qT − kT )

Parton model assumptions

p+ ∝ P+, k− ∝ P−h ⇐⇒ LARGE−Momenta ∼ Q

therefore

p− ∝ 1/P+, k+ ∝ 1/P−h ⇐⇒ SMALL−Momenta ∼ 1/Q

=⇒ δ4(p + q − k) ≈ δ(p+ − xBP+)δ(k− − Ph

zh
)δ2(pT + qT − kT )



(P, Λ) (P, Λ′)

(p, λ) (p, λ′)

(k, µ) (k, µ′)
(γ∗, ε)

Ph

q

PX

PX ′ ∆

Φ

Message: the PT of the hadron is small!

Wµν(q, P, S, Ph) ≈
∑

a

e2

∫
d2pT dp−dp+

(2π)4

∫
d2kT dk−dk+

(2π)4
δ(p+ − xBP+)δ(k− −

P−h
zh

)δ2(pT + qT − kT )

×Tr [Φ(p, P, S)γµ∆(k, Ph)γν ]

Wµν(q, P, S, Ph) =
∫

d2pT

(2π)4

∫
d2kT

(2π)4
δ2(pT −

Ph⊥
zh

− kT )Tr [Φ(x,pT )γµ∆(z,kT )γν ]

Φ(x,pT ) =
∫

dp−

2
Φ(p, P, S)|p+=xBP+ , ∆(z,kT ) =

∫
dk−

2
∆(k, Ph)|

k−= P−
zh



(P, Λ) (P, Λ′)

(p, λ) (p, λ′)

(k, µ) (k, µ′)
(γ∗, ε)

Ph

q

PX

PX ′

Φji(p;P, S) =
∑

X

∫
d3PX

(2π)32EX
(2π)4δ4(P − p − PX)φi(p;P, S)φ̄j(p;P, S)

exponentiate delta function

=
∫

d4ξ eip·ξ〈PS|ψ̄j(0)ψi(ξ)|PS〉

and

∆ij(k;PhSh) =
∑

X′

∫
d3PX′

(2π)32EX′
(2π)4δ4(Ph + PX − k)χi(k;PhSh)χ̄(k;PhSh)

=
∑

X′

∫
d3PX′

(2π)32EX′

∫
d4ξeik·ξ〈0|ψi(ξ)|PhSh, X〉〈PhSh, X|ψ̄j(0)|0〉

Wµν(q, P, S, Ph) =
∑

a

e2

∫
d4p

(2π)4

∫
d4k

(2π)4
δ4(p + q − k)Tr [Φγµ∆γν ]

Φ(p;P, S)

∆(k;Ph)

From soft quark-quark Correlators  
to  TMDs

Factorization proceeds by Sudakov/L.C. 
decomp of quark momenta ... next time



kT factorization

Collins, Soper, NPB 193 (81)

Ji, Ma, Yuan, PRD 71 (05)

FUU,T (x, z, P 2
h⊥, Q2) = C

[
f1D1

]

=
∫

d2pT d2kT d2lT δ(2)
(
pT − kT + lT − P h⊥/z

)

x
∑

a

e2
a fa

1 (x, p2
T , µ2)Da

1(z, k2
T , µ2) U(l2T , µ2)H(Q2, µ2)

TMD PDF TMD FF Soft factor Hard part

Mechanism FSI produce phase in TSSAs-Leading Twist

Brodsky, Hwang, Schmidt PLB: 2002

SIDIS w/ transverse polarized nucleon target e p↑ → eπX

Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links

∆σ ∼ D⊗∆f⊥⊗σ̂Born

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81

Collins, Metz: PRL 2005 Universality & Factorization “Maximally” Correlated in Frag.

Collins, Qui PRD 08 Factorization in jeopardy for H H → h h X at high PT

11

And Bacchetta Boer Diehl Mulders JHEP 08

γ ∗ γ ∗

J t

Jc

H H
S

P P

Ph Ph

FIG. 8 (color online). The leading region for SIDIS after soft
and collinear factorizations.

PHYSICAL REVIEW D 71, 034005 (2005)



Few extra Slides on Transversity 
should come back to this 



• Conserved quantities, mass & Polarization

Wµ ≡ 1
2
εµνρσJνρPσ − Pauli− Lubanski

Pµ −Momentum,

Jνρ −AngularMomentum
where,

W 2 = −m2s(s + 1)− Casimir
P 2 = m2 − Casimir

Pµ|p, s > = pµ|p, s >

−W · n

m
|p, s > = ∓1

2
|p, s >

where [H,Pµ] = [H,W · n] = 0, and n · p = 0, n2 = −1

• Eigen States of polarization

Comment: why  Transversity is a good quantity



• Polarization Longitudinal and Transverse 
helicity and transversity states

When !n||!p, −W · n
m

=
1

2m
γ5/n/p =

!Σ · !p
2p

helicity spinors
!Σ·!p
|!p| u±(p) = ±u±(p) ,

!Σ·!p
|!p| v±(p) = ∓ v±(p) .

When !n · !p = 0, −W · n
m

=
γ5γ⊥ · !n⊥/p

2m
=

γ0
!Σ⊥ · !n⊥/p

2m

γ0
!Σ⊥·!n⊥

2
u↑↓(p) = ±u↑↓(p) ,

transversity spinors
γ0

!Σ⊥·!n⊥
2

v↑↓(p) = ∓ v↑↓(p) .



• Classification of quark spin states depends 
on Dirac Matricies that 

• 1) commute with each other and 

• 2 ) Hamiltonian

• Helicity is a good quantum number

• Transversity is a good quantum number in 
the parton model



• Parton model-nucleon at leading twist yields 3 
leading quark distribution functions. Introducing 
projection ops for good component of Dirac 
spinor reveals meaning.  

P[+/−] =
1
2

(1∓ γ5)

f1(x) ∼
∫

d2k⊥〈P |b†+(xp, k⊥)b+(xp, k⊥) + b†−(xp, k⊥)b−(xp, k⊥)|P 〉

g1(x) ∼
∫

d2k⊥〈PSz|b†+(xp, k⊥)b+(xp, k⊥)− b†−(xp, k⊥)b−(xp, k⊥)|PSz〉

h1(x) ∼
∫

d2k⊥Re〈PS⊥|b†−(xp, k⊥)b+(xp, k⊥)|PS⊥〉

Q[⊥/#] =
1
2
(1 ± γ5γ⊥) → γ⊥ = γy

f1(x) ∼
∫

d2k⊥〈P |b†⊥(xp, k⊥)b⊥(xp, k⊥) + b†#(xp, k⊥)b#(xp, k⊥)|P 〉

g1(x) ∼
∫

d2k⊥Re〈PSz|b†⊥(xp, k⊥)b#(xp, k⊥)|PSz〉

h1(x) ∼
∫

d2k⊥〈PS⊥|b†⊥(xp, k⊥)b⊥(xp, k⊥)− b†#(xp, k⊥)b#(xp, k⊥)|PS⊥〉



−

+

+

−
−

+ −

+
+

− +

Transversity PDF Collins NPB 1993

Need another chiral odd soft factor ie 
fragmentation function to flip the helicity of 

the initial quark e.g. SIDIS


