Extracting the resonance information
with a dynamical coupled-channels model

Hiroyuki Kamano

Cake Seminar, April 14th, 2010
1. Motivation and research program for the N* study at EBAC

2. Extraction of resonances and their dynamical origins
Motivation and research program for the N* study at EBAC (1 of 2)
N* states - \(\Delta(1232) \) and others -

- The Delta \((1232) \) resonance stands as a clear peak.
- The region \(s^{1/2} = 1.4 - 2 \) GeV hosts ~ 20 resonances.
N^* states and PDG *s

<table>
<thead>
<tr>
<th>Particle</th>
<th>$L_{2I,2J}$ status</th>
<th>$N\pi$</th>
<th>$N\eta$</th>
<th>ΛK</th>
<th>ΣK</th>
<th>$\Delta\pi$</th>
<th>$N\rho$</th>
<th>$N\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(939)$</td>
<td>P_{11}</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N(1440)$</td>
<td>P_{11}</td>
<td>****</td>
<td>****</td>
<td>*</td>
<td>***</td>
<td>*</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(1520)$</td>
<td>D_{13}</td>
<td>****</td>
<td>***</td>
<td>***</td>
<td>****</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(1535)$</td>
<td>S_{11}</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(1650)$</td>
<td>S_{11}</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(1675)$</td>
<td>D_{15}</td>
<td>****</td>
<td>*</td>
<td>*</td>
<td>****</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(1680)$</td>
<td>F_{15}</td>
<td>****</td>
<td>*</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(1700)$</td>
<td>D_{13}</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$N(1710)$</td>
<td>P_{11}</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$N(1720)$</td>
<td>P_{13}</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$N(1900)$</td>
<td>P_{13}</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N(1990)$</td>
<td>F_{17}</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1232)$</td>
<td>P_{33}</td>
<td>****</td>
<td>****</td>
<td>F</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta(1600)$</td>
<td>P_{33}</td>
<td>***</td>
<td>*</td>
<td>o</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1620)$</td>
<td>S_{31}</td>
<td>***</td>
<td>*</td>
<td>r</td>
<td>***</td>
<td>****</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1700)$</td>
<td>D_{33}</td>
<td>****</td>
<td>*</td>
<td>b</td>
<td>*</td>
<td>***</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1750)$</td>
<td>P_{31}</td>
<td>*</td>
<td>*</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta(1900)$</td>
<td>S_{31}</td>
<td>**</td>
<td>*</td>
<td>d</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1905)$</td>
<td>F_{35}</td>
<td>****</td>
<td>*</td>
<td>d</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1910)$</td>
<td>P_{31}</td>
<td>****</td>
<td>*</td>
<td>e</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1920)$</td>
<td>P_{33}</td>
<td>***</td>
<td>*</td>
<td>n</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$\Delta(1930)$</td>
<td>D_{35}</td>
<td>***</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta(1940)$</td>
<td>D_{33}</td>
<td>*</td>
<td>*</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta(1950)$</td>
<td>F_{37}</td>
<td>****</td>
<td>*</td>
<td>o</td>
<td>*</td>
<td>***</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

Isospin = I, Spin = J
Parity = $(-)^{L+1}$
N* states and PDG *s

All of these studies essentially agree on the existence and (most) properties of the 4-star states. For the 3-star and lower states, however, even a statement of existence is problematic.

<table>
<thead>
<tr>
<th>Particle</th>
<th>$L_{2I,2J}$ status</th>
<th>$N\pi$</th>
<th>$N\eta$</th>
<th>$\Delta \pi$</th>
<th>ΔN</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(939)</td>
<td>P_{11}</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1440)</td>
<td>P_{11}</td>
<td>*****</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1520)</td>
<td>D_{13}</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1535)</td>
<td>S_{11}</td>
<td>****</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1650)</td>
<td>S_{11}</td>
<td>****</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1675)</td>
<td>D_{15}</td>
<td>****</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1680)</td>
<td>F_{15}</td>
<td>****</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1700)</td>
<td>D_{13}</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1710)</td>
<td>P_{11}</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1720)</td>
<td>P_{17}</td>
<td>****</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1900)</td>
<td>P_{13}</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1990)</td>
<td>F_{17}</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ(1232)</td>
<td>P_{33}</td>
<td>****</td>
<td>**</td>
<td>F</td>
<td>****</td>
</tr>
<tr>
<td>Δ(1600)</td>
<td>P_{33}</td>
<td>***</td>
<td>o</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Δ(1620)</td>
<td>S_{31}</td>
<td>****</td>
<td>r</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Δ(1700)</td>
<td>D_{33}</td>
<td>****</td>
<td>b</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Δ(1750)</td>
<td>P_{31}</td>
<td>*</td>
<td>*</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Δ(1900)</td>
<td>S_{31}</td>
<td>**</td>
<td>d</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Δ(1905)</td>
<td>F_{35}</td>
<td>****</td>
<td>d</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Δ(1910)</td>
<td>P_{31}</td>
<td>****</td>
<td>e</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Δ(1920)</td>
<td>P_{33}</td>
<td>***</td>
<td>n</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Δ(1930)</td>
<td>D_{35}</td>
<td>***</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Δ(1940)</td>
<td>D_{33}</td>
<td>*</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Δ(1950)</td>
<td>F_{37}</td>
<td>****</td>
<td>o</td>
<td></td>
<td>****</td>
</tr>
</tbody>
</table>

Isospin = I, Spin = J
Parity = $(-)^{L+1}$

Thomas Jefferson National Accelerator Facility
N* states and PDG *s

All of these studies essentially agree on the existence and (most) properties of the 4-star states. For the 3-star and lower states, however, even a statement of existence is problematic.

--- Arndt, Briscoe, Strakovsky, Workman PRC 74 045205 (2006)

Most of the N*\s were extracted from

\[\pi N \rightarrow \pi N, \ \gamma N \rightarrow \pi N \]

Need combined analysis of

\[\pi N, \eta N, \pi\pi N, KY, \omega N, ... \] channels!
Excited Baryon Analysis Center (EBAC) of Jefferson Lab

Founded in January 2006

http://ebac-theory.jlab.org/

Objectives and goals:

Through the comprehensive analysis of world data of πN, γN, $N(e,e')$ reactions,

✓ Determine N^* spectrum (masses, widths)

✓ Extract N^* form factors

✓ Provide information about reaction mechanism necessary to interpret the N^* properties

Dynamical Coupled-Channels Analysis @ EBAC

Reaction Data

$\pi N \rightarrow \pi N, \eta N, \pi\pi N, KY, \omega N...$

$\gamma^{(\nu)} N \rightarrow \pi N, \eta N, \pi\pi N, KY, \omega N...$

Hadron Models

Lattice QCD

QCD
Basic reaction model

Dynamical coupled-channels model of meson production reactions

- Maintain coupled-channels unitarity of πN, ηN, $\pi\pi N$, $K\Lambda$, $K\Sigma$, ωN...
- Can treat 3-body $\pi\pi N$ cut

Singular!
Partial wave (LSJ) amplitude of an $a \rightarrow b$ reaction:

$$T^{(LSJ)}_{a,b}(p_a, p_b; E) = V^{(LSJ)}_{a,b}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V^{(LSJ)}_{a,c}(p_a, q) G_c(q; E) T^{(LSJ)}_{c,b}(q, p_b; E)$$

Reaction channels:

$$a, b, c = (\gamma^{(*)} N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \omega N)$$

Potential:

$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma^\dagger_{N^*,a} \Gamma_{N^*,b}}{E - M_{N^*}}$$

- Exchange potential of ground state mesons and baryons
- Bare N^* state
Dynamical coupled-channels model \(@ \) EBAC

\[
\begin{align*}
7. \pi(k, i) + N(p) & \rightarrow \rho(k', j) + N(p'):
\tilde{V}(7) = \tilde{V}_a^7 + \tilde{V}_b^7 + \tilde{V}_c^7 + \tilde{V}_d^7 + \tilde{V}_e^7
\end{align*}
\]

with
\[
\begin{align*}
\tilde{V}_a^7 &= i \frac{f_{\pi NN}}{m_\pi} g_{\rho NN} \Gamma_\rho' S_N(p + k) \gamma_5 \tau^i,

\tilde{V}_b^7 &= i \frac{f_{\pi NN}}{m_\pi} g_{\rho NN} k \gamma_5 \tau^i S_N(p - k') \Gamma_\rho',

\tilde{V}_c^7 &= \frac{f_{\pi NN}}{m_\pi} g_{\rho NN} \epsilon_{i j l} \tau^l \frac{(q - k) \cdot \epsilon_{\rho'}^{*} \cdot \gamma_5}{q^2 - m_\pi^2},

\tilde{V}_d^7 &= -\frac{f_{\pi NN}}{m_\pi} g_{\rho NN} \epsilon_{i j l} \epsilon_{\rho'}^{*} \gamma_5 \epsilon_{j l} \tau^l,

\tilde{V}_e^7 &= \frac{g_{\omega NN} g_{\omega NN}}{m_\omega} \delta_{i j} \frac{\epsilon_{\rho'}^{*} \epsilon_{\rho'}^{*} K_{\rho'} K_{\rho'}}{q^2 - m_\omega^2} \left[\gamma^\delta + \frac{\kappa_\omega}{4m_N} (\gamma^\delta q - \gamma^\delta \gamma_5) \right],
\end{align*}
\]

where
\[
\Gamma_\rho' = \frac{\tau^j}{2} \left[\epsilon_{\rho'}^{*} + \frac{\kappa_\rho}{4m_N} \left(\epsilon_{\rho'}^{*} k' - k' \epsilon_{\rho'}^{*} \right) \right].
\]
Dynamical coupled-channels model @ EBAC

- Partial wave (LSJ) amplitude of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

- Reaction:

$$\Gamma_{N^*,a(LS)}(p) = \frac{1}{(2\pi)^{3/2}} \frac{1}{\sqrt{m_N}} \left(p \over m_\pi \right)^L C_{N^*,a} \left(\frac{\Lambda_{N^*,a(LS)}^2}{\Lambda_{N^*,a(LS)}^2 + p^2} \right)^{(2+L)}$$

- Potential:

$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

exchange potential of ground state mesons and baryons

bare N* state
Strategy for the N* study @ EBAC

Stage 1
Construct a reaction model through the comprehensive analysis of meson production reactions

Stage 2
Extract resonance information from the constructed reaction model
- N* pole positions; N* → γN, MB transition form factors
- Confirm/reject N* with low-star status; Search for new N*

Stage 3
Make a connection to hadron structure calculations; Explore the structure of the N* states.
- CQM, DSE, Large Nc, Soliton models,…
- Connection to the Lattice QCD data
Current status of the EBAC-DCC analysis

Hadronic part

- $\pi N \rightarrow \pi N$: fitted to the data up to $W = 2$ GeV.

 Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)

- $\pi N \rightarrow \pi \pi N$: cross sections calculated with the πN model; fit is ongoing.

 Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC79 025206 (2009)

- $\pi N \rightarrow \eta N$: fitted to the data up to $W = 2$ GeV

Electromagnetic part

- $\gamma(\ast) N \rightarrow \pi N$: fitted to the data up to $W = 1.6$ GeV (and up to $Q^2 = 1.5$ GeV2)

- $\gamma N \rightarrow \pi \pi N$: cross sections calculated with the γN & πN model; fit is ongoing.

 Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC80 065203 (2009)

- $\gamma(\ast) N \rightarrow \eta N$: in progress

- $\gamma N \rightarrow K \Lambda$: in progress (Sandorfi, Hoblit, Kamano, Lee, arXiv:0912.3505)
$MB = \pi N, \eta N, \pi\pi N (\varpi \pi\Delta, \sigma N, \rho N)$ coupled channels are considered.

Angular distribution

Target polarization

EBAC

SAID (SP06)
$MB = \pi N, \eta N, \pi\pi N (\equiv \pi\Delta, \sigma N, \rho N)$ coupled channels are considered.

\[\pi^- p \text{ total} = \sum_{MB} \sigma(\pi^- p \rightarrow MB) \]

\[\pi^- p \rightarrow \pi^- p + \pi^0 n \]

\[\pi^+ p \text{ total} = \sum_{MB} \sigma(\pi^+ p \rightarrow MB) \]

\[\pi^+ p \rightarrow \pi^+ p \]
pi N → pi pi N reaction

Parameters used in the calculation are from πN → πN analysis.

π− p → π+ π− n

\[W = 1.44 \text{ (GeV)} \]

\[W = 1.6 \text{ (GeV)} \]

\[W = 1.79 \text{ (GeV)} \]

\[\text{Full result C.C. effect off} \]

\[\text{PID analysis} \]

\[\text{Parameters used in the calculation are from πN → πN analysis.} \]
Single pion photoproduction

✓ Fitted up to $W = 1.6$ GeV.
✓ Only $\Gamma_{\gamma N \rightarrow N^*}^{\text{bare}}$ is varied.

- Comparison to data
 - Total cross section

Single pion photoproduction

- Fitted up to $W = 1.6$ GeV.
- Only $\Gamma_{\gamma N \rightarrow N^*}^{\text{bare}}$ is varied.

Comparison to data
- Total cross section
- Differential cross section

\[\gamma p \rightarrow \pi^0 p \]
\[\gamma p \rightarrow \pi^+ n \]
Single pion photoproduction

- Fitted up to $W = 1.6$ GeV.
- Only $\Gamma_{\gamma N \rightarrow N^*}^{\text{bare}}$ is varied.

- Comparison to data
 - Total cross section
 - Differential cross section
 - Photon asymmetry

$\gamma p \rightarrow \pi^+ n$

$W = 1154$ MeV $W = 1162$ MeV $W = 1178$ MeV

$W = 1209$ MeV $W = 1217$ MeV $W = 1232$ MeV

$W = 1285$ MeV $W = 1299$ MeV $W = 1417$ MeV

$W = 1496$ MeV $W = 1513$ MeV $W = 1544$ MeV

θ (deg)
Double pion photoproduction

Parameters used in the calculation are from $\pi N \rightarrow \pi N$ & $\gamma N \rightarrow \pi N$ analyses.

\[\gamma p \rightarrow \pi^+ \pi^- p \quad \gamma p \rightarrow \pi^0 \pi^0 p \quad \gamma p \rightarrow \pi^+ \pi^0 n \]

- Good description near threshold
- Reasonable shape of invariant mass distributions
- Above 1.5 GeV, the total cross sections of $p\pi^0\pi^0$ and $p\pi^+\pi^-$ overestimate the data.
Plan for EBAC-DCC analysis in 2010

EBAC second generation model

Full combined analysis (global fit) of:

| ~ End of 2010 |
|---|---|
| $\pi N \rightarrow \pi N$ | $(W < 2 \text{ GeV})$ |
| $\pi N \rightarrow \eta N$ | $(W < 2 \text{ GeV})$ |
| $\gamma N \rightarrow \pi N$ | $(W < 1.6 \text{ GeV} \rightarrow 2 \text{ GeV})$ |
| $\gamma N \rightarrow \eta N$ | $(W < 2 \text{ GeV})$ |
| $\gamma N \rightarrow \text{KY}$ | $(W < 2 \text{ GeV})$ |

| 2010 ~ 2011 |
|---|---|
| $\pi N \rightarrow \pi \pi N$ | $(W < 2 \text{ GeV})$ |
| $\gamma N \rightarrow \pi \pi N$ | $(W < 1.5 \text{ GeV} \rightarrow 2 \text{ GeV})$ |

New N^* states may be found!!
Extraction of resonances and their dynamical origins
(2 of 2)
How can we extract N* information?

PROPER definition of

- N* mass and width

- N* → MB, γN decay vertices

Pole position of the amplitudes

Residue of the pole

\[
\left< p_a | \hat{T}(E) | p_b \right> \bigg|_{E \rightarrow E_0} \rightarrow \frac{\Gamma(E_0, p_a) \Gamma(E_0, p_b)}{E - E_0} + \text{(regular terms)}
\]

N* → b decay vertex

N* pole position (Im(E_0) < 0)
How can we extract N* information?

PROPER definition of

✓ N* mass and width ➔ Pole position of the amplitudes
✓ N* → MB, γN decay vertices ➔ Residue of the pole

Need analytic continuation of the amplitudes !!

Multi-layered structure of the scattering amplitudes

e.g.) single-channel meson-baryon scattering

\[T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q)G(q; E)T(q, p'; E) \]

Scattering amplitude is a double-valued function of E!!
Multi-layered structure of the scattering amplitudes

e.g.) single-channel meson-baryon scattering

\[T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E) \]

Scattering amplitude is a double-valued function of \(E \) !!
Multi-layered structure of the scattering amplitudes

e.g.) single-channel meson-baryon scattering

\[T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q)G(q; E)T(q, p'; E) \]

Scattering amplitude is a double-valued function of \(E \)!!

\[\text{physical sheet} \]

\[\text{unphysical sheet} \]

\[E + i\varepsilon \text{ ("physical world")} \]

\[E_{th} \text{ (branch point)} \]

\[E_{th} \text{ (branch point)} \]
Multi-layered structure of the scattering amplitudes

e.g.) single-channel meson-baryon scattering

\[T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E) \]

Scattering amplitude is a double-valued function of E!!

\[\text{E + i\epsilon ("physical world")} \]

E\text{\textsubscript{th}} (branch point)

\[\text{physical sheet} \]

\[\text{unphysical sheet} \]
Multi-layered structure of the scattering amplitudes

e.g.) single-channel meson-baryon scattering

\[T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E) \]

Scattering amplitude is a double-valued function of \(E \)!!
Multi-layer structure of the scattering amplitudes

e.g.) single-channel meson-baryon scattering

\[T(p, p'; E) = V(p, p') + \int q^2 dq \]

Scattering amplitude is a double-valued function of \(E \) !!

2-channel case (4 sheets):

\((\text{channel 1, channel 2}) = (p, p), (u, p), (p, u), (u, u) \)

\(p = \) physical sheet
\(u = \) unphysical sheet

\(N \)-channels \(\rightarrow \) Need \(2^N \) Riemann sheets

\(\text{Re (E)} \) \(\rightarrow \) \(\text{Im (E)} \)
How to choose Riemann sheet of complex E-plane

\[T(p, p'; E) = V(p, p') + \int_C q^2 dq V(p, q) G_{MB}(q; E) T(q, p'; E) \]

Meson-Baryon Green function
\[G_{MB}(q, E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon} \]

For real E
\[E_M(q) = \sqrt{m_M^2 + q^2}, \quad E_B(q) = \sqrt{m_B^2 + q^2} \]

Solution of
\[E - E_M(q) - E_B(q) + i\epsilon = 0 \]
How to choose Riemann sheet of complex E-plane

\[T(p, p'; E) = V(p, p') + \int_C q^2 dq V(p, q) G_{MB}(q; E) T(q, p'; E) \]

Meson-Baryon Green function

\[G_{MB}(q, E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon} \]

For real E

\[E - E_M(q) - E_B(q) + i\epsilon = 0 \]

For real E

\[E_M(q) = \sqrt{m_M^2 + q^2}, \quad E_B(q) = \sqrt{m_B^2 + q^2} \]

Solution of

E_{th}
How to choose Riemann sheet of complex E-plane

For complex E (Im E < 0)

\[T(p, p'; E) = V(p, p') + \int_C q^2 dq V(p, q) G_{MB}(q; E) T(q, p'; E) \]

Meson-Baryon Green function

\[G_{MB}(q, E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon} \]

For complex E (Im E < 0)

\[E_M(q) = \sqrt{m_M^2 + q^2}, \quad E_B(q) = \sqrt{m_B^2 + q^2} \]
How to choose Riemann sheet of complex E-plane

$$T(p, p'; E) = V(p, p') + \int_C q^2 dq V(p, q) G_{MB}(q; E) T(q, p'; E)$$

Meson-Baryon Green function

$$G_{MB}(q, E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon}$$

For complex E (Im E < 0)

$$E_M(q) = \sqrt{m_M^2 + q^2}, \quad E_B(q) = \sqrt{m_B^2 + q^2}$$

[Diagram showing the unphysical sheet and the real and imaginary parts of E]
How to choose Riemann sheet of complex E-plane

\[T(p, p'; E) = V(p, p') + \int_C q^2dqV(p, q)G_{MB}(q; E)T(q, p'; E) \]

Meson-Baryon Green function

\[G_{MB}(q, E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon} \]

For complex E (Im E < 0)

\[E_M(q) = \sqrt{m_M^2 + q^2}, \quad E_B(q) = \sqrt{m_B^2 + q^2} \]

Momentum-integral path to avoid singularities

In addition, momentum-integral path must be taken not to cross any other singularities.

Discontinuity in $\pi\Delta$, ρN, σN Green functions (coming from $\pi\pi N$ cut)

Momentum plane

\rightarrow Path to look at unphysical sheet of complex energy plane.

Singularity from t-ch. exch. pot.'s.

\rightarrow Path to look at physical sheet of complex energy plane.
N* poles from EBAC-DCC analysis

<table>
<thead>
<tr>
<th>$L_{2I , 2J}$</th>
<th>EBAC (MeV)</th>
<th>PDG (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11}</td>
<td>1540 − 191i</td>
<td>(1490 − 1530) − (45 − 125)i</td>
</tr>
<tr>
<td></td>
<td>1642 − 41i</td>
<td>(1640 − 1670) − (75 − 90)i</td>
</tr>
<tr>
<td>S_{31}</td>
<td>1563 − 95i</td>
<td>(1590 − 1610) − (57 − 60)i</td>
</tr>
<tr>
<td>P_{11}</td>
<td>1356 − 76i</td>
<td>(1350 − 1380) − (80 − 110)i</td>
</tr>
<tr>
<td></td>
<td>1364 − 105i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1820 − 248i</td>
<td>(1670 − 1770) − (40 − 190)i</td>
</tr>
<tr>
<td>P_{13}</td>
<td>Not found</td>
<td>(1660 − 1690) − (57 − 138)i</td>
</tr>
<tr>
<td>P_{31}</td>
<td>Not found</td>
<td>(1830 − 1880) − (100 − 250)i</td>
</tr>
<tr>
<td>P_{33}</td>
<td>1211 − 50i</td>
<td>(1209 − 1211) − (49 − 51)i</td>
</tr>
<tr>
<td>D_{13}</td>
<td>1521 − 58i</td>
<td>(1505 − 1515) − (52 − 60)i</td>
</tr>
<tr>
<td>D_{15}</td>
<td>1654 − 77i</td>
<td>(1655 − 1665) − (62 − 75)i</td>
</tr>
<tr>
<td>D_{33}</td>
<td>1604 − 106i</td>
<td>(1620 − 1680) − (80 − 120)i</td>
</tr>
<tr>
<td>F_{35}</td>
<td>1738 − 110i</td>
<td>(1825 − 1835) − (132 − 150)i</td>
</tr>
<tr>
<td>F_{37}</td>
<td>1858 − 100i</td>
<td>(1870 − 1890) − (110 − 130)i</td>
</tr>
</tbody>
</table>
N* poles from EBAC-DCC analysis

<table>
<thead>
<tr>
<th>$L_{2I,2J}$</th>
<th>EBAC (MeV)</th>
<th>PDG (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11}</td>
<td>$1540 - 191i$</td>
<td>$(1490 \sim 1530)$</td>
</tr>
<tr>
<td></td>
<td>$1642 - 41i$</td>
<td>$(1640 \sim 1670)$</td>
</tr>
<tr>
<td>S_{31}</td>
<td>$1563 - 95i$</td>
<td>$(1590 \sim 1610) - (15 \sim 60)i$</td>
</tr>
<tr>
<td>P_{11}</td>
<td>$1356 - 76i$</td>
<td>$(1350 \sim 1580) - (80 \sim 110)i$</td>
</tr>
<tr>
<td></td>
<td>$1364 - 105i$</td>
<td></td>
</tr>
<tr>
<td>P_{13}</td>
<td>Not found</td>
<td>$(1660 \sim 1690) - (57 \sim 138)i$</td>
</tr>
<tr>
<td>P_{31}</td>
<td>Not found</td>
<td>$(1830 \sim 1880) - (100 \sim 250)i$</td>
</tr>
<tr>
<td>P_{33}</td>
<td>$1211 - 50i$</td>
<td>$(1209 \sim 1211) - (49 \sim 51)i$</td>
</tr>
<tr>
<td>D_{13}</td>
<td>$1521 - 58i$</td>
<td>$(1505 \sim 1515) - (52 \sim 60)i$</td>
</tr>
<tr>
<td>D_{15}</td>
<td>$1654 - 77i$</td>
<td>$(1655 \sim 1665) - (62 \sim 75)i$</td>
</tr>
<tr>
<td>D_{33}</td>
<td>$1604 - 106i$</td>
<td>$(1620 \sim 1680) - (80 \sim 120)i$</td>
</tr>
<tr>
<td>F_{35}</td>
<td>$1738 - 110i$</td>
<td>$(1825 \sim 1835) - (132 \sim 150)i$</td>
</tr>
<tr>
<td>F_{37}</td>
<td>$1858 - 100i$</td>
<td>$(1870 \sim 1890) - (110 \sim 130)i$</td>
</tr>
</tbody>
</table>

Two resonance poles in the Roper resonance region!!
N* poles from EBAC-DCC analysis

<table>
<thead>
<tr>
<th>(L_{2I2J})</th>
<th>EBAC (MeV)</th>
<th>PDG (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{11})</td>
<td>(1540 - 191i)</td>
<td>(1490 \sim 1530)</td>
</tr>
<tr>
<td></td>
<td>(1642 - 41i)</td>
<td>(1640 \sim 1670)</td>
</tr>
<tr>
<td>(S_{31})</td>
<td>(1563 - 95i)</td>
<td>(1590 \sim 1610)</td>
</tr>
<tr>
<td>(P_{11})</td>
<td>(1356 - 76i)</td>
<td>(1350 \sim 1580)</td>
</tr>
<tr>
<td></td>
<td>(1364 - 105i)</td>
<td>(80 \sim 110i)</td>
</tr>
<tr>
<td>(P_{13})</td>
<td>Not found</td>
<td>(1660 \sim)</td>
</tr>
<tr>
<td>(P_{31})</td>
<td>Not found</td>
<td>(1830 \sim)</td>
</tr>
<tr>
<td>(P_{33})</td>
<td>(1211 - 50i)</td>
<td>(1209 \sim)</td>
</tr>
<tr>
<td>(D_{13})</td>
<td>(1521 - 58i)</td>
<td>(1505 \sim 1515)</td>
</tr>
<tr>
<td>(D_{15})</td>
<td>(1654 - 77i)</td>
<td>(1655 \sim 1665)</td>
</tr>
<tr>
<td>(D_{33})</td>
<td>(1604 - 106i)</td>
<td>(1620 \sim 1680)</td>
</tr>
<tr>
<td>(F_{35})</td>
<td>(1738 - 110i)</td>
<td>(1825 \sim 1835)</td>
</tr>
<tr>
<td>(F_{37})</td>
<td>(1858 - 100i)</td>
<td>(1870 \sim 1890)</td>
</tr>
</tbody>
</table>

Two resonance poles in the Roper resonance region!!

<table>
<thead>
<tr>
<th>Analysis</th>
<th>(P11) poles (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB (1990)</td>
<td>(1370 - 114i), (1360 - 120i)</td>
</tr>
<tr>
<td>GWU (2006)</td>
<td>(1359 - 82i), (1388 - 83i)</td>
</tr>
<tr>
<td>Jülich (2009)</td>
<td>(1387 - 74i), (1387 - 71i)</td>
</tr>
</tbody>
</table>

Thomas Jefferson National Accelerator Facility

Jefferson Lab
Delta(1232) : The 1st P33 resonance

Complex E-plane

Real energy axis “physical world”

Im (E) Re (E)

P33

πN physical & πΔ physical sheet

πN unphysical & πΔ physical sheet

Riemann-sheet for other channels: (ηN,ρN,σN) = (-, p, -)
Delta(1232) : The 1st P33 resonance

Complex E-plane

Real energy axis “physical world”

P33

Im (E)

Re (E)

πN physical & πΔ physical sheet

πN unphysical & πΔ unphysical sheet

Riemann-sheet for other channels: (ηN, ρN, σN) = (-, p, -)
Delta(1232) : The 1st P33 resonance

Real energy axis "physical world"

Riemann-sheet for other channels: (ηN, ρN, σN) = (-, p, -)

πN unphysical & πΔ physical sheet

Complex E-plane

Delta(1232): The 1st P33 resonance

In this case, BW mass & width can be a good approximation of the pole position.

- Pole: 1211, 50
- BW: 1232, 118/2=59

Riemann-sheet for other channels: $(\eta N, \rho N, \sigma N) = (-, p, -)$

- Small background
- Isolated pole
- Simple analytic structure of the complex E-plane

Real energy axis "physical world"

Complex E-plane

P33

πN unphysical

$\pi \Delta$ unphysical

1211-50i
Two-pole structure of the Roper P11(1440)

Two-pole structure of the Roper P11(1440)

Pole A cannot generate a resonance shape on “physical” real E axis.

πN unphysical & πΔ physical sheet

πΔ branch point prevents pole B from generating a resonance shape on “physical” real E axis.

Riemann-sheet for other channels: (ηN,ρN,σN) = (p,p,p)
Two-pole structure of the Roper P11(1440)

Pole A cannot generate a resonance shape on “physical” real E axis.

In this case, BW mass & width has NO clear relation with the resonance poles:

- **Two poles**
 - 1356, 78
 - 1364, 105

- **BW**
 - 1440, 300/2 = 150
Dynamical origin of P11 resonances

All three P11 poles below 2 GeV are generated from a *same, single* bare state!

Multi-channel reactions can generate *many* resonance poles from a *single* bare state

- Eden, Taylor, Phys. Rev. 133 B1575 (1964)

P11 N* resonances in the EBAC-DCC model

(1357, -76)
(1364, -105)
(1820, -248)
Dynamical origin of P11 resonances

\[
\frac{1}{E - m_{N^*}^0 - \sigma(E)} \rightarrow \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB} \sigma_{MB}(E)}
\]

\[x_{MB} : 0 \rightarrow 1\]

\[
\eta N \text{ threshold}
\]

\[
(E = m_{N^*}^0, \text{ all } x_{MB} = 0)
\]

\[
\pi \Delta \text{ threshold}
\]

\[
A: 1357-76i
\]

\[
B: 1364-105i
\]

\[
\rho N \text{ threshold}
\]

\[
C: 1820-248i
\]

\[
(\pi N, \sigma N) = (u, p)
\]

for three P11 poles

Re E (MeV)

Im E (MeV)
Dynamical origin of P11 resonances

Pole trajectory of N^* propagator

\[
\frac{1}{E - m_{N^*}^0 - \sigma(E)} \rightarrow \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB} \sigma_{MB}(E)} \quad x_{MB} : 0 \to 1
\]

For three P11 poles:

\[
\sigma(E) = \sum_{MB} \sigma_{MB}(E) = \sum_{MB} \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB} \sigma_{MB}(E)}
\]

\[MB = (\pi N, \eta N, \pi \Delta, \sigma N, \rho N)\]
Dynamical origin of P11 resonances

\[
\frac{1}{E - m_{N^*}^0 - \sigma(E)} \rightarrow \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB}\sigma_{MB}(E)}
\]

\(x_{MB} : 0 \rightarrow 1\)

Pole trajectory of \(N^*\) propagator

\((\eta N, \rho N, \pi\Delta) = (u, u, u)\)

\((\pi N, \sigma N) = (u, p)\) for three P11 poles

\(\eta N\) threshold

\(\pi\Delta\) threshold

\(\rho N\) threshold

Bare state

\((E = m_{N^*}^0, \text{ all } x_{MB} = 0)\)

\(\eta N\) threshold

A: 1357–76i

B: 1364–105i

C: 1820–248i
Dynamical origin of P11 resonances

\[
\frac{1}{E - m_{N^*}^0 - \sigma(E)} \rightarrow \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB}\sigma_{MB}(E)}
\]

\[x_{MB} : 0 \rightarrow 1\]

\[\begin{align*}
\eta N &\text{ threshold} \\
\pi\Delta &\text{ threshold} \\
\rho N &\text{ threshold}
\end{align*}\]

\[\begin{align*}
\eta N, \rho N, \pi\Delta &= (p, u, -) \\
\pi N, \sigma N &= (u, p)
\end{align*}\]

\[\begin{align*}
A: 1357–76i \\
B: 1364–105i \\
C: 1820–248i
\end{align*}\]
Dynamical origin of P11 resonances

\[
\frac{1}{E - m_{N^*}^0 - \sigma(E)} \rightarrow \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB} \sigma_{MB}(E)} \quad x_{MB} : 0 \rightarrow 1
\]

\begin{align*}
\text{Pole trajectory of } N^* \text{ propagator} \\
\frac{1}{E - m_{N^*}^0 - \sigma(E)} & \rightarrow \frac{1}{E - m_{N^*}^0 - \sum_{MB} x_{MB} \sigma_{MB}(E)} \\
& \quad x_{MB} : 0 \rightarrow 1
\end{align*}

\((\eta N, \rho N, \pi\Delta) = (p, u, u) \)

\((\eta N, \rho N, \pi\Delta) = (p, u, p) \)

\((\eta N, \rho N, \pi\Delta) = (u, u, u) \)

\((\pi N, \sigma N) = (u, p) \) for three P11 poles

\(x_{\pi\Delta} : 0 \rightarrow 1 \)

\(x_{\text{otherMBs}} = 1 \)
Continuous effort for exploring the N* states is being made at EBAC of Jefferson Lab.

Resonance poles have been successfully extracted from the EBAC-DCC analysis.

Dynamical origin of the P11 nucleon resonances:

- The Roper resonance is associated with two resonance poles.
- (Two) Roper and N(1710) originate from a same, single bare state.

N* → γN transition form factors have also been extracted.

Treatment of multi-reaction channels is key to understanding the N* spectrum!!