QCD Factorization
and
Transverse Single-Spin Asymmetry
in
ep collisions

Jianwei Qiu
Brookhaven National Laboratory

Based on work with many people

Theory seminar at Jefferson Lab, November 7, 2011
Jefferson Lab, Newport News, VA
Outline of my talk

- Transverse single-spin asymmetry in ep collisions
 Ideal observable to go beyond the leading power collinear factorization
- Role of fundamental symmetries
- QCD TMD factorization approach
- QCD collinear factorization approach
- Connection between these two approaches
- Predictive power of QCD factorization approach
- Summary
Electron-proton collisions

- Cross sections:

\[\sigma(q) = \sigma_{\text{LP}}(Q) + \frac{Q_s}{Q} \sigma_{\text{NLP}}(Q) + \frac{Q_s^2}{Q^2} \sigma_{\text{NNLP}}(Q) + \ldots \approx \sigma_{\text{LP}}(Q) \]

- Every parton can participate the hard collision!
- Cross section depends on matrix elements of all possible fields

- Approximation – single large momentum transfer: \(Q >> 1/\text{fm} \)

\[\sigma(Q) \approx \sigma_{\text{LP}}(Q) \propto \hat{\sigma}(Q) \otimes \langle p, s | \tilde{\phi}(k)^\dagger \tilde{\phi}(k) | p, s \rangle + \ldots \]

- Leading power QCD factorization - approximation:

How good the approximation is?

Universal parton distributions
Hadron’s partonic structure!
Inclusive DIS cross section

From HERA:

H1 and ZEUS

\[\sigma^{+\text{NC}}_{\gamma p} (x, Q^2) \]

\(Q^2 = 2 \text{ GeV}^2 \)
\(Q^2 = 2.7 \text{ GeV}^2 \)
\(Q^2 = 3.5 \text{ GeV}^2 \)
\(Q^2 = 4.5 \text{ GeV}^2 \)
\(Q^2 = 6.5 \text{ GeV}^2 \)
\(Q^2 = 8.5 \text{ GeV}^2 \)
\(Q^2 = 10 \text{ GeV}^2 \)
\(Q^2 = 12 \text{ GeV}^2 \)
\(Q^2 = 15 \text{ GeV}^2 \)
\(Q^2 = 18 \text{ GeV}^2 \)
\(Q^2 = 22 \text{ GeV}^2 \)
\(Q^2 = 27 \text{ GeV}^2 \)
\(Q^2 = 35 \text{ GeV}^2 \)
\(Q^2 = 45 \text{ GeV}^2 \)
\(Q^2 = 60 \text{ GeV}^2 \)
\(Q^2 = 70 \text{ GeV}^2 \)
\(Q^2 = 90 \text{ GeV}^2 \)
\(Q^2 = 120 \text{ GeV}^2 \)

\(x \)

HERA INC e^+p
HERAPDF1.0
Inclusive single jet hadronic cross section

- To Tevatron:

QCD is successful in last 30 years – we now believe it
FACT:

✧ LP QCD collinear factorization/calculations have been very successful in interpreting HEP scattering data if $Q > 2$ GeV

✧ QCD should be correct for the asymptotic regime: $r < 1/10$ fm!

QUESTIONS:

✧ How much have we learned about hadron’s partonic structure?

 Collinear PDFs, Helicity PDFs, …

 But, Not enough for the structure, …

✧ How to test/explore QCD beyond the leading power formalism?

 Parton’s transverse motion, and multiparton correlation beyond 1/10 fm?
Go beyond the LP collinear factorization

- **Recall:**

\[q \quad = \quad q + \ldots \]

- LP collinear term dominates the single scale cross section

- **Need additional parameter – the LP term is not sensitive to:**

 - **Nuclear A-dependence:**
 - result of multiple scattering and multiparton correlations
 \[R_A(Q) \equiv \sigma_A(Q)/\sigma_N(Q), \quad \Delta \langle q_T^2 \rangle_A \equiv \langle q_T^2 \rangle_A - \langle q_T^2 \rangle_N, \ldots \]

 - **Transverse-spin:**
 - power of fundamental symmetries – cancels the LP collinear term
 \[A_N(Q, s_T) \propto \sigma(Q, s_T) - \sigma(Q, -s_T), \]
 \[A_N(Q, q_T, s_T) \propto \sigma(Q, q_T, s_T) - \sigma(Q, q_T, -s_T), \ldots \]
Transverse SSA in collinear parton model

- SSA corresponds to a naively T-odd triple product:

\[A_N = \frac{\sigma(p, s_T) - \sigma(p, -s_T)}{\sigma(p, s_T) + \sigma(p, -s_T)} \]

\[A_N \propto i \vec{s}_p \cdot (\vec{p} \times \vec{\ell}) \Rightarrow i \epsilon^{\mu\nu\alpha\beta} p_\mu s_\nu \ell_\alpha p'_\beta \]

Novanish \(A_N \) requires a phase, enough vectors to fix a scattering plan, and a spin flip at the partonic scattering

- Leading power in QCD: [Kane, Pumplin, Repko, PRL, 1978]

\[\sigma_{AB}(p_T, \vec{s}) \propto \left| \begin{array}{c}
\text{diagram 1} \\
\text{diagram 2} \\
\text{...}
\end{array} \right| + \left| \begin{array}{c}
\text{diagram 3} \\
\text{diagram 4} \\
\text{...}
\end{array} \right| \]

\[= \alpha_s \frac{m_q}{p_T} \]

Need parton’s transverse motion to generate the asymmetry!
Power of fundamental symmetries

- **Factorized cross sections – asymmetries:**
 \[A \propto \sigma_{\uparrow}(Q, \bar{s}) - \sigma_{\downarrow}(Q, -\bar{s}) \propto \langle p, \bar{s}|O(\psi_q, A^\mu)|p, \bar{s}\rangle - \langle p, -\bar{s}|O(\psi_q, A^\mu)|p, -\bar{s}\rangle \]
 e.g. \(O(\psi, A^\mu) = \bar{\psi}(0) \hat{\Gamma} \psi(y^-) \) with \(\hat{\Gamma} = I, \gamma_5, \gamma^\mu, \gamma_5 \gamma^\mu, \sigma^{\mu\nu} \)

- **Parity and Time-reversal invariance:**
 \[\langle p, \bar{s}|O(\psi, A^\mu)|p, \bar{s}\rangle = \langle p, -\bar{s}|\mathcal{P} \mathcal{T} O^\dagger(\psi, A^\mu) \mathcal{T}^{-1} \mathcal{P}^{-1}|p, -\bar{s}\rangle \]
 - **IF:** \(\langle p, -\bar{s}|\mathcal{P} \mathcal{T} O^\dagger(\psi, A^\mu) \mathcal{T}^{-1} \mathcal{P}^{-1}|p, -\bar{s}\rangle = \pm \langle p, -\bar{s}|O(\psi, A^\mu)|p, -\bar{s}\rangle \)
 - **or** \(\langle p, \bar{s}|O(\psi, A^\mu)|p, \bar{s}\rangle = \pm \langle p, -\bar{s}|O(\psi, A^\mu)|p, -\bar{s}\rangle \)

 Operators lead to the “+” sign \(\Rightarrow \) spin-averaged cross sections
 Operators lead to the “-” sign \(\Rightarrow \) spin asymmetries

- **Example:**
 \[O(\psi, A^\mu) = \bar{\psi}(0) \gamma^+ \gamma_5 \psi(y^-) \Rightarrow q(x) \]
 \[O(\psi, A^\mu) = \bar{\psi}(0) \gamma^+ \psi(y^-) \Rightarrow \Delta q(x) \]
 \[O(\psi, A^\mu) = \bar{\psi}(0) \gamma^\perp \gamma_5 \psi(y^-) \Rightarrow \delta q(x) \rightarrow h(x) \]
 \[O(\psi, A^\mu) = \frac{1}{xp^+} F^{+\alpha}(0)[-i\epsilon_{\alpha\beta}] F^{+\beta}(y^-) \Rightarrow \Delta g(x) \]
$A_N = 0$ for inclusive DIS

- **DIS cross section:**
 \[\sigma(Q, s_T) \propto L^{\mu\nu} W_{\mu\nu}(Q, s_T) \]

- **Leptonic tensor is symmetric:**
 \[L^{\mu\nu} = L^{\nu\mu} \]

- **Hadronic tensor:**
 \[W_{\mu\nu}(Q, s_T) \propto \langle P, s_T | j_\mu(0) j_\nu(y) | P, s_T \rangle \]

- **Polarized cross section:**
 \[\Delta \sigma(Q, s_T) \propto L^{\mu\nu} [W_{\mu\nu}(Q, s_T) - W_{\mu\nu}(Q, -s_T)] \]

- **P and T invariance:**
 \[\langle P, s_T | j_\mu(0) j_\nu(y) | P, s_T \rangle = \langle P, -s_T | j_\nu(0) j_\mu(y) | P, -s_T \rangle \]
 \[\Rightarrow A_N(Q, s_T)^{\text{DIS}} = 0 \]
Advantage of SIDIS

- Dominated by events with two different scales:
 \[\ell(l, s_e) + A(P_A, s) \rightarrow \ell'(l') + h(p_h) + X \]
 - A large momentum transfer: \(Q = \sqrt{-(l - l')^2} \gg 1/\text{fm} \)
 Localized probe, suppress contribution of complicate matrix elements
 - A small momentum scale: \(p_{hT} \sim 1/\text{fm} \)
 Sensitive to parton’s motion inside a hadron – TMD distributions

- Power of varying \(p_{hT} \sim 1/\text{fm} \rightarrow p_{hT} \sim Q \)
 - Change from a two-scale problem to an one-scale problem
 Transition from TMD factorization to Collinear factorization

- Two natural scattering planes:
 - Separation of various TMDs and spin states
TMD factorization – SIDIS

\[W^{\mu \nu} = \sum_f |H_f(Q; \mu)\|^2 |^{\mu \nu} \int d^2 k_1T d^2 k_2T F_{f/P}^\uparrow (x, k_1T, S; \mu; \zeta_F) D_{h/f} (z, z k_2T; \mu; \zeta_D) \delta^{(2)}(k_1T + q_T - k_2T)
\]

\[+ Y(Q, q_T) + \mathcal{O}((\Lambda/Q)^a) \]

\[\sigma_0 \phi(x, \mu) \otimes D(z, \mu) \delta^2(p_{BT}) \]

- TMD parton distribution:

\[F_{f/P}^\uparrow (x, k_1T, S; \mu, \zeta_F) = \text{Tr}_{\text{color}} \text{Tr}_{\text{Dirac}} \frac{\gamma^+}{2} \int \frac{k_1^-}{2 \pi} \]

- TMD fragmentation function:

\[D_{h/f} (z, k_2T; \mu, \zeta_D) = \frac{\text{Tr}_{\text{color}}}{N_c} \frac{\text{Tr}_{\text{Dirac}}}{4} \frac{\gamma^+}{z} \int \frac{k_2^-}{2 \pi} \]

- TMDs are more fundamental if we can measure them:

Carry more information on hadron’s partonic structure
Color flow – gauge links

- **Gauge link – QCD phase:**

\[
\Phi_n(\infty, y^-) = \mathcal{P} \exp \left(-ig \int_{y^-}^{\infty} d\lambda n \cdot A(\lambda n) \right)
\]

Gauge invariant PDFs:

\[
\phi(x, p, s) = \int \frac{dy^-}{2\pi} e^{ip^+ y^-} \langle p, s | \bar{\psi}(0) j \hat{\Gamma}_{ji} \Phi_n^\dagger(\infty, 0) \Phi_n(\infty, y^-) \psi_i(y^-) | p, s \rangle
\]

Collinear PDFs: “Localized” operator with size \(\sim 1/xp \sim 1/Q \)

- **Universality of PDFs:**

Gauge link should be process independent!
TMD parton distributions

- Quark TMD distributions:

\[
\gamma^* \
\rightarrow \gamma^* \rightarrow \gamma^* \\
\hat{k}^\mu = x p^\mu + \frac{k_T^2}{2 x p^+} n^\mu + k_T^\mu
\]

\[
dk^2 dk^+ \delta(x - k^+/P^+)
\]

\[
\Phi(x, k_\perp) = \frac{1}{2} \left[f_1 h_+ + f_{1T} \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^\mu n_\perp^\rho k_\perp^\sigma}{M} + \left(S_L g_{1L} + \frac{k_\perp \cdot S_T}{M} g_{1T} \right) \gamma^5 h_+ \\
+ h_{1T}^\perp i \sigma_{\mu\nu} \gamma^5 n_\perp^\mu S_T^\nu + \left(S_L h_{1L}^\perp + \frac{k_\perp \cdot S_T}{M} h_{1T}^\perp \right) i \sigma_{\mu\nu} \gamma^5 n_\perp^\mu k_\perp^\nu \\
+ h_1^\perp \frac{\sigma_{\mu\nu} k_\perp^\mu n_\perp^\nu}{M} \right]
\]

Total 8 TMD quark distributions

- Gluon TMD distributions, ...

Production of quarkonium, two-photon, ...
Most notable TMDs

- **Sivers function** – transverse polarized hadron:

\[
f_{q/p, S}(x, k_{\perp}) = f_{q/p}(x, k_{\perp}) + \frac{1}{2} \Delta^N f_{q/p}^{\uparrow}(x, k_{\perp}) \mathbf{S} \cdot (\hat{p} \times \hat{k}_{\perp})
\]

\[
= f_{q/p}(x, k_{\perp}) - \frac{k_{\perp}}{M} f_{1T}^{\perp q}(x, k_{\perp}) \mathbf{S} \cdot (\hat{p} \times \hat{k}_{\perp})
\]

- **Boer-Mulder function** – transverse polarized quark:

\[
f_{q, s_{q/p}}(x, k_{\perp}) = \frac{1}{2} f_{q/p}(x, k_{\perp}) + \frac{1}{2} \Delta^N f_{q/p}^{\uparrow}(x, k_{\perp}) s_q \cdot (\hat{p} \times \hat{k}_{\perp})
\]

\[
= \frac{1}{2} f_{q/p}(x, k_{\perp}) - \frac{1}{2} \frac{k_{\perp}}{M} h_{1T}^{\perp q}(x, k_{\perp}) s_q \cdot (\hat{p} \times \hat{k}_{\perp})
\]

Affect angular distribution of Drell-Yan lepton pair production
Most notable TMDs – II

- Collins function – FF of a transversely polarized parton:

\[
D_{h/q,s_q}(z, p_\perp) = D_{h/q}(z, p_\perp) + \frac{1}{2} \Delta^N D_{h/q,s_q}(z, p_\perp) s_q \cdot (\hat{p}_q \times \hat{p}_\perp) \\
= D_{h/q}(z, p_\perp) + \frac{p_\perp}{z M_h} H_{1q}^{+q}(z, p_\perp) s_q \cdot (\hat{p}_q \times \hat{p}_\perp)
\]

- Fragmentation function to a polarized hadron:

\[
D_{\Lambda,S_{\Lambda},q}(z, p_\perp) = \frac{1}{2} D_{h/q}(z, p_\perp) + \frac{1}{2} \Delta^N D_{\Lambda,q}(z, p_\perp) S_\Lambda \cdot (\hat{p}_q \times \hat{p}_\perp) \\
= \frac{1}{2} D_{h/q}(z, p_\perp) + \frac{p_\perp}{z M_\Lambda} D_{1T}^{\perp q}(z, p_\perp) S_\Lambda \cdot (\hat{p}_q \times \hat{p}_\perp)
\]

Unpolarized parton fragments into a polarized hadron - \(\Lambda \)
TMDs and spin asymmetries

- **Sivers’ effect – Sivers’ function:**
 - Hadron spin influences parton’s transverse motion
 - Sivers' function: q^\perp

- **Collin’s effect – Collin’s function:**
 - Transversity
 - Parton’s transverse spin affects its hadronization
 - Separation of different effects?

- **TMD factorization is relevant for two-scale problems in QCD:**
 - $Q_1 \gg Q_2 \sim \Lambda_{\text{QCD}}$
SIDIS is ideal for studying TMDs

- SIDIS has the natural kinematics for TMD factorization:

$$\ell(s_e) + p(s_p) \rightarrow \ell + h(s_h) + X$$

Natural event structure: high Q and low p_T jet (or hadron)

- Separation of various TMD contribution by angular projection:

$$A_{UT}^{Collins} \propto \langle \sin(\phi_h + \phi_S) \rangle_{UT} \propto h_1 \otimes H_1^\perp$$

$$A_{UT}^{Sivers} \propto \langle \sin(\phi_h - \phi_S) \rangle_{UT} \propto f_{1T}^\perp \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \langle \sin(3\phi_h - \phi_S) \rangle_{UT} \propto h_{1T}^\perp \otimes H_1^\perp$$
Our knowledge of TMDs

- Sivers function from low energy SIDIS:

EIC can do much better job in extracting TMDs

- NO TMD factorization for hadron production in p+p collisions!

Collins and Qiu, 2007, Vogelsang and Yuan, 2007, Mulders and Rogers, 2010, …
Critical test of TMD factorization

- **TMD distributions with non-local gauge links:**

\[
f_{q/h^{+}}(x, k_{\perp}, \vec{S}) = \int \frac{dy^{-} d^{2}y_{\perp}}{(2\pi)^{3}} e^{i x p^{+} y^{-} - i k_{\perp} \cdot y_{\perp}} \langle p, \vec{S} | \bar{\psi}(0^{-}, 0_{\perp}) | y^{-}, y_{\perp} \rangle \frac{\gamma^{+}}{2} \psi(y^{-}, y_{\perp}) | p, \vec{S} \rangle
\]

- **Parity + Time-reversal invariance:**

 - For a fixed spin state:

 \[
f_{q/h^{+}}^{\text{SIDIS}}(x, k_{\perp}, \vec{S}) \neq f_{q/h^{+}}^{\text{DY}}(x, k_{\perp}, \vec{S})
 \]

- **Parity + Time-reversal invariance:**

 \[
f_{q/h^{+}}^{\text{Sivers}}(x, k_{\perp})^{\text{SIDIS}} = -f_{q/h^{+}}^{\text{Sivers}}(x, k_{\perp})^{\text{DY}}
 \]

The sign change is a critical test of TMD factorization approach.
Another critical test of TMD factorization

- **Predictive power of QCD factorization:**
 - Infrared safety of short-distance hard parts
 - Universality of the long-distance matrix elements
 - QCD evolution or scale dependence of the matrix elements

- **QCD evolution:**
 If there is a factorization/invariance, there is an evolution equation

- **Collinear factorization – DGLAP evolution:**
 \[
 \sigma_{\text{phy}}(Q, \Lambda_{\text{QCD}}) \approx \sum_f \hat{\sigma}_f(Q, \mu) \otimes \phi_f(\mu, \Lambda_{\text{QCD}}) \rightarrow \frac{d}{d\mu} \sigma_{\text{phy}}(Q, \Lambda_{\text{QCD}}) = 0
 \]
 Scaling violation of nonperturbative functions

 Evolution kernels are perturbative – a test of QCD
Evolution equations for TMDs

- **Collins-Soper equation**: b-space quark TMD with γ^+

 \[
 \frac{\partial \tilde{F}_{f/P\uparrow}(x, b_T, S; \mu; \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \tilde{F}_{f/P\uparrow}(x, b_T, S; \mu; \zeta_F) \\
 \tilde{K}(b_T; \mu) = \frac{1}{2} \frac{\partial}{\partial y_s} \ln \left(\frac{\tilde{S}(b_T; y_s, -\infty)}{\tilde{S}(b_T; +\infty, y_s)} \right)
 \]

- **RG equations**:

 \[
 \frac{d\tilde{K}(b_T; \mu)}{d\ln \mu} = -\gamma_K(g(\mu)) \\
 \frac{d\tilde{F}_{f/P\uparrow}(x, b_T, S; \mu; \zeta_F)}{d\ln \mu} = \gamma_F(g(\mu); \zeta_F/\mu^2) \tilde{F}_{f/P\uparrow}(x, b_T, S; \mu; \zeta_F).
 \]

- **Evolution equations for Sivers function**:

 \[
 F_{f/P\uparrow}(x, k_T, S; \mu, \zeta_F) = F_{f/P}(x, k_T; \mu, \zeta_F) - F_{1T}^{\uparrow f}(x, k_T; \mu, \zeta_F) \frac{\epsilon_{ij} k_i^S S_j}{M_p}
 \]

 CS:

 \[
 \frac{\partial \ln \tilde{F}_{1T}^{\uparrow f}(x, b_T; \mu, \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \\
 \tilde{F}_{1T}^{\uparrow f}(x, b_T; \mu, \zeta_F) \equiv \frac{\partial \tilde{F}_{1T}^{\uparrow f}(x, b_T; \mu, \zeta_F)}{\partial b_T}
 \]

 RGs:

 \[
 \frac{d\tilde{F}_{1T}^{\uparrow f}(x, b_T; \mu, \zeta_F)}{d\ln \mu} = \gamma_F(g(\mu); \zeta_F/\mu^2) \tilde{F}_{1T}^{\uparrow f}(x, b_T; \mu, \zeta_F)
 \]

 \[
 \frac{d\tilde{K}(b_T; \mu)}{d\ln \mu} = -\gamma_K(g(\mu)) \\
 \frac{\partial \gamma_F(g(\mu); \zeta_F/\mu^2)}{\partial \ln \sqrt{\zeta_F}} = -\gamma_K(g(\mu)),
 \]
Kernel is not perturbative for all b:

$$b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{\text{max}}^2}}$$

$$\mu_b = \frac{C_1}{b_*}$$

CSS prescription: (not unique)

$$\tilde{K}(b_T; \mu) = \tilde{K}(b_*; \mu_b) - \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \gamma_K(g(\mu')) - g_K(b_T)$$

Q^2-dependence of Sivers function:

$$\tilde{F}_{1T}^{\perp f}(x, b_T; \mu, \zeta_F) = \tilde{F}_{1T}^{\perp f}(x, b_T; \mu_0, Q_0^2) \exp \left\{ \ln \frac{\sqrt{\zeta_F}}{Q_0} \tilde{K}(b_*; \mu_b) + \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'); 1) - \ln \frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu')) \right] \right\}$$

$$+ \int_{\mu_0}^{\mu_b} \frac{d\mu'}{\mu'} \ln \frac{\sqrt{\zeta_F}}{Q_0} \gamma_K(g(\mu')) - g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{Q_0}$$

$\tilde{F}_{1T}^{f}(x, k_T; \mu, \zeta_F) = -\frac{1}{2\pi k_T} \int_0^\infty \! \! db_T \, b_T \, J_1(k_T b_T) \tilde{F}_{1T}^{\perp f}(x, b_T; \mu, \zeta_F)$ – Evolved Sivers function

Small-b perturbative contribution – match to twist-3:

$$\tilde{F}_{1T}^{\perp f}(x, b_T; \mu, \zeta_F) = \sum \frac{M_P b_T}{2} \int_R d\hat{x}_1 \, d\hat{x}_2 \, C_{j/j}^{\text{Sivers}}(\hat{x}_1, \hat{x}_2, b_*; \mu_b, \mu_b, g(\mu_b)) \, T_{F_{j/P}}(\hat{x}_1, \hat{x}_2, \mu_b)$$

$$\times \exp \left\{ \ln \frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(b_*; \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'); 1) - \ln \frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu')) \right] \right\} \times \exp \left\{ -g_{j/P}^{\text{Sivers}}(x, b_T) - g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{Q_0} \right\}$$

Kang, Xiao, Yuan, 2011
Gaussian ansatz for input distributions

- Up quark Sivers function:

Aybat, Collins, Qiu, Rogers, 2011

Very significant growth in the width of transverse momentum
From low p_T to high p_T

TMD factorization to collinear factorization:

Two factorization are consistent in the overlap region where

$$\Lambda_{QCD} \ll p_T \ll Q$$

QCD collinear factorization:

Efremov, Teryaev, 82; Qiu, Sterman, 91, etc.

$$\sigma(Q, \bar{s}) \propto \sigma^{LP}(Q, \bar{s}) + \frac{Q_s}{Q} \sigma^{NLP}(Q, \bar{s}) + ...$$

$$\Delta \sigma(s_T) \propto T^{(3)}(x, x) \otimes \hat{\sigma}_T \otimes D(z) + \delta q(x) \otimes \hat{\sigma}_D \otimes D^{(3)}(z, z) + ...$$

$$T^{(3)}(x, x) \propto$$

Qiu, Sterman, 1991, ...

$$D^{(3)}(z, \bar{z}) \propto$$

Kang, Yuan, Zhou, 2010
Twist-3 correlation functions

- **Twist-2 parton distributions:**

 - **Unpolarized PDFs:**
 \[
 q(x) \propto \langle P | \overline{\psi}_q(0) \frac{\gamma^+}{2} \psi_q(y) | P \rangle \\
 G(x) \propto \langle P | F^{+\mu}(0) F^{+\nu}(y) | P \rangle (-g_{\mu\nu})
 \]

 - **Polarized PDFs:**
 \[
 \Delta q(x) \propto \langle P, S_{\parallel} | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \psi_q(y) | P, S_{\parallel} \rangle \\
 \Delta G(x) \propto \langle P, S_{\parallel} | F^{+\mu}(0) F^{+\nu}(y) | P, S_{\parallel} \rangle (i \epsilon_{\perp \mu\nu})
 \]

- **Two-sets Twist-3 correlation functions:**

 \[
 \widetilde{\mathcal{T}}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ix_1^+ y_1^-} e^{ix_2^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} [e^{s_T \sigma n n} F_\sigma^{+}(y_2^-)] \psi_q(y_1^-) | P, s_T \rangle
 \]

 \[
 \widetilde{\mathcal{T}}_{(f,d)}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ix_1^+ y_1^-} e^{ix_2^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) [e^{s_T \sigma n n} F_\sigma^{+}(y_2^-)] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda})
 \]

 \[
 \widetilde{\mathcal{T}}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ix_1^+ y_1^-} e^{ix_2^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} [i s_T^\sigma F_\sigma^{+}(y_2^-)] \psi_q(y_1^-) | P, s_T \rangle
 \]

 \[
 \widetilde{\mathcal{T}}_{\Delta G,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ix_1^+ y_1^-} e^{ix_2^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) [i s_T^\sigma F_\sigma^{+}(y_2^-)] F^{+\lambda}(y_1^-) | P, s_T \rangle (i \epsilon_{\perp \rho\lambda})
 \]

Role of color magnetic force!
Evolution equations and kernels

- Evolution equation is a consequence of factorization:

 \[\Delta \sigma(Q, s_T) = \frac{1}{Q} H_1(Q/\mu_F, \alpha_s) \otimes f_2(\mu_F) \otimes f_3(\mu_F) \]

 - DGLAP for \(f_2 \):
 \[\frac{\partial}{\partial \ln(\mu_F)} f_2(\mu_F) = P_2 \otimes f_2(\mu_F) \]

 - Evolution for \(f_3 \):
 \[\frac{\partial}{\partial \ln(\mu_F)} f_3 = \left(\frac{\partial}{\partial \ln(\mu_F)} H_1^{(1)} - P_2^{(1)} \right) \otimes f_3 \]

- Evolution kernel is process independent:

 - Calculate directly from the variation of process independent twist-3 distributions

 Kang, Qiu, 2009
 Yuan, Zhou, 2009

 - Extract from the scale dependence of the NLO hard part of any physical process

 Vogelsang, Yuan, 2009

 - Renormalization of the twist-3 operators

 Braun et al, 2009
Variation of twist-3 correlation functions

Closed set of evolution equations (spin-dependent):

\[\mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{T}_{q,F}(x, x + x_2, \mu_F, s_T) = \int d\xi d\xi_2 [\tilde{T}_{q,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{qq}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\
+ \tilde{T}_{\Delta q,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{q\Delta q}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)] \\
+ \sum_{i=f,d} \int d\xi d\xi_2 [\tilde{T}^{(i)}_{G,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{qg}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\
+ \tilde{T}^{(i)}_{\Delta G,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{q\Delta g}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)]. \]

\[\mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{T}^{(i)}_{G,F}(x, x + x_2, \mu_F, s_T) = \sum_{j=f,d} \int d\xi d\xi_2 [\tilde{T}^{(j)}_{G,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{gg}^{(j)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\
+ \tilde{T}^{(j)}_{\Delta G,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{g\Delta g}^{(j)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)] \\
+ \sum_{q} \int d\xi d\xi_2 [\tilde{T}_{q,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{\Delta q}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\
+ \tilde{T}_{\Delta q,F}(\xi, \xi + \xi_2, \mu_F, s_T)K_{gq}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)]. \]

Plus two more equations for:

\[\mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{T}_{\Delta q,F}(x, x + x_2, \mu_F, s_T) \quad \text{and} \quad \mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{T}^{(i)}_{\Delta G,F}(x, x + x_2, \mu_F, s_T) \]

Kang, Qiu, 2009
Scale dependence

✧ Follow DGLAP at large x
✧ Large deviation at low x (stronger correlation)
A sign “mismatch”

- Sivers function and twist-3 correlation:
 \[gT_{q,F}(x,x) = - \int d^2 k_\perp \frac{|k_\perp|^2}{M} f_{1T}^q(x, k_\perp^2) \text{SIDIS} + \text{UVCT} \]

- “direct” and “indirect” twist-3 correlation functions:

Calculate \(T_{q,F}(x,x) \) by using the measured Sivers functions
Possible interpretations

- **A node in k_T-distribution:**
 - Like the DSSV’s $\Delta G(x)$
 - HERMES vs COMPASS
 - Physics behind the sign change?

 EIC can measure TMDs for a wide range of k_T

- **Large twist-3 fragmentation contribution in RHIC data:**
 - If Sivers-type initial-state effect is much smaller than fragmentation effect and two effects have an opposite sign
 - Can be tested by A_N of single jet or direct photon at RHIC

- **A node in x-dependence of Sivers or twist-3 distributions**
 - Physics behind the node if there is any

Kang, Qiu, Vogelsang, Yuan, 2011
Propose new observables for ep collisions

- **Process:** \(e(\ell) + h(p) \rightarrow \text{jet}(p_j)(\text{or } \pi, \ldots) + X \)

 Lepton-hadron scattering without measuring the scattered lepton

 Single hard scale: \(p_{jT} \) in lepton-hadron frame

- **Complement to SIDIS:** \(e(\ell) + h(p) \rightarrow e'(\ell') + \text{jet}(p_j)(\text{or } \pi, \ldots) + X \)

 Two scales: \(Q, p_{jT} \) in virtual-photon-hadron frame

- **Key difference in theory treatment:**

 Collinear factorization for \(e(\ell) + h(p) \rightarrow \text{jet}(p_j)(\text{or } \pi, \ldots) + X \)

 TMD factorization for \(e(\ell) + h(p) \rightarrow e'(\ell') + \text{jet}(p_j)(\text{or } \pi, \ldots) + X \)

 Test the consistency between TMD and Twist-3 to SSA in the same experimental setting

 Jlab, Compass, Future EIC, …
Analytical formulae

- **Factorization is valid:**

 Same as hadron-hadron collision to jet + X

 \[
 \frac{d\sigma_{lh\rightarrow\text{jet}(P_J)X}}{dP_{JT}dy} \approx \sum_{ab} \int dx f_1^{a/l}(x, \mu) \int dx' f_1^{b/h}(x', \mu) \frac{d\sigma^{ab\rightarrow\text{Jet}(P_J)X}}{dP_{JT}dy}(x, x', P_{JT}, y, \mu)
 \]

 \[a = l, \gamma, q, \bar{q}, g\]

 \[b = q, \bar{q}, g\]

- **Leading order results:**

 \[
 P_j^0 \frac{d^3\sigma}{d^3P_j} = \frac{\alpha_{em}^2}{s} \sum_a \frac{e_a^2}{(s + t) x} \left\{ f_1^a(x) H_{UU} + \lambda_l \lambda_p g_1^a(x) H_{LL} \right. \]

 \[
 + 2\pi M \varepsilon_T^j S_T^i P_{JT}^j \left[T^a_F(x, x) - x \frac{d}{dx} T^a_F(x, x) \right] \frac{\hat{s}}{\hat{t}u} H_{UU} \]

 \[
 + \lambda_l 2M \vec{S}_T \cdot \vec{P}_{JT} \left[\left(\bar{g}^a(x) - x \frac{d}{dx} \bar{g}^a(x) \right) \frac{\hat{s}}{\hat{t}u} H_{LL} + x g_1^a(x) \frac{2}{t} \right] \}
 \]

 \[\lambda_l, \lambda_p: \text{ Lepton, hadron helicity, respectively}\]

 \[\vec{S}_T: \text{ Hadron’s transverse spin vector}\]
Numerical results

- Asymmetries:

 \[A_{LL} = \frac{\sigma_{LL}}{\sigma_{UU}}, \quad A_{UT} = \frac{\sigma_{UT}}{\sigma_{UU}}, \quad A_{LT} = \frac{\sigma_{LT}}{\sigma_{UU}} \]

- Double spin asymmetries – very small:

 \[\sqrt{s} = 50 \text{ GeV}, \quad \sqrt{s} = 100 \text{ GeV} \]

 Wandzura-Wilczek approximation:

 \[g_T(x) \approx \int_x^1 \frac{dy}{y} g_1(y) \quad \tilde{g}(x) \approx x \int_x^1 \frac{dy}{y} g_1(y) \]

 \[\rightarrow A_{LT} \sim 0.001 \]
Good probe of Sivers function

- Independent check of the “sign mismatch”:

Red line: \(T_F(x, \mu) \) extracted from fitting SSA in hadronic collisions

Blue line: \(\pi T_F(x, x) = -\int d^2k_T \frac{k_T^2}{2M^2} f_{1T}^T(x, \vec{k}_T^2)\bigg|_{DIS} \) Sivers function

Excellent test for the mechanism of SSA possibly at Jlab, surely at future EIC
More on future directions

- RHIC spin, JLab at 12 GeV, possibly at Compass, ...

- Future EIC:
 - a dedicated QCD machine for the visible matter

 Yellow book on EIC physics from INT workshop is available:

 arXiv: submit/0295324 [nucl-th]

- A white paper on EIC physics:
 - a writing group appointed by BNL and Jlab is working hard

- Physics opportunities at EIC:
 - Inclusive DIS – Spin, F_L, ...
 - SIDIS – TMDs, spin-orbital correlations,
 - One jet or particle inclusive – multiparton quantum correlation, ...
 - GPDs – parton spatial distributions
 - ...

...
Summary

- QCD factorization/calculation have been very successful in interpreting HEP scattering data

- What about the hadron structure?
 Not much!

- RHIC spin, Jlab12, a future EIC with a polarized hadron beams opens up many new ways to test QCD and to study hadron structure: TMDs, GPDs, ...

- The challenge for theorists:
 - to indentify new and calculable observables that carry rich information on hadron’s partonic structure
 - to make measureable predictions

Thank you!
Backup slices
EIC Kinematics

- **DIS kinematics:**
 \[Q^2 = -q^2 = x_B y S \]
 \[x_B = \frac{Q^2}{2p \cdot q} \]
 \[y = \frac{p \cdot q}{p \cdot k} \]
 \[S = (p + k)^2 \]

- **EIC (eRHIC – ELIC) basic parameters:**
 - \(E_e = 10 \) GeV (5-30 GeV available)
 - \(E_p = 250 \) GeV (50-325 GeV available)
 - \(\sqrt{S} = 100 \) GeV (30-200 GeV available)
 - "localized" probe: \(Q^2 \gtrsim 1 \) GeV
 - \(x_{\text{min}} \sim 10^{-4} \)
 - Luminosity \(\sim 100 \times \) HERA
 - Polarization, heavy ion beam, …
“Interpretation” of twist-3 correlation functions

- Measurement of direct QCD quantum interference:
 \[T^{(3)}(x, x, S_{\perp}) \propto \]
 \[\text{Interference between a single active parton state and an active two-parton composite state} \]

- “Expectation value” of QCD operators:
 \[
 \langle P, s | \bar{\psi}(0) \gamma^+ \psi(y^-) | P, s \rangle \quad \rightarrow \quad \langle P, s | \bar{\psi}(0) \gamma^+ \left[\epsilon_\perp^{\alpha\beta} s T_\alpha \int dy_2^- F_\beta^+(y_2^-) \right] \psi(y^-) | P, s \rangle
 \]
 \[
 \langle P, s | \bar{\psi}(0) \gamma^+ \gamma_5 \psi(y^-) | P, s \rangle \quad \rightarrow \quad \langle P, s | \bar{\psi}(0) \gamma^+ \left[i g_\perp^{\alpha\beta} s T_\alpha \int dy_2^- F_\beta^+(y_2^-) \right] \psi(y^-) | P, s \rangle
 \]

How to interpret the “expectation value” of the operators in RED?
A simple example

- The operator in Red – a classical Abelian case:

 \[\Delta p_2' \]

 In the c.m. frame:

 \[(m, \vec{0}) \rightarrow \vec{n} = (1, 0, 0_T), \quad (1, -\hat{z}) \rightarrow n = (0, 1, 0_T) \]

 \[\implies \frac{d}{dt} p_2' = e \epsilon^{s_T \sigma n \bar{n}} F_\sigma^+ \]

- Change of transverse momentum:

 \[\frac{d}{dt} p_2' = e (\vec{\nu}' \times \vec{B})_2 = -ev_3 B_1 = ev_3 F_{23} \]

- The total change:

 \[\Delta p_2' = e \int d\gamma^- \epsilon^{s_T \sigma n \bar{n}} F_\sigma^+(\gamma^-) \]

Net quark transverse momentum imbalance caused by color Lorentz force inside a transversely polarized proton