QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

Jianwei Qiu Brookhaven National Laboratory

Based on work with many people

Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA

Outline of my talk

- □ Transverse single-spin asymmetry in ep collisions
 - Ideal observable to go beyond the leading power collinear factorization
- □ Role of fundamental symmetries
- **QCD TMD** factorization approach
- **QCD** collinear factorization approach
- □ Connection between these two approaches
- □ Predictive power of QCD factorization approach
- □ Summary

Electron-proton collisions

Cross sections:

♦ Every parton can participate the hard collision!

 \diamond Cross section depends on matrix elements of all possible fields

□ Approximation – single large momentum transfer: Q >> 1/fm

$$\sigma(Q) = \sigma^{\rm LP}(Q) + \frac{Q_s}{Q} \sigma^{\rm NLP}(Q) + \frac{Q_s^2}{Q^2} \sigma^{\rm NNLP}(Q) + \dots \approx \sigma^{\rm LP}(Q)$$

□ Leading power QCD factorization - approximation:

 $\sigma(Q) \approx \sigma^{\rm LP}(Q) \propto \hat{\sigma}(Q) \otimes \langle p, s | \tilde{\phi}^{\dagger}(k) \tilde{\phi}(k) | p, s \rangle + \dots$

□ How good the approximation is?

Universal parton distributions Hadron's partonic structure!

Inclusive DIS cross section

From HERA:

Inclusive single jet hadronic cross section

To Tevatron:

With one set universal PDFs

QCD is successful in last 30 years – we now believe it

Fact and questions

FACT:

- LP QCD collinear factorization/calculations have been very successful in interpreting HEP scattering data if Q > 2 GeV
- QCD should be correct for the asymptotic regime: r < 1/10 fm!</p>

QUESTIONS:

How much have we learned about hadron's partonic structure?

Collinear PDFs, Helicity PDFs, ...

But, Not enough for the structure, ...

♦ How to test/explore QCD beyond the leading power formalism?

Parton's transverse motion, and multiparton correlation beyond 1/10 fm?

Go beyond the LP collinear factorization

 \diamond LP collinear term dominates the single scale cross section

□ Need additional parameter – the LP term is not sensitive to:

♦ Nuclear A-dependence:

- result of multiple scattering and multiparton correlations

 $R_A(Q) \equiv \sigma_A(Q) / \sigma_N(Q), \qquad \Delta \langle q_T^2 \rangle_A \equiv \langle q_T^2 \rangle_A - \langle q_T^2 \rangle_N, \dots$

 \diamond Transverse-spin:

- power of fundamental symmetries - cancels the LP collinear term

 $A_N(Q, s_T) \propto \sigma(Q, s_T) - \sigma(Q, -s_T),$ $A_N(Q, q_T, s_T) \propto \sigma(Q, q_T, s_T) - \sigma(Q, q_T, -s_T), \dots$

Transverse SSA in collinear parton model

□ SSA corresponds to a naively T-odd triple product:

$$A_{N} = [\sigma(p, s_{T}) - \sigma(p, -s_{T})] / [\sigma(p, s_{T}) + \sigma(p, -s_{T})] \xrightarrow{\$} I$$

$$A_{N} \propto i \, \vec{s}_{p} \cdot (\vec{p} \times \vec{\ell}) \implies i \, \epsilon^{\mu\nu\alpha\beta} \, p_{\mu} s_{\nu} \ell_{\alpha} p_{\beta}'$$

Novanish A_N requires a phase, enough vectors to fix a scattering plan, and a spin flip at the partonic scattering

□ Leading power in QCD:

Kane, Pumplin, Repko, PRL, 1978

Need parton's transverse motion to generate the asymmetry!

Power of fundamental symmetries

□ Factorized cross sections – asymmetries:

 $A \propto \sigma_{h(p)}(Q, \vec{s}) - \sigma_{h(p)}(Q, -\vec{s}) \propto \langle p, \vec{s} | \mathcal{O}(\psi_q, A^{\mu}) | p, \vec{s} \rangle - \langle p, -\vec{s} | \mathcal{O}(\psi_q, A^{\mu}) | p, -\vec{s} \rangle$ e.g. $\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \,\hat{\Gamma} \,\psi(y^-)$ with $\hat{\Gamma} = I, \gamma_5, \gamma^{\mu}, \gamma_5 \gamma^{\mu}, \sigma^{\mu\nu}$

□ Parity and Time-reversal invariance:

 $\langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle = \langle p, -\vec{s} | \mathcal{PTO}^{\dagger}(\psi, A^{\mu}) \mathcal{T}^{-1} \mathcal{P}^{-1} | p, -\vec{s} \rangle$

$$\Box \text{ IF: } \langle p, -\vec{s} | \mathcal{PTO}^{\dagger}(\psi, A^{\mu}) \mathcal{T}^{-1} \mathcal{P}^{-1} | p, -\vec{s} \rangle = \pm \langle p, -\vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, -\vec{s} \rangle$$

or $\langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle = \pm \langle p, -\vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, -\vec{s} \rangle$

Operators lead to the "+" sign spin-averaged cross sections Operators lead to the "-" sign spin asymmetries

Example:

$$\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^{+} \psi(y^{-}) \Rightarrow q(x)$$

$$\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^{+} \gamma_{5} \psi(y^{-}) \Rightarrow \Delta q(x)$$

$$\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^{+} \gamma^{\perp} \gamma_{5} \psi(y^{-}) \Rightarrow \delta q(x) \rightarrow h(x)$$

$$\mathcal{O}(\psi, A^{\mu}) = \frac{1}{xp^{+}} F^{+\alpha}(0) [-i\varepsilon_{\alpha\beta}] F^{+\beta}(y^{-}) \Rightarrow \Delta g(x)$$

$A_N = 0$ for inclusive DIS

DIS cross section: $\sigma(Q, s_T) \propto L^{\mu\nu} W_{\mu\nu}(Q, s_T)$

□ Leptionic tensor is symmetric:

$$L^{\mu\nu} = L^{\nu\mu}$$

□ Hadronic tensor:

$$W_{\mu\nu}(Q,s_T) \propto \langle P, s_T | j^{\dagger}_{\mu}(0) j_{\nu}(y) | P, s_T \rangle$$

□ Polarized cross section:

$$\Delta\sigma(Q, s_T) \propto L^{\mu\nu} \left[W_{\mu\nu}(Q, s_T) - W_{\mu\nu}(Q, -s_T) \right]$$

P and **T** invariance:

$$\langle P, s_T | j^{\dagger}_{\mu}(0) j_{\nu}(y) | P, s_T \rangle = \langle P, -s_T | j^{\dagger}_{\nu}(0) j_{\mu}(y) | P, -s_T \rangle$$
$$\Rightarrow A_N(Q, s_T)^{\text{DIS}} = 0$$

Advantage of SIDIS

Dominated by events with two different scales:

$$\ell(l, s_e) + A(P_A, s) \to \ell'(l') + h(p_h) + X$$

♦ A large momentum transfer: $Q = \sqrt{-(l - l')^2} \gg 1/\text{fm}$

Localized probe, suppress contribution of complicate matrix elements

 \Rightarrow A small momentum scale: $p_{hT} \sim 1/\text{fm}$

Sensitive to parton's motion inside a hadron – TMD distributions

 \Box Power of varying $p_{hT} \sim 1/\text{fm} \rightarrow p_{hT} \sim Q$

Change from a two-scale problem to an one-scale problem

Transition from TMD factorization to Collinear factorization

Two natural scattering planes:

Separation of various TMDs and spin states

TMD factorization – SIDIS

Carry more information on hadron's partonic structure

Color flow – gauge links

□ Gauge link – QCD phase:

Summation of leading power gluon field contribution produces the gauge link: $\int_{-\infty}^{\infty}$

$$\Phi_n(\infty, y^-) = \mathcal{P} \exp\left(-ig \int_{y^-}^{\infty} d\lambda \, n \cdot A(\lambda n)\right)$$

Gauge invariant PDFs:

$$\phi(x,p,s) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle p,s | \overline{\psi}(0)_j \widehat{\Gamma}_{ji} \Phi_n^{\dagger}(\infty,0) \Phi_n(\infty,y^-) \psi_i(y^-) | p,s \rangle$$

Collinear PDFs:

"Localized" operator with size ~ 1/xp ~ 1/Q "localized" color flow

□ Universality of PDFs:

Gauge link should be process independent!

TMD parton distributions

Quark TMD distributions:

$$\begin{split} \Phi(x, \boldsymbol{k}_{\perp}) &= \frac{1}{2} \left[f_{1} \not h_{+} + f_{1T}^{\perp} \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M} + \left(S_{L} \underbrace{g_{1L}}_{1L} + \frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} \underbrace{g_{1T}^{\perp}}_{M} \right) \gamma^{5} \not h_{+} \\ &+ \underbrace{h_{1T}}_{1T} i \sigma_{\mu\nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu} + \left(S_{L} \underbrace{h_{1L}^{\perp}}_{1L} + \frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} \underbrace{h_{1T}^{\perp}}_{M} \right) \frac{i \sigma_{\mu\nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M} \\ &+ \underbrace{h_{1}^{\perp}}_{1} \frac{\sigma_{\mu\nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M} \right] \end{split}$$

Total 8 TMD quark distributions

□ Gluon TMD distributions, ...

Production of quarkonium, two-photon, ...

Most notable TMDs

□ Sivers function – transverse polarized hadron:

Sivers function

$$f_{q/p,S}(x, \boldsymbol{k}_{\perp}) = f_{q/p}(x, \boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(x, \boldsymbol{k}_{\perp}) \boldsymbol{S} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

$$= f_{q/p}(x, \boldsymbol{k}_{\perp}) - \frac{k_{\perp}}{M} f_{1T}^{\perp q}(x, \boldsymbol{k}_{\perp}) \boldsymbol{S} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

□ Boer-Mulder function – transverse polarized quark:

$$\begin{aligned} f_{q,s_q/p}(x,\boldsymbol{k}_{\perp}) &= \frac{1}{2} f_{q/p}(x,\boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q^{\uparrow}/p}(x,\boldsymbol{k}_{\perp}) \, \boldsymbol{s}_{q} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}) \\ &= \frac{1}{2} f_{q/p}(x,\boldsymbol{k}_{\perp}) - \frac{1}{2} \frac{k_{\perp}}{M} h_{1}^{\perp q}(x,\boldsymbol{k}_{\perp}) \, \boldsymbol{s}_{q} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}) \end{aligned}$$

$$\begin{aligned} & \text{Boer-Mulder function} \end{aligned}$$

Affect angular distribution of Drell-Yan lepton pair production

Most notable TMDs – II

□ Collins function – FF of a transversely polarized parton:

$$D_{h/q,s_q}(z, \boldsymbol{p}_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^N D_{h/q^{\uparrow}}(z, p_{\perp}) \, \boldsymbol{s}_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$
$$= D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z \, M_h} H_1^{\perp q}(z, p_{\perp}) \, \boldsymbol{s}_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$
Collins function

□ Fragmentation function to a polarized hadron:

$$D_{\Lambda, S_{\Lambda}/q}(z, \boldsymbol{p}_{\perp}) = \frac{1}{2} D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^{N} D_{\Lambda^{\uparrow}/q}(z, p_{\perp}) \boldsymbol{S}_{\Lambda} \cdot (\boldsymbol{\hat{p}}_{q} \times \boldsymbol{\hat{p}}_{\perp})$$
$$= \frac{1}{2} D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z M_{\Lambda}} D_{1T}^{\perp q}(z, p_{\perp}) \boldsymbol{S}_{\Lambda} \cdot (\boldsymbol{\hat{p}}_{q} \times \boldsymbol{\hat{p}}_{\perp})$$

Unpolarized parton fragments into a polarized hadron - Λ

TMDs and spin asymmetries

□ Sivers' effect – Sivers' function:

Di-jet, photon-jet not exactly back to back

Hadron spin influences parton's transverse motion

Photons have asymmetry Jet vs. Photon sign flip predicted

□ Collin's effect – Collin's function:

Parton's transverse spin affects its hadronization

Separation of different effects?

□ TMD factorization is relevant for two-scale problems in QCD:

 $Q_1 \gg Q_2 \sim \Lambda_{\rm QCD}$

SIDIS is ideal for studying TMDs

□ SIDIS has the natural kinematics for TMD factorization:

 $\ell(s_e) + p(s_p) \to \ell + h(s_h) + X$

Natural event structure: high Q and low p_T jet (or hadron)

□ Separation of various TMD contribution by angular projection:

Lepton plane vs. hadron plane

$$\begin{aligned} A_{UT}(\varphi_h^l, \varphi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) & \longrightarrow \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) \end{aligned}$$

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

Our knowledge of TMDs

□ Sivers function from low energy SIDIS:

EIC can do much better job in extracting TMDs

□ NO TMD factorization for hadron production in p+p collisions!

Collins and Qiu, 2007, Vogelsang and Yuan, 2007, Mulders and Rogers, 2010, ...

Critical test of TMD factorization

□ TMD distributions with non-local gauge links:

For a fixed spin state:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

□ Parity + Time-reversal invariance:

$$f_{q/h^{\uparrow}}^{\text{Sivers}}(x,k_{\perp})^{\text{SIDIS}} = -f_{q/h^{\uparrow}}^{\text{Sivers}}(x,k_{\perp})^{\text{DY}}$$

The sign change is a critical test of TMD factorization approach

Another critical test of TMD factorization

□ Predictive power of QCD factorization:

 \diamond Infrared safety of short-distance hard parts

Oniversality of the long-distance matrix elements

 \diamond QCD evolution or scale dependence of the matrix elements

QCD evolution:

If there is a factorization/invariance, there is an evolution equation

□ Collinear factorization – DGLAP evolution:

 $\sigma_{\rm phy}(Q, \Lambda_{\rm QCD}) \approx \sum_f \hat{\sigma}_f(Q, \mu) \otimes \phi_f(\mu, \Lambda_{\rm QCD}) \quad \rightarrow \quad \frac{d}{d\mu} \sigma_{\rm phy}(Q, \Lambda_{\rm QCD}) = 0$

Scaling violation of nonperturbative functions

Evolution kernels are perturbative – a test of QCD

Evolution equations for TMDs

□ Collins-Soper equation: – b-space quark TMD with Y⁺

$$\frac{\partial \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)$$

Boer, 2001, 2009, Idilbi, et al, 2004 Aybat, Rogers, 2010 Kang, Xiao, Yuan, 2011 Aybat, Collins, Qiu, Rogers, 2011

$$\tilde{K}(b_T;\mu) = \frac{1}{2} \frac{\partial}{\partial y_s} \ln\left(\frac{\tilde{S}(b_T;y_s,-\infty)}{\tilde{S}(b_T;+\infty,y_s)}\right)$$

RG equations:

$$\frac{d\tilde{K}(b_T;\mu)}{d\ln\mu} = -\gamma_K(g(\mu)) \qquad \frac{d\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_F)}{d\ln\mu} = \gamma_F(g(\mu);\zeta_F/\mu^2)\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_F).$$

Evolution equations for Sivers function:

Scale dependence of Sivers function

Aybat, Collins, Qiu, Rogers, 2011

□ Kernel is not perturbative for all b:

CSS prescription:
(not unique)

$$b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}} \qquad \mu_b = \frac{C_1}{b_*}$$

$$\tilde{K}(b_T; \mu) = \tilde{K}(b_*; \mu_b) - \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \gamma_K(g(\mu')) - g_K(b_T)$$

Q²-dependence of Sivers function:

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) = \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu_0, Q_0^2) \exp\left\{\ln\frac{\sqrt{\zeta_F}}{Q_0}\tilde{K}(b_*; \mu_b) + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'); 1) - \ln\frac{\sqrt{\zeta_F}}{\mu'}\gamma_K(g(\mu'))\right] + \int_{\mu_0}^{\mu_b}\frac{d\mu'}{\mu'}\ln\frac{\sqrt{\zeta_F}}{Q_0}\gamma_K(g(\mu')) - g_K(b_T)\ln\frac{\sqrt{\zeta_F}}{Q_0}\right\}$$

 $F_{1T}^{\perp f}(x,k_T;\mu,\zeta_F) = \frac{-1}{2\pi k_T} \int_0^\infty db_T \, b_T J_1(k_T b_T) \tilde{F}_{1T}^{\prime \perp f}(x,b_T;\mu,\zeta_F) - \text{Evolved Sivers function}$

□ Small-b perturbative contribution – match to twist-3:

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) = \sum_{i} \frac{M_p b_T}{2} \int_x^1 \frac{d\hat{x}_1 \, d\hat{x}_2}{\hat{x}_1 \, \hat{x}_2} \tilde{C}_{f/j}^{\text{Sivers}}(\hat{x}_1, \hat{x}_2, b_*; \mu_b^2, \mu_b, g(\mu_b)) \, T_{F \, j/P}(\hat{x}_1, \hat{x}_2, \mu_b) \\ \times \exp\left\{\ln\frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(b_*; \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'); 1) - \ln\frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu'))\right]\right\} \times \exp\left\{-g_{j/P}^{\text{Sivers}}(x, b_T) - g_K(b_T) \ln\frac{\sqrt{\zeta_F}}{Q_0}\right\}$$
Kang Xiao Yuan 2011

Gaussian ansatz for input distributions

Aybat, Collins, Qiu, Rogers, 2011

Up quark Sivers function:

Very significant growth in the width of transverse momentum

From low p_T to high p_T

□ TMD factorization to collinear factorization:

Ji,Qiu,Vogelsang,Yuan, Koike, Vogelsang, Yuan

Two factorization are consistent in the overlap region where

 $\Lambda_{\rm QCD} \ll p_T \ll Q$

TMD

Collinear Factorization

QCD collinear factorization:

Efremov, Teryaev, 82; Qiu, Sterman, 91, etc.

 $D^{(3)}(z,z) \propto$

$$\sigma(Q,\vec{s}) \propto \left| \begin{array}{c} \overbrace{p,\vec{s}} \\ \downarrow \\ \downarrow \\ \leftarrow t \sim 1/Q \end{array} \right|^{p,\vec{s}} + \cdots + \begin{array}{c} \overbrace{q} \\ \downarrow \\ \downarrow \\ \leftarrow t \sim 1/Q \end{array} \right|^{2} = \sigma^{\text{LP}}(Q,\vec{s}) + \frac{Q_{s}}{Q}\sigma^{\text{NLP}}(Q,\vec{s}) + \dots$$

 $\Delta\sigma(s_T) \propto T^{(3)}(x,x) \otimes \hat{\sigma}_T \otimes D(z) + \delta q(x) \otimes \hat{\sigma}_D \otimes D^{(3)}(z,z) + \dots$

Qiu, Sterman, 1991, ...

Kang, Yuan, Zhou, 2010

Twist-3 correlation functions

Twist-2 parton distributions:

Kang, Qiu, PRD, 2009

♦ Unpolarized PDFs:

 $q(x) \propto \langle P | \overline{\psi}_q(0) \frac{\gamma^+}{2} \psi_q(y) | P \rangle$ $G(x) \propto \langle P | F^{+\mu}(0) F^{+\nu}(y) | P \rangle (-g_{\mu\nu})$ $\Delta q(x) \propto \langle P, S_{\parallel} | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \psi_q(y) | P, S_{\parallel} \rangle$ $\Delta G(x) \propto \langle P, S_{\parallel} | F^{+\mu}(0) F^{+\nu}(y) | P, S_{\parallel} \rangle (i\epsilon_{\perp\mu\nu})$

 \diamond Polarized PDFs:

Two-sets Twist-3 correlation functions:

$$\begin{split} \widetilde{T}_{q,F} &= \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^+ (y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle \\ \widetilde{T}_{G,F}^{(f,d)} &= \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^+ (y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho \lambda}) \\ \widetilde{T}_{\Delta q,F} &= \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i s_T^\sigma F_{\sigma}^+ (y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle \\ \widetilde{T}_{\Delta G,F}^{(f,d)} &= \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i s_T^\sigma F_{\sigma}^+ (y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (i \epsilon_{\perp \rho \lambda}) \end{split}$$

Role of color magnetic force!

Evolution equations and kernels

Evolution equation is a consequence of factorization:

Factorization:	$\Delta \sigma(Q, s_T) = (1/Q)H_1(Q/\mu_F, \alpha_s) \otimes f_2(\mu_F) \otimes f_3(\mu_F)$
DGLAP for f ₂ :	$\frac{\partial}{\partial \ln(\mu_F)} f_2(\mu_F) = P_2 \otimes f_2(\mu_F)$
Evolution for f ₃ :	$\frac{\partial}{\partial \ln(\mu_F)} f_3 = \left(\frac{\partial}{\partial \ln(\mu_F)} H_1^{(1)} - P_2^{(1)}\right) \otimes f_3$

Evolution kernel is process independent:

Calculate directly from the variation of process independent twist-3 distributions
Kang, Qiu, 3

Kang, Qiu, 2009 Yuan, Zhou, 2009

- Extract from the scale dependence of the NLO hard part
 of any physical process
 Vogelsang, Yuan, 2009
- ♦ Renormalization of the twist-3 operators

Variation of twist-3 correlation functions

□ Closed set of evolution equations (spin-dependent): Kang, Qiu, 2009

$$\begin{split} \mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{\mathcal{T}}_{q,F}(x, x + x_2, \mu_F, s_T) &= \int d\xi d\xi_2 [\tilde{\mathcal{T}}_{q,F}(\xi, \xi + \xi_2, \mu_F, s_T) K_{qq}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\ &\quad + \tilde{\mathcal{T}}_{\Delta q,F}(\xi, \xi + \xi_2, \mu_F, s_T) K_{q\Delta q}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)] \\ &\quad + \sum_{i=f,d} \int d\xi d\xi_2 [\tilde{\mathcal{T}}_{G,F}^{(i)}(\xi, \xi + \xi_2, \mu_F, s_T) K_{qg}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\ &\quad + \tilde{\mathcal{T}}_{\Delta G,F}^{(i)}(\xi, \xi + \xi_2, \mu_F, s_T) K_{q\Delta g}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)]. \end{split}$$

$$\begin{split} \mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{\mathcal{T}}_{G,F}^{(i)}(x, x + x_2, \mu_F, s_T) &= \sum_{j=f,d} \int d\xi d\xi_2 [\tilde{\mathcal{T}}_{G,F}^{(j)}(\xi, \xi + \xi_2, \mu_F, s_T) K_{gg}^{(ji)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s) \\ &+ \tilde{\mathcal{T}}_{\Delta G,F}^{(j)}(\xi, \xi + \xi_2, \mu_F, s_T) K_{g\Delta g}^{(ji)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)] \\ &+ \sum_q \int d\xi d\xi_2 [\tilde{\mathcal{T}}_{q,F}(\xi, \xi + \xi_2, \mu_F, s_T) K_{gq}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)] \\ &+ \tilde{\mathcal{T}}_{\Delta q,F}(\xi, \xi + \xi_2, \mu_F, s_T) K_{g\Delta q}^{(i)}(\xi, \xi + \xi_2, x, x + x_2, \alpha_s)], \end{split}$$

Plus two more equations for:

$$\mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{\mathcal{T}}_{\Delta q,F}(x, x + x_2, \mu_F, s_T) \quad \text{and} \quad \mu_F^2 \frac{\partial}{\partial \mu_F^2} \tilde{\mathcal{T}}_{\Delta G,F}^{(i)}(x, x + x_2, \mu_F, s_T)$$

Scale dependence

A sign "mismatch"

Kang, Qiu, Vogelsang, Yuan, 2011

□ Sivers function and twist-3 correlation:

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}} + \text{UVCT}$$

"direct" and "indirect" twist-3 correlation functions:

Calculate $T_{q,F}(x,x)$ by using the measured Sivers functions

Possible interpretations

□ Large twist-3 fragmentation contribution in RHIC data:

If Sivers-type initial-state effect is much smaller than fragmentation effect and two effects have an opposite sign

Can be tested by A_N of single jet or direct photon at RHIC

□ A node in x-dependence of Sivers or twist-3 distributions

Physics behind the node if there is any

Boer, ...

Propose new observables for ep collisions

Kang, Metz, Qiu, Zhou, 2011

Process:
$$e(\ell) + h(p) \rightarrow jet(p_j)(or \pi, ...) + X$$

Lepton-hadron scattering without measuring the scattered lepton Single hard scale: p_{jT} in lepton-hadron frame

□ Complement to SIDIS: $e(\ell) + h(p) \rightarrow e'(\ell') + jet(p_j)(or \pi, ...) + X$ Two scales: Q, p_{jT} in virtual-photon-hadron frame

□ Key difference in theory treatment:

Test the consistency between TMD and Twist-3 to SSA in the same experimental setting Jlab, Compass, Future EIC, ...

Analytical formulae

Kang, Metz, Qiu, Zhou, 2011

□ Factorization is valid:

Same as hadron-hadron collision to jet + X

$$\frac{d\sigma^{lh \to jet(P_J)X}}{dP_{JT}dy} \approx \sum_{ab} \int dx f_1^{a/l}(x,\mu) \int dx' f_1^{b/h}(x',\mu) \frac{d\hat{\sigma}^{ab \to Jet(P_J)X}}{dP_{JT}dy}(x,x',P_{JT},y,\mu)$$
$$a = l, \gamma, q, \bar{q}, g$$
$$b = q, \bar{q}, g$$

Leading order results:

$$P_{J}^{0} \frac{d^{3}\sigma}{d^{3}P_{J}} = \frac{\alpha_{em}^{2}}{s} \sum_{a} \frac{e_{a}^{2}}{(s+t)x} \left\{ f_{1}^{a}(x) H_{UU} + \lambda_{l}\lambda_{p} g_{1}^{a}(x) H_{LL} + 2\pi M \varepsilon_{T}^{ij} S_{T}^{i} P_{JT}^{j} \left[T_{F}^{a}(x,x) - x \frac{d}{dx} T_{F}^{a}(x,x) \right] \frac{\hat{s}}{\hat{t}\hat{u}} H_{UU} + \lambda_{l} 2M \vec{S}_{T} \cdot \vec{P}_{JT} \left[\left(\tilde{g}^{a}(x) - x \frac{d}{dx} \tilde{g}^{a}(x) \right) \frac{\hat{s}}{\hat{t}\hat{u}} H_{LL} + x g_{T}^{a}(x) \frac{2}{\hat{t}} \right] \right\}$$

 $\lambda_l, \ \lambda_p$: Lepton, hadron helicity, respectively

 $ec{S}_T:$ Hadron's transverse spin vector

Numerical results

□ Asymmetries:

$$A_{LL} = \frac{\sigma_{LL}}{\sigma_{UU}}, \qquad A_{UT} = \frac{\sigma_{UT}}{\sigma_{UU}}, \qquad A_{LT} = \frac{\sigma_{LT}}{\sigma_{UU}}$$

Double spin asymmetries – very small:

Wandzura-Wilczek approximation:

$$g_T(x) \approx \int_x^1 \frac{dy}{y} g_1(y) \qquad \tilde{g}(x) \approx x \int_x^1 \frac{dy}{y} g_1(y) \qquad \rightarrow A_{LT} \sim 0.001$$

Good probe of Sivers function

□ Independent check of the "sign mismatch":

Red line: $T_F(x,\mu)$ extracted from fitting SSA in hadronic collisions

Blue line: $\pi T_F(x,x) = -\int d^2k_T \frac{\vec{k}_T^2}{2M^2} f_{1T}^{\perp}(x,\vec{k}_T^2)\Big|_{DIS}$

Sivers function

Excellent test for the mechanism of SSA possibly at Jlab, surely at future EIC

More on future directions

- □ RHIC spin, JLab at 12 GeV, possibly at Compass, ...
- **Future EIC:**
 - a dedicated QCD machine for the visible matter
 - Yellow book on EIC physics from INT workshop is available:

arXiv: submit/0295324 [nucl-th]

- □ A white paper on EIC physics:
 - a writing group appointed by BNL and Jlab is working hard
- □ Physics opportunities at EIC:
 - ♦ Inclusive DIS Spin, F_L, ...
 - ♦ SIDIS TMDs, spin-orbital correlations,
 - ♦ One jet or particle inclusive multiparton quantum correlation, ...
 - ♦ GPDs parton spatial distributions

Summary

QCD factorization/calculation have been very successful in interpreting HEP scattering data

What about the hadron structure?

Not much!

- RHIC spin, Jlab12, a future EIC with a polarized hadron beams opens up many new ways to test QCD and to study hadron structure: TMDs, GPDs, ...
- □ The challenge for theorists:
 - to indentify new and calculable observables that carry rich information on hadron's partonic structure
 - to make measureable predictions

Thank you!

Backup slices

EIC Kinematics

□ EIC (eRHIC – ELIC) basic parameters:

 $\diamond \quad E_e = 10 \text{ GeV} (5\text{-}30 \text{ GeV available})$

- $E_p = 250 \text{ GeV} (50\text{-}325 \text{ GeV available})$
- \checkmark $\sqrt{S} = 100 \text{ GeV} (30\text{-}200 \text{ GeV} \text{ available})$
- "localized" probe: $Q^2 \gtrsim 1 \text{ GeV}$ ∻ $x_{\rm min} \sim 10^{-4}$
- \diamond Luminosity ~ 100 x HERA
- Polarization, heavy ion beam, ... \diamond

"Interpretation" of twist-3 correlation functions

□ Measurement of direct QCD quantum interference:

- TONO

Qiu, Sterman, 1991, ...

Interference between a single active parton state and an active two-parton composite state

□ "Expectation value" of QCD operators:

 $T^{(3)}(x,x,S_{\perp}) \propto \checkmark$

$$\langle P, s | \overline{\psi}(0) \gamma^{+} \psi(y^{-}) | P, s \rangle \longrightarrow \langle P, s | \overline{\psi}(0) \gamma^{+} \left[\epsilon_{\perp}^{\alpha\beta} s_{T\alpha} \int dy_{2}^{-} F_{\beta}^{+}(y_{2}^{-}) \right] \psi(y^{-}) | P, s \rangle$$

$$\langle P, s | \overline{\psi}(0) \gamma^{+} \gamma_{5} \psi(y^{-}) | P, s \rangle \longrightarrow \langle P, s | \overline{\psi}(0) \gamma^{+} \left[i g_{\perp}^{\alpha\beta} s_{T\alpha} \int dy_{2}^{-} F_{\beta}^{+}(y_{2}^{-}) \right] \psi(y^{-}) | P, s \rangle$$

How to interpret the "expectation value" of the operators in RED?

A simple example

□ The operator in Red – a classical Abelian case:

rest frame of (p,s_T)

□ Change of transverse momentum:

$$rac{d}{dt}p_2' = e(ec{v}' imes ec{B})_2 = -ev_3B_1 = ev_3F_{23}$$

□ In the c.m. frame:

$$\begin{array}{ll} (m,\vec{0}) \rightarrow \bar{n} = (1,0,0_T), & (1,-\hat{z}) \rightarrow n = (0,1,0_T) \\ \implies \frac{d}{dt} p_2' = e \; \epsilon^{s_T \sigma n \bar{n}} \; F_{\sigma}^{+} \end{array}$$

□ The total change:

$$\Delta p_2' = e \int dy^- \epsilon^{s_T \sigma n \bar{n}} \, F_\sigma^{\ +}(y^-)$$

Net quark transverse momentum imbalance caused by color Lorentz force inside a transversely polarized proton