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Outline of my talk 

q  Transverse single-spin asymmetry in ep collisions 

 

q  Role of  fundamental symmetries 

q  QCD TMD factorization approach 

q  QCD collinear factorization approach 

q  Connection between these two approaches 

q  Predictive power of  QCD factorization approach 

q  Summary 

Ideal observable to go beyond the leading power collinear factorization 



Electron-proton collisions 

q  Cross sections: 

= + + +...

²  Every parton can participate the hard collision! 

²  Cross section depends on matrix elements of  all possible fields 

q  Approximation – single large momentum transfer:  Q >> 1/fm 

σ(Q) = σLP(Q) +
Qs

Q
σNLP(Q) +

Q2
s

Q2
σNNLP(Q) + ... ≈ σLP(Q)

q  Leading power QCD factorization - approximation: 

σ(Q) ≈ σLP(Q) ∝ σ̂(Q)⊗ �p, s|φ̃†(k)φ̃(k)|p, s�+ ...

Universal parton distributions 
Hadron’s partonic structure! 

q  How good the approximation is? 



q  From HERA: 

Inclusive DIS cross section 



q  To Tevatron: With one set universal PDFs 

QCD is successful in last 30 years – we now believe it 

Inclusive single jet hadronic cross section 



q  FACT:   

Fact and questions 

²  LP QCD collinear factorization/calculations have been very 
successful in interpreting HEP scattering data if  Q > 2 GeV 

< 1/10 fm 

²  QCD should be correct for the asymptotic 
regime:  r < 1/10 fm!  

q  QUESTIONS:   

²  How much have we learned about 
hadron’s partonic structure?   

²  How to test/explore QCD beyond the leading power formalism? 

Collinear PDFs, Helicity PDFs, …   

But, Not enough for the structure, … 

Parton’s transverse motion, and multiparton correlation beyond 1/10 fm? 



Go beyond the LP collinear factorization 

q  Recall: 

= + + +...

q  Need additional parameter – the LP term is not sensitive to:  

²  LP collinear term dominates the single scale cross section 

²  Nuclear A-dependence: 

– result of  multiple scattering and multiparton correlations  

²  Transverse-spin: 

RA(Q) ≡ σA(Q)/σN (Q), ∆�q2T �A ≡ �q2T �A − �q2T �N , ...

– power of  fundamental symmetries – cancels the LP collinear term 

AN (Q, qT , sT ) ∝ σ(Q, qT , sT )− σ(Q, qT ,−sT ), ...

AN (Q, sT ) ∝ σ(Q, sT )− σ(Q,−sT ),



q  SSA corresponds to a naively T-odd triple product:  

Novanish  AN  requires a phase, enough vectors to fix a 
scattering plan, and a spin flip at the partonic scattering 

AN ∝ i�sp · (�p× ��) ⇒ i �µναβ pµsν�αp
�
β

AN = [σ(p, sT )− σ(p,−sT )]/[σ(p, sT ) + σ(p,−sT )]

2
q  Leading power in QCD:  

σAB(pT ,�s) ∝ + +... = ∝ αs
mq

pT

Kane, Pumplin, Repko, PRL, 1978 

+...

Need parton’s transverse motion to generate the asymmetry! 

Transverse SSA in collinear parton model 



q  Parity and Time-reversal invariance: 

q  IF: 

Operators lead to the “+” sign             spin-averaged cross sections 

Operators lead to the “-” sign              spin asymmetries 

or 

q  Example: 

q  Factorized cross sections – asymmetries: 

A ∝ σh(p)(Q,�s)− σh(p)(Q,−�s) ∝ �p,�s|O(ψq, A
µ)|p,�s� − �p,−�s|O(ψq, A

µ)|p,−�s�

Power of fundamental symmetries 



AN = 0  for inclusive DIS  

q DIS cross section: 

q  Leptionic tensor is symmetric: 

q Hadronic tensor: 

q Polarized cross section: 

q P and T invariance: 

Lµν = Lνµ

σ(Q, sT ) ∝ LµνWµν(Q, sT )

Wµν(Q, sT ) ∝ �P, sT |j†µ(0)jν(y)|P, sT �

∆σ(Q, sT ) ∝ Lµν [Wµν(Q, sT )−Wµν(Q,−sT )]

�P, sT |j†µ(0)jν(y)|P, sT � = �P,−sT |j†ν(0)jµ(y)|P,−sT �

⇒ AN (Q, sT )
DIS = 0



Advantage of SIDIS  

q  Dominated by events with two different scales: 

²  A large momentum transfer:  

 Localized probe, suppress contribution of  complicate matrix elements 

²  A small momentum scale:   

 Sensitive to parton’s motion inside a hadron – TMD distributions 

²  Change from a two-scale problem to an one-scale problem 

²  Separation of  various TMDs 
and spin states  

�(l, se) +A(PA, s) → ��(l�) + h(ph) +X

Q =
�

−(l − l�)2 � 1/fm

phT ∼ 1/fm

q  Power of  varying  phT ∼ 1/fm → phT ∼ Q

Transition from TMD factorization to Collinear factorization 

q  Two natural scattering planes:   



q  TMDs are more fundamental if  we can measure them: 

Carry more information on hadron’s partonic structure 

TMD factorization – SIDIS 

Collins’ book 

×
∗

∝ Lµν Wµν(Q, pBT , sT )

σ0 φ(x, µ)⊗D(z, µ)δ2(pBT )

q  TMD parton distribution: 

Ff/P↑(x, k1T , S, µ, ζF ) = Trcolor TrDirac
γ+

2

�
k−1
2π

q  TMD fragmentation function: 

Dh/f (z, k2T , µ, ζD) =
Trcolor
Nc

TrDirac

4

γ+

z

�
k−2
2π Phase for SSA 

Gauge links 



Color flow – gauge links 

q  Gauge link – QCD phase: 

+ + … 

Summation of  leading power gluon field contribution  
produces the gauge link: 

Gauge invariant PDFs: 

q  Universality of  PDFs: 

Gauge link should be process independent! 

Collinear PDFs: “Localized” operator with size ~ 1/xp ~ 1/Q 
“localized” color flow 



TMD parton distributions 

Total 8 TMD quark distributions 

q  Quark TMD distributions: 

dk2dk+δ(x− k+/P+)

q  Gluon TMD distributions, … 

Production of  quarkonium, two-photon, … 

k̂µ = xpµ +
k2T

2xp+
nµ + kµT



Most notable TMDs 

q  Sivers function – transverse polarized hadron: 
Sivers function 

q  Boer-Mulder function – transverse polarized quark: 

Boer-Mulder function 

Affect angular distribution of  Drell-Yan lepton pair production 



Most notable TMDs – II 

q  Collins function – FF of  a transversely polarized parton: 

Collins function 

q  Fragmentation function to a polarized hadron: 

Unpolarized parton fragments into a polarized hadron - Λ  



TMDs and spin asymmetries  

Hadron spin influences  
parton’s transverse motion 

q  Sivers’ effect – Sivers’ function: 

Parton’s transverse spin 
affects its hadronization 

Transversity 

q  Collin’s effect – Collin’s function: 

q  TMD factorization is relevant for two-scale problems in QCD: 
Q1 � Q2 ∼ ΛQCD

Separation of  different effects? 



q  Separation of  various TMD contribution by angular projection: 

q  SIDIS has the natural kinematics for TMD factorization: 

Natural event structure:   
    high Q and low pT jet (or hadron)  

�(se) + p(sp) → �+ h(sh) +X

1( , )

sin( ) sin( )

sin(3 )

l l
UT h S

h S
SiverCollins

Pretzelosi
UT

ty
U

s
UT h S

h ST

N NA
P N

A
A

N
A

ϕ ϕ

φ φ φ φ

φ φ

↑ ↓

↑ ↓

−
=

+

= + + −

+ −

1

1 1

1

1 1

sin( )

sin(3 )

sin( )Co

Pretzelosity
U

Sivers
UT

llins

T h S T

h S

UT

UT h S

TU

UT

T
A

H

f

A

D

A h H

h

φ

φ

φ

φ φ

φ

⊥

⊥ ⊥

⊥

∝

∝ −

+

∝

⊗

− ∝ ⊗

⊗

∝

∝

Lepton plane vs.  hadron plane  

SIDIS is ideal for studying TMDs 



Our knowledge of TMDs 

q  Sivers function from low energy SIDIS: 

EIC can do much better job in extracting TMDs 

q  NO TMD factorization for hadron production in p+p collisions! 
Collins and Qiu, 2007, Vogelsang and Yuan, 2007, Mulders and Rogers, 2010, … 



Critical test of TMD factorization 

q  TMD distributions with non-local gauge links: 

q  Parity + Time-reversal invariance: 

The sign change is a critical test of  TMD factorization approach 

SIDIS: DY: 



Another critical test of TMD factorization 

q  Predictive power of  QCD factorization: 

If  there is a factorization/invariance, there is an evolution equation 

q  Collinear factorization – DGLAP evolution: 

σphy(Q,ΛQCD) ≈
�

f

σ̂f (Q,µ)⊗ φf (µ,ΛQCD) → d

dµ
σphy(Q,ΛQCD) = 0

Scaling violation of  nonperturbative functions  

²  Infrared safety of  short-distance hard parts 

² Universality of  the long-distance matrix elements 

² QCD evolution or scale dependence of  the matrix elements 

q  QCD evolution: 

Evolution kernels are perturbative – a test of  QCD 



Evolution equations for TMDs 

q  Collins-Soper equation: 
      – b-space quark TMD with γ+ 

Boer, 2001, 2009, Idilbi, et al, 2004 
Aybat, Rogers, 2010 
Kang, Xiao, Yuan, 2011 
Aybat, Collins, Qiu, Rogers, 2011  

q  RG equations: 

q  Evolution equations for Sivers function: 

CS: 

RGs: 



Scale dependence of Sivers function 

q  Kernel is not perturbative for all b: 
Aybat, Collins, Qiu, Rogers, 2011  

q  Q2-dependence of  Sivers function: 

q  Small-b perturbative contribution – match to twist-3: 

CSS prescription: 
(not unique) 

– Evolved Sivers function 

Kang, Xiao, Yuan, 2011  



Gaussian ansatz for input distributions  

q  Up quark Sivers function: 
Aybat, Collins, Qiu, Rogers, 2011  

Very significant growth in the width of  transverse momentum 



q  TMD factorization to collinear factorization: 

TMD Collinear Factorization 

Two factorization are 
consistent in the overlap 

region where 

ΛQCD � pT � Q

q  QCD collinear factorization: 

T (3)(x, x) ∝

Qiu, Sterman, 1991, … 

D(3)(z, z) ∝

Kang, Yuan, Zhou, 2010 

Efremov, Teryaev, 82; Qiu, Sterman, 91, etc. 

Ji,Qiu,Vogelsang,Yuan, 
Koike, Vogelsang, Yuan 

σ(Q,�s) ∝ + + + · · ·

2

p,�s k

← t ∼ 1/Q
= σLP(Q,�s) +

Qs

Q
σNLP(Q,�s) + ...

∆σ(sT ) ∝ T (3)(x, x)⊗ σ̂T ⊗D(z) + δq(x)⊗ σ̂D ⊗D(3)(z, z) + ...

AN (Q2, pT )

pT

pT ∼ QpT � Q

∼ Qs

From low pT to high pT 



Twist-3 correlation functions 

q  Twist-2 parton distributions:  

²  Unpolarized PDFs: 

 

²  Polarized PDFs: 

q  Two-sets Twist-3 correlation functions:  

Kang, Qiu, PRD, 2009 

Role of  color magnetic force! 



Evolution equations and kernels 

q  Evolution equation is a consequence of  factorization:  

Factorization: 
 
DGLAP for f2: 
 
Evolution for f3: 

q  Evolution kernel is process independent:  

²  Calculate directly from the variation of  process independent  
     twist-3 distributions  

²  Extract from the scale dependence of  the NLO hard part 
     of  any physical process 

²  Renormalization of  the twist-3 operators 

Vogelsang, Yuan, 2009 

Kang, Qiu, 2009 
Yuan, Zhou, 2009 

Braun et al, 2009 



Variation of twist-3 correlation functions 

q  Closed set of  evolution equations (spin-dependent):  

Plus two more equations for: 

and 

Kang, Qiu, 2009 



Scale dependence 

²  Follow DGLAP at large x 
²  Large deviation at low x (stronger correlation) 



Kang, Qiu, Vogelsang, Yuan, 2011 
q  Sivers function and twist-3 correlation:    

+ UVCT 

q  “direct” and “indirect” twist-3 correlation functions:    

Calculate Tq,F(x,x) by using the measured Sivers functions  

direct 

direct 
indirect 

indirect 

A sign “mismatch” 



HERMES 

COMPASS 

q  Large twist-3 fragmentation contribution in RHIC data:    

If  Sivers-type initial-state effect is much smaller than fragmentation  

effect and two effects have an opposite sign  

q  A node in kT-distribution:    

²  Like the DSSV’s ΔG(x) 

²  HERMES vs COMPASS 

²  Physics behind the sign change? 

Can be tested by AN of  single jet or direct photon at RHIC 

EIC can measure TMDs  
for a wide range of  kT 

Possible interpretations 

q  A node in x-dependence of  Sivers or twist-3 distributions    

Boer, … 

Kang, Qiu, Vogelsang, Yuan, 2011 

Physics behind the node if  there is any 



Propose new observables for ep collisions 

Kang, Metz, Qiu, Zhou, 2011 
q  Process: e(�) + h(p) → jet(pj)(or π, ...) +X

Lepton-hadron scattering without measuring the scattered lepton 

Single hard scale:                    in lepton-hadron frame pjT

q  Complement to SIDIS: e(�) + h(p) → e�(��) + jet(pj)(or π, ...) +X

Two scales:                                in virtual-photon-hadron frame Q, pjT

q  Key difference in theory treatment: 

Collinear factorization for  e(�) + h(p) → jet(pj)(or π, ...) +X

TMD factorization for  e(�) + h(p) → e�(��) + jet(pj)(or π, ...) +X

Test the consistency between TMD and Twist-3 to SSA 
                 in the same experimental setting 

                     Jlab, Compass, Future EIC, … 



Analytical formulae 

q  Factorization is valid: 
Kang, Metz, Qiu, Zhou, 2011 

Same as hadron-hadron collision to jet + X 

a = l, γ, q, q̄, g
b = q, q̄, g

q  Leading order results: 

λl, λp :

�ST :

Lepton, hadron helicity, respectively  

Hadron’s transverse spin vector 



Numerical results 

q  Asymmetries: 

q  Double spin asymmetries – very small: 

→ ALT ∼ 0.001

Wandzura-Wilczek approximation: 

√
s = 50 GeV

√
s = 100 GeV



Good probe of Sivers function 

q  Independent check of  the “sign mismatch”: 

Red line:                            extracted from fitting  SSA in hadronic collisions   TF (x, µ)

Blue line:      Sivers function 

Excellent test for the mechanism of  SSA  
    possibly at Jlab, surely at future EIC 



More on future directions 

q  Future EIC: 
      – a dedicated QCD machine for the visible matter 

Yellow book on EIC physics from INT workshop is available: 

arXiv: submit/0295324 [nucl-th] 

²   Inclusive DIS – Spin, FL, … 

²   SIDIS – TMDs, spin-orbital correlations,  

²   One jet or particle inclusive – multiparton quantum correlation, … 

²   GPDs – parton spatial distributions 

²   … 

q  Physics opportunities at EIC: 

q  RHIC spin, JLab at 12 GeV, possibly at Compass, … 

q  A white paper on EIC physics: 
      – a writing group appointed by BNL and Jlab is working hard 



Summary 

Thank you! 

q What about the hadron structure?    

< 1/10 fm 

Not much! 

q QCD factorization/calculation have been very successful in 
interpreting HEP scattering data 

q RHIC spin, Jlab12, a future EIC with a polarized hadron 
beams opens up many new ways to test QCD and to study 
hadron structure: TMDs, GPDs, … 

q  The challenge for theorists:  
     – to indentify new and calculable observables that 
        carry rich information on hadron’s partonic structure 
     – to make measureable predictions 



Backup slices 



EIC Kinematics 

k

q  DIS kinematics:  Q2 = −q2 = xB y S

xB =
Q2

2p · q
y =

p · q
p · k

S = (p+ k)2

“localized” probe: Q2 � 1 GeV

Ee = 10 GeV (5-30 GeV available)

q  EIC (eRHIC – ELIC) basic parameters:  

²   

²   

²   

²   

²   

²   

²     Polarization, heavy ion beam, … 

Ep = 250 GeV (50-325 GeV available)
√
S = 100 GeV (30-200 GeV available)

xmin ∼ 10−4

Luminosity ~ 100 x HERA 



“Interpretation” of twist-3 correlation functions 

q  Measurement of  direct QCD quantum interference: 
Qiu, Sterman, 1991, … 

T (3)(x, x, S⊥) ∝

Interference between a single active parton state and an active 
two-parton composite state 

q  “Expectation value” of  QCD operators: 

�P, s|ψ(0)γ+ψ(y−)|P, s�

�P, s|ψ(0)γ+ ψ(y−)|P, s�
�
i gαβ⊥ sTα

�
dy−2 F

+
β (y−2 )

�

�P, s|ψ(0)γ+ ψ(y−)|P, s�
�
�αβ⊥ sTα

�
dy−2 F

+
β (y−2 )

�

�P, s|ψ(0)γ+γ5ψ(y
−)|P, s�

How to interpret the “expectation value” of  the operators in RED? 



A simple example 
q  The operator in Red – a classical Abelian case:  

q  Change of  transverse momentum:  

q  In the c.m. frame:  

q  The total change:  

Net quark transverse momentum imbalance caused by  
color Lorentz force inside a transversely polarized proton 


