Chiral dynamics and peripheral transverse nucleon structure

C. Weiss (JLab), JLab Theory Seminar, 07–Oct–13 Granados, CW, arXiv:1308.1634

Universal element of nucleon structure!

New arena for χEFT : Space-time picture, b as parameter

Low-t elastic FFs JLab 12 E12-11-106 Gasparian et al.

Connection with GPDs, peripheral ep/pp processes

- Light–front view of nucleon
 Transverse densities from elastic FFs
 Connection with GPDs
- Peripheral transverse densities Dispersion representation

Peripheral densities from chiral EFT

Mechanical picture in light-front EFT, charge vs. magnetization

 Δ isobar and large– $N_c \; \mathsf{QCD}$

Chiral vs. non-chiral component

Experimental tests and extensions
 Chiral component in low-|t| FFs
 GPDs and peripheral high-energy processes

Nucleon structure: Light-front view

Alt. view: Observer at rest, system moves with $v \to 1.$ Infinite–momentum frame

- Non-relativistic quantum system Particle number fixed, time absolute $\psi(\boldsymbol{x}_1, ..\boldsymbol{x}_N; t)$ Schrödinger WF $\rho(\boldsymbol{x}) = \sum \psi^{\dagger}(..\boldsymbol{x}_{\cdot\cdot}; t)\psi(..\boldsymbol{x}_{\cdot\cdot}; t)$ Densities
- Relativistic quantum system

Vacuum fluctuations: Particles appear/disappear

Time not absolute: How to synchronize clocks?

Light–front time $x^+ = x^0 + x^3$: Observer moving with velocity $v \to 1$

Wave function at fixed x^+ : Components with different particle number

Densities at fixed x^+ : Boost-invariant!

• Advantages of light-front view

Objective notion of spatial structure

Connection with high-energy scattering Probes system at fixed LF time. Cf. parton picture in QCD

Nucleon structure: Transverse densities

• Current matrix element parametrized by invariant form factors

 $\langle N'|J_{\mu}|N
angle \, o \, F_1(t), F_2(t)$ Dirac, Pauli

- Transverse densities $t = -\Delta_T^2$ Soper 76, Burkardt 00, Miller 07 $t = -\Delta_T^2$ $F_{1,2}(t) = \int d^2 b \ e^{i\Delta_T b} \ \rho_{1,2}(b)$ 2D Fourier $\rho_{1,2}(b)$ charge/magnetization density
 - **b** displacement from transverse C.M.
- Interpretation in polarized nucleon

Nucleon structure: Connection with GPDs

• Generalized parton distribution

$$\langle N'| \underbrace{\bar{\psi}(0)...\psi(z)}_{\sim} |N\rangle \rightarrow H(x_1, x_2; t), E(...), ...$$

QCD light-ray operator, $z^2 = 0$

• Transverse distribution of partons $x_1 = x_2 = x$ Burkardt 00

$$H(x,x;t) = \int d^2b \ e^{i\boldsymbol{\Delta}_T \boldsymbol{b}} \ f(x,b)$$

Transverse spatial distribution of partons with LC momentum xP^+ : "Tomography"

• Transverse densities as reduction

$$ho_1(b) \;=\; \sum_q e_q \; \int_0^1 \! dx \; [f_q(x,b) - f_{ar q}(x,b)] \qquad ext{etc.}$$

Dual role of transverse densities: Accessible through low–energy elastic FFs, interpretable in context of QCD partons

 \leftarrow changes with x

Nucleon structure: Peripheral densities

• Empirical transverse densities from elastic form factor data

Experimental and incompleteness errors estimated Venkat, Arrington, Miller, Zhan 10

Recent low- and high-|t| data incorporated MAMI: Vanderhaeghen, Walcher 10. JLab Hall A Riordan et al.

Many interesting questions: Neutron, flavor structure, charge vs. magnetization Also $N \rightarrow \Delta$, deuteron: Carlson, Vanderhaeghen 08

• Peripheral densities $b = O(M_{\pi}^{-1})$

Governed by chiral dynamics: universal, model-independent, calculable using EFT methods

Theoretical interest: Parametric control, space-time picture of EFT dynamics, chiral vs. non-chiral contributions

Practical interest: Low-|t| form factors, connection w. peripheral quark/gluon structure

Peripheral densities: Dispersion representation

$$F_{1,2}(t) = \int_{4m_{\pi}^2}^{\infty} \frac{dt'}{t' - t - i0} \frac{\operatorname{Im} F_{1,2}(t')}{\pi}$$

Spectral function Im $F_{1,2}(t')$ describes "process" current \rightarrow hadronic states $\rightarrow N\bar{N}$

Unphysical region: Im $F_{1,2}(t')$ from theory, FF fits Höhler et al. 76; Belushkin, Hammer, Meissner 06

• Transverse densities

$$\rho_{1,2}(b) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{t}b) \frac{\operatorname{Im} F_{1,2}(t)}{\pi}$$

 $K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distance b selects masses $\sqrt{t}\sim 1/b$: "Filter" Cf. Borel transformation in QCD sum rules. Strikman, CW 10

Peripheral $\rho(b) \longleftrightarrow$ low-mass hadronic states

Peripheral densities: Spectral function

• Spectral function near threshold

Two-pion exchange with $t - 4M_{\pi}^2 = O(M_{\pi}^2)$

Subthreshold singularity on unphysical sheet from N pole in πN scattering amplitude

Anomalously small scale M_{π}^4/M_N^2

Dominates behavior of spectral function near threshold!

• Parametric regions of distances

$$\begin{split} b &\sim M_\pi^{-1} \qquad t - 4 M_\pi^2 \sim M_\pi^2 \qquad \text{``chiral''} \leftarrow \\ &\sim \frac{M_N^2}{M_\pi^3} \qquad \qquad \sim \frac{M_\pi^4}{M_N^2} \qquad \text{``molecular''} \end{split}$$

Distances in molecular region extremely large, \sim several 10 fm. Practical use? Cf. NN potential Robilotta 96. Review Epelbaum

Peripheral densities: Chiral component

• Spectral functions from chiral EFT Gasser et al. 87; Bernard et al. 96, Kubis, Meissner 00, Kaiser 03

Expansion in $k_{\pi}/\Lambda_{\chi} \ll 1$. Lagrangian from chiral symmetry + phenom. constants

Relativistic nucleon: Analytic structure, subthreshold singularity Becher, Leutwyler 99

Efficient calculation: *t*-channel cut only, Cutkosky rules, no regularization Compact analytic expressions

• Chiral component of isovector densities Strikman, CW 10; Granados CW 13

 $\rho_1^V, \widetilde{\rho}_2^V(b) = e^{-2M_{\pi}b} \times \text{function}(M_N, M_{\pi}; b)$

"Yukawa tail" with range $2M_{\pi}$, pre-exponential factor with rich structure

Heavy-baryon expansion: $\rho_1, \tilde{\rho}_2$ of same order in M_π/M_N Convergence, numerical accuracy of HBE: Granados CW 13.

Interesting inequality: $\tilde{\rho}_2^V(b) < \rho_1(b)$ Explanation?

Peripheral densities: Time-ordered formulation

$$\psi_{L=0,1}^{\pi N}(y, \boldsymbol{r}_T) = \underbrace{\frac{\langle \pi N | \mathcal{L}_{\chi} | N \rangle}{p_{\pi}^- + p_{N'}^- - p_N^-}}_{\text{constraints}}$$

energy denominator

$$\begin{split} \rho_1^V(b) &= \int\limits_0^1 dy \; \left[|\psi_0|^2 + |\psi_1|^2 \right]_{r_T = b/\bar{y}} \\ &+ \; \text{contact term} \end{split}$$

$$\widetilde{
ho}_{2}^{V}(b) = \ ... \quad \psi_{0}^{*}\psi_{1} + \psi_{1}^{*}\psi_{0}$$

- Time-ordered formulation of $\chi {\rm EFT}$ Follow evolution in LF time $x^+ = x^0 + x^3$
- Wave function of chiral πN system

Describes transition $N \to N\pi$ in $\chi {\rm EFT},$ calculable from chiral Lagrangian

Universal, frame-independent Also in high-energy processes, $\bar{u} - \bar{d}$, etc.

Pion momentum fraction $y\sim M_{\pi}/M_N$, transverse distance $r_T\sim M_{\pi}^{-1}$

Orbital angular momentum $L_z = 0, 1$

• Densities as wave function overlap

Explains inequality $|
ho_2^V| <
ho_1$ Granados, CW 13

Contact terms $\delta(y)$ represent high–mass interm. states. Coefficient $(1-g_A^2)$

Equivalent to invariant formulation Granados, CW 13. Cf. also Ji, Melnitchouk et al. 09+

Perpheral densities: Rest frame

• Rest frame picture Granados, CW 13

LF formulation boost-invariant!

Nucleon state polarized in y-direction. Intermediate pion orbits with $L_y = 1$

• Explains peripheral densities

 $\langle J^+(\boldsymbol{b}) \rangle = \rho_1(b) + (2S^y) \cos \phi \, \tilde{\rho}_2(b) \ge 0$ for current carried by quasi-real pion, therefore $|\tilde{\rho}_2| \le \rho_1$

 $\widetilde{
ho}_2/
ho_1\sim v_\pi$ pion velocity

• Mechanical interpretation of $\chi {\rm EFT}$

Bare N fluctuates into πN system via $\chi {\rm EFT}$ interaction

Peripheral densities result from charge/current carried by pion at $b=O(M_{\pi})$

Fully relativistic! Model-independent dynamics!

Peripheral densities: Δ isobar

 $\bullet\,$ Two–pion component with intermediate Δ

Large coupling due to spin/isospin

N and Δ degenerate in large– N_c limit of QCD: $M_\Delta-M_N=O(N_c^{-1})$

 Δ contribution to peripheral densities calculated in relativistic Rarita–Schwinger formalism $_{\rm Strikman,\ CW\ 10,\ Granados,\ CW\ 13}$

• Peripheral densities in large– N_c limit of QCD

 $\begin{aligned} \rho_1^V(b) &\sim N_c^0 & \quad & \text{General } N_c\text{-scaling in QCD, } b = O(N_c^0) \\ \widetilde{\rho}_2^V(b) &\sim N_c & \quad & \end{aligned}$

 $\begin{array}{ll} \rho_1^V(N \mbox{ alone}) &\sim N_c & \mbox{ Wrong... too large!} \\ \widetilde{\rho}_2^V(N \mbox{ alone}) &\sim N_c & \mbox{ } \\ \rho_1^V(N + \Delta) &\sim N_c^0 & \mbox{ } \Delta \mbox{ restores correct } N_c \mbox{-scaling of } \rho_1^V \\ \widetilde{\rho}_2^V(N + \Delta) &\sim N_c & \ \end{array}$

Two-pion component has correct N_c scaling if Δ included Cf. Isovector electric/magnetic radii. Cohen, Broniowski 92; Cohen 96

Peripheral densities: Chiral vs. non-chiral

• At what distances does the chiral component of densities become numerically dominant? Strikman, CW 10

Model higher mass states in spectral function by ρ meson pole Refined estimates w. empirical spectral functions Miller, Strikman, CW 11

Chiral component dominates only at b > 2 fm. Surprisingly large!

Reasons are strength of $\rho,$ suppression of $\pi\pi$ near threshold

• Spatial representation as new way of identifying chiral component

Model-independent, fully relativistic

Impact parameter b objectively defined, observable in exclusive processes \leftrightarrow Breit frame radius

Chiral component: Effect on low-*t* **form factors**

Dispersion fit: Lorenz, Hammer, Meissner 12. Includes recent MAMI data

• Moments of transverse charge density

• Contribution of chiral component isovector

$\langle b^2 angle_{ m chiral}$	\approx	$0.2 imes \langle b^2 angle_{ m fit}$	small
$\langle b^4 angle_{ m chiral}$	\approx	$1.5 imes \langle b^2 angle_{ m fit}^2$	sizable

Chiral component should be visible in "unnatural" second and higher derivatives of FF at $Q^2=0$ $_{\rm Can\ we\ extract\ it?}$

- Analyticity of form factor fit is essential Needs dispersion analysis: Belushkin et al. 07; Lorenz et al. 12
- Affects extrapolation to $t \rightarrow 0$ CLAS/PRIMEX 12 GeV experiment at $Q^2 = 10^{-4} - 10^{-2} \text{GeV}^2$ PR12-11-106 Gasparian et al.

Chiral component: Partonic structure

Peripheral quark/gluon structure of nucleon Strikman, CW PRD69:054012,2004; PRD80:114029,2009

Parton densities at $b \sim M_{\pi}^{-1}$ and $x \sim M_{\pi}/M_N$

Calculable from $\chi \text{EFT } \pi N$ wave functions and empirical quark/gluon densities in pion Same πN WFs as in transverse charge/current densities!

Small fraction of total parton number: Most partons sit at distances $b \lesssim 0.5\,{\rm fm}$

Increase of nucleon's transverse size below $x \sim M_\pi/M_N$

• Exclusive processes on peripheral pion

Soft peripheral pion requires $x \ll M_{\pi}/M_N \sim 0.1$

 $p_{T,\pi} \sim 1 \, {
m GeV} \gg p_{T,N} \sim 100 \, {
m MeV}$ suppresses production on nucleon

Probes GPDs in pion at $|t_{\pi}| \sim 1 \, {\rm GeV}^2$ Fundamental interest. Moments calculable in Lattice QCD

Detection of low- p_{T} forward nucleon and moderate- p_{T} pion

Summary

- Light–front view provides concise spatial representation of relativistic system Elastic FFs reveal transverse densities Independent of dynamics — can be applied to QCD, χEFT, ...
- Peripheral transverse densities from $\chi {\rm EFT}$

Chiral expansion justified by $b = O(M_{\pi}^{-1})$, new parameter Chiral component dominant only at large $b \gtrsim 2 \text{ fm}$ Inclusion of Δ ensures proper N_c scaling of densities

- Light–front time evolution of χEFT offers new insights Mechanical picture of low–energy chiral nucleon structure Connection with quark/gluon structure and high–energy processes
- Many extensions and applications

FFs of energy-momentum tensor — transverse densities of mass, momentum, forces $_{\rm Granados,\ CW,\ in\ preparation}$

Axial and pseudoscalar FFs — constraining spin-dependent quark GPDs

Transverse densities from amplitude analysis