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Motivation: Why is SUSY interesting?

SUSY is a natural extension of Poincaré symmetry.

Poincaré symmetry group plays a central role in field theories
(including the Standard Model) on flat spacetime.

Generators: Pµ, Σµν .

P : 4-vector, Σ: anti-symmetric tensor

Algebra: [P, P ] = 0, [P,Σ] ∼ P , [Σ,Σ] ∼ Σ.

We can extend Poincaré algebra to include fermionic generators
Q and Q.

{Q,Q} = 0, [P,Q] = 0, [Q,Σ] ∼ Q, {Q,Q} ∼ P .

Super Poincaré algebra.
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Motivation: Why is SUSY interesting? [contd.]

Supersymmetric theories come with new
particles.

New types of bosons and fermions. (SUSY is
a symmetry connecting bosons and fermions.)

Dark matter particles?

SUSY could solve the hierarchy problem.
(Why weak force is much stronger than grav-
ity?)

Supersymmetric extensions of the Standard
Model are being tested now (at the LHC...)

SUSY is an important ingredient of string theory.

Some low energy theories with extra-dimensions include SUSY
as part of their symmetry group.
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Supersymmetric Yang–Mills Theory

In this talk I will focus on Supersymmetric Yang–Mills (SYM)
theories.

(QCD is a Yang–Mills theory with SU(3) gauge group.)

Supersymmetric Yang–Mills: Many interesting
features/results

Confinement
Spontaneous chiral symmetry breaking
Strong coupling - weak coupling duality
Electric-magnetic duality
Conformal field theory (CFT)

There are intriguing connections between N = 4 SYM
theory and string theory. (AdS/CFT correspondence.)

Interesting features at strong coupling. Non-perturbative
definition is needed: lattice construction.
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SUSY and Lattice: Are they compatible?

SUSY has spinor generators Q:

{Q,Q} = γ · P .
P : generator of infinitesimal translations.

Above relation is broken on the lattice.

No discreet subgroup of SUSY.

Folklore: Impossible to put SUSY on the lattice exactly.

Leads to (very) difficult fine tuning - lots of relevant SUSY
breaking counter-terms.

N = 4 SYM theory is particularly difficult - contains scalar
fields - scalar mass terms are relevant operators.

Can SUSY and Lattice co-exist?
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SUSY on the Lattice: Options

OPTION 1:

Let SUSY emerge as “accidental symmetry” in the continuum
limit.

Examples: N = 1 SYM in 4d, SQCD. [Curci and Veneziano 1987],
[Kaplan and Schmaltz 2000], [Huet, Narayanan, Neuberger 1996]

OPTION 2:

Preserve a subset of SUSY algebra exactly on the lattice: Exact
lattice SUSY.

Examples: N = 2 SYM in 2d, N = 4 SYM in 4d,
dimensional reductions of these theories... [Catterall, Sugino, Kawamoto,

d’Adda, Matsuura, Giedt 2000 -], [Kaplan, Cohen, Damgaard, Matsuura, Ünsal 2002 -]
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SUSY on the Lattice: Exact Lattice SUSY

I will focus on the second option - Exact lattice SUSY.

Recent reviews: D. B. Kaplan, [Nucl. Phys. Proc. Suppl. 129, 109 (2004)],

S. Catterall, D. B. Kaplan, M. Ünsal, [Phys. Rept. 484, 71 (2009)],
A.J., [Int. J. Mod. Phys. A 26, 5057 (2011)]

There are two approaches.

Topological Twisting. [Catterall, Sugino, Kawamoto, Matsuura, Giedt, ...]

Inspired by techniques in topological field theory.
E. Witten [Commun. Math. Phys. 117 (1988) 353]

Orbifolding/deconstruction. [Kaplan, Ünsal, Cohen, Damgaard,

Matsuura, Giedt, ...]

Inspired by the method of “Deconstruction” by
Arkani-Hamed, Cohen, Georgi (AHCG).

N. Arkani-Hamed, A. G. Cohen, H. Georgi [Phys. Rev. Lett. 86 (2001) 4757]

These two approaches produce identical lattice theories!
S. Catterall, D. B. Kaplan and M. Ünsal [Phys. Rept. 484 (2009) 71]
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The Idea of Twisting

SYM theories that allow twisting in d (Euclidean) spacetime
dimensions have the property:

SO(d)E × SO(d)R ⊂ SO(d)E ×GR.

GR : R-symmetry group of the theory.

Idea of twisting: Replace SO(d)E by another subgroup - the
diagonal subgroup - of SO(d)E × SO(d)R.

New rotation group - twisted rotation group - SO(d)′:

SO(d)′ = Diagonal Subgroup [SO(d)E × SO(d)R].

Twisted rotation group acts the same way on spacetime.

Note: Whenever we make a rotation in spacetime Rd, we
accompany this by SO(d)R (internal) transformation.
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Example: N = 2 SYM in 2d

Obtained by dimensional reduction of 4d N = 1 SYM theory.

The 4d theory has symmetry group: SO(4)E × U(1).

After dimensional reduction it splits into:

G = SO(2)E × SO(2)R1 × U(1)R2 .

SO(2)E : Euclidean Lorentz symmetry,
SO(2)R1 : rotational symmetry along reduced dimensions,
U(1)R2 : chiral U(1) symmetry of the original theory.

Twist gives:

SO(2)′ = Diag Subgroup [SO(2)E × SO(2)R1 ].
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N = 2 SYM in 2d [contd.]

Untwisted theory has a two component Dirac fermion Ψ, a
gauge field Aµ and a complex scalar s = (s1 + is2).

Counting the number of degrees of freedom: 4 fermionic and 4
bosonic.

Decompose the Dirac fermion in the following way

Ψαi =
[
ηI + ψµγµ + 1

2χ[12](γ1γ2 − γ2γ1)
]
αi

.

The components η, ψµ, χµν transform under SO(2)′ as
anti-symmetric tensors (p-forms).

They are called twisted fermions. They form components of a
Dirac-Kähler field.

We can place twisted fermions on sites, links and plaquettes of
the unit cell of the lattice.
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N = 2 SYM in 2d [contd.]

We can place the two scalars (s1, s2) on links too.

Under SO(2)′, gauge field and scalars transform as vectors.

Aµ = (A1, A2), Bµ = (s1, s2)

We can package the gauge field and scalars to obtain a
complexified gauge field.

Aµ = Aµ + iBµ and Aµ = Aµ − iBµ.

We can place these complexified gauge fields on links of the unit
cell of the lattice.
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N = 2 SYM in 2d [contd.]

-

6

u��
�
�
�
�
�
�
�
�
�
�
�
��

ψ1(n)
η(n)

ψ2(n)

χ12(n)

(n+ µ̂1)

(n+ µ̂1 + µ̂2)(n+ µ̂2)

�
�

�
��	

6

- -

6

u��
�
�
�
�
�
�
�
�
�
�
�
��

U1(n) U1(n)

U2(n)

U2(n)

F12(n)

(n+ µ̂1)

(n+ µ̂1 + µ̂2)(n+ µ̂2)

�
�
�
���

?

6

-�

Anosh Joseph (LANL) Lattice SUSY: N = 4 Yang–Mills



N = 2 SYM in 2d [contd.]

Supersymmetric charges transform as p-forms under twisted
rotation group.

In the untwisted N = 2 SYM we have

{Qαi, Qβj} = 2δijγ
µ
αβPµ.

Qαi is supercharge.

α(= 1, 2): Lorentz spinor index, i(= 1, 2): label two different
N = 2 supercharges.

Qαi =
[
QI +Qµγµ + 1

2Q[12](γ1γ2 − γ2γ1)
]
αi

.

Twisted N = 2, 2d supersymmetry algebra:

Define Q̃ = εµνQµν
{Q,Q} = 0, {Q̃, Q̃} = 0, {Q, Q̃} = 0, {Qµ,Qν} = 0,

{Q,Qµ} = Pµ, {Q̃,Qµ} = εµνPν .
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N = 2 SYM in 2d [contd.]

The scalar supersymmetry Q is nilpotent (similar to BRST
charge):

Q2 = 0.

It does not generate any translations on the lattice.

That means we can implement a subalgebra of the twisted
SUSY algebra on the lattice - exact lattice SUSY!

QAµ = ψµ, Qψµ = 0,

QAµ = 0, Qχµν = −[Dµ,Dν ],

Qη = d, Qd = 0.

d: auxiliary field.
Complexified covariant derivatives: Dµ = ∂µ +Aµ,
Dµ = ∂µ +Aµ.
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N = 2 SYM in 2d [contd.]

Action of the theory takes a Q-exact form:

S = QΛ,

Λ =
∫

Tr
(
χµνFµν + η[Dµ,Dµ]− 1

2ηd
)

.

Integrating out the auxiliary field:

S =

∫
Tr

(
−FµνFµν +

1

2
[Dµ,Dµ]2 − χµνD[µψν] − ηDµψµ

)
.

Action is Q invariant:
QS = 0.
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2d N = 2 SYM on the Lattice

Can be discretized on a hypercube.

Fermions on sites, links and plaquettes... Complex bosons on
links...

Complex bosons → complexified Wilson links: Aµ → Uµ
Covariant derivatives → covariant differences: D(+)

µ and D(−)
µ .

D(+)
µ fν(n) = Uµ(n)fν(n + µ̂µ)− fν(n)Uµ(n + µ̂ν),

D(−)
µ fµ(n) = Uµ(n)fµ(n)− fµ(n− µ̂µ)Uµ(n− µ̂µ).

Use of forward and backward difference operators =⇒
Solutions of the lattice theory map one-to-one with that of the
continuum theory.

Fermion doubling problems are hence evaded.
T. Banks, Y. Dothan, D. Horn [Phys. Lett. B117, 413 (1982)]
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2d N = 2 SYM on the Lattice [contd.]

Orientation of fields on the lattice ensures gauge invariance.

η(n) → G(n)η(n)G†(n)

ψµ(n) → G(n)ψµ(n)G†(n + µ̂µ)

χµν(n) → G(n + µ̂µ + µ̂ν)χµν(n)G†(n)

Uµ(n) → G(n)Uµ(n)G†(n + µ̂µ)

Uµ(n) → G(n + µ̂µ)U(n)G†(n)

Terms in the action form closed loops: gauge-invariant.

S =
∑

n Tr
(
D(+)
µ Uν(n)

)†(
D(+)
µ Uν(n)

)
+ 1

2

(
D†(−)µ Uµ(n)

)2

− χµν(n)D(+)
[µ ψν](n)− η(n)D†(−)µ ψµ(n).
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2d N = 2 SYM on the Lattice [contd.]

Scalar SUSY transformations on the lattice:

QUµ(n) = ψµ(n),

Qψµ(n) = 0,

QUµ(n) = 0,

Qχµν(n) = −D(+)
µ Uν(n),

Qη(n) = d(n),

Qd(n) = 0.

Only scalar supercharge is unbroken by discretization.

Transformations interchange bosons and fermions at the same
place on the lattice.
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4d N = 4 SYM

Obtained by dimensional reduction of 10d N = 1 SYM down to
4d.

The theory has a 4d gauge field Aµ, 4 Majorana fermions and
six scalars.

The action is

S =

∫
d4xTr

(
− 1

4
FµνF

µν − 1

2
DµAiD

µAi +
1

4
[Ai, Aj ]

2
)

− i
2

Tr (λΓµDµλ+ iλΓi[Ai, λ]).

It has a Euclidean Lorentz rotation symmetry group SOE(4)
and an R-symmetry group SOR(6).
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Twist of 4d N = 4 SYM

Appropriate twist due to Marcus. N. Marcus [Nucl. Phys. B452 (1995)

331-345]

SO(4)′ = Diag Subgroup [SOE(4)× SOR(4)].

After twisting we have a Dirac-Kähler (DK) fermion field
with 16 components:

(η, ψµ, χµν , θµνρ, κ1234). p-forms, p=0,1,2,3,4

A 4d gauge field Aµ transforming as a vector.

Six scalars decompose as a vector Bµ and two scalars.
(SO(6)→ SO(4)× SO(2).)

Aµ and Bµ transform the same way under twisted rotation
group. We can combine them: Aµ = Aµ + iBµ.
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Twist of 4d N = 4 SYM [contd.]

A more compact expression - package these fields as
dimensional reduction of a 5d theory!

Fermions: Ψ = (η, ψm, χmn), m,n = 1, · · · 5
Bosons: Am, m = 1, · · · 5.

Action of the twisted theory

S = Q
∫

Tr
(∑

mn

χmnFmn +
∑

m

η[Dm,Dm]− 1

2
ηd
)

+ Sclosed,

where

Sclosed = −1

4
εabcdeχdeDcχab.

Same as 2d example but with extra Q-closed piece in the
action.
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4d N = 4 SYM on the Lattice

Discretization on a hypercube. The scalar supercharge is
preserved.

Fundamental cell of the hypercubic lattice: one site, four
links, six faces, four cubes and one hypercube.

Place a p-form tensor fermion on p-cell of the hypercube.

Place complexified bosons on the links.

Basis vectors:
{µ̂1 = (1, 0, 0, 0), µ̂2 = (0, 1, 0, 0), µ̂3 = (0, 0, 1, 0),
µ̂4 = (0, 0, 0, 1), µ̂5 = (−1,−1,−1,−1)}, with

∑
i µ̂i = 0.

There is a more symmetrical lattice arrangement: A∗4
lattice. Unit cell has 5 basis vectors correspond from center
of a 4-simplex to vertices.
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4d N = 4 SYM on the Lattice [contd.]

Lattice action:
S = (S1 + S2)

S1 =
∑

n

Tr
(
F†abFab +

1

2

(
D(−)
a Ua

)2
− χabD(+)

[a ψb] − ηD
(−)
a ψa

)

S2 = −1

4

∑

n

Tr εabcdeχde(n + µ̂a + µ̂b + µ̂c)D
(−)
c χab(n + µ̂c)

Bosonic action is just Wilson plaquette if U†aUa = 1.
Fermions: Dirac-Kähler action - no doublers (staggered).

Well defined prescription for difference operators: D(+)
a ,

D(−)
a .

The action is Q-supersymmetry invariant: QS = 0.
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4d N = 4 SYM: One-loop Renormalization

Dangerous operators can be generated on the lattice through
radiative corrections.

But they all must respect symmetries of the underlying lattice
theory:

Gauge invariance.

Lattice point group symmetry - S5 (subgroup of SO(4)′).

Q-supersymmetry.

S5 point group symmetry guarantees that twisted rotation
group SO(4)′ is restored in the continuum limit.

Power counting shows that only relevant counter-terms
correspond to renormalizations of existing terms in the action:

S =
∫

Tr Q
(
α1χmnFmn + α2η[Da,Da]− α3

1
2ηd
)

+ α4Sclosed.

S. Catterall, E. Dzienkowski, J. Giedt, A.J., R. Wells [JHEP 1104 (2011) 074]
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4d N = 4 SYM: One-loop Renormalization [contd.]

Propagators and vertices

Bosonic propagator (Feynman gauge):

〈ACm(k)ADn (−k)〉 = 1∑
c k̂

2
c

δmnδ
CD, k̂c = 2 sin(kc2 ).

Fermionic propagator:
M−116×16(k) = 1∑

c k̂
2
c

M16×16(k), where M16×16 is a

block-matrix acting on fermions (η, ψm, χmn).

Vertices: ψm − η, ψm − χmn and χmn − χrs.
Four one-loop Feynman diagrams are needed to renormalize the
three fermion propagators. They give three α’s.

The remaining α is obtained from one-loop correction to the
bosonic propagator.
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4d N = 4 SYM: One-loop Renormalization [contd.]

Contributions of amputated diagrams all vanish in the limit
p→ 0. Mass counter-terms are absent in the lattice theory at
one-loop.

In fact, no mass counter-terms are needed at any finite order of
perturbation theory.

Note: Tadpole diagrams do not appear in this particular
construction of the lattice theory.
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4d N = 4 SYM: One-loop Renormalization [contd.]

All these diagrams possess identical logarithmic
divergences of the form ln(µa).
a: lattice spacing,
µ: a mass scale introduced to regulate the small
momentum behaviour of the integrands.

This divergence can be absorbed by a common
wavefunction renormalization Z of the twisted fermions
and bosons.

It is expected, since lattice theory is in one-to-one
correspondence with the continuum twisted theory.
Untwisting the fields require a common wavefunction
renormalization.

Similar arguments indicate that βN=4 SYM
lattice (g) = 0 at

one-loop.
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Restoration of full SUSY

There are 15 other SUSYs - Qa and Qab - that are broken
on the lattice.

What about restoration of the full set of SUSY as we take
the continuum limit?

Apparent solution: Construct SUSY Ward-Takahashi
(WT) identities and examine the restoration of SUSYs as
we approach the continuum limit.

〈∂mSmA (x)O(y)〉 = δ(4)(x− y)〈QAO(y)〉.

Check how strongly these WT relations hold on the lattice
for a given operator O.

A way of measuring the amount of SUSY breaking by the
lattice.
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Restoration of full SUSY [contd.]

Need to know supercurrents SmA (x) and QA supersymmetries.
(A corresponds to 0-form, 1-form or 2-form)

For example, we have the Qa transformations:

QaAb =
1

2
δabη, Qaη = 0,

QaAb = −χab, Qaχbc = −
1

2
εabcghFgh,

Qad = 0, Qaψb =
1

2
δabd+ (1− δab)[Da,Db].

On the lattice WT identities take the form:

∂m〈SmA (x)O(0)〉+ 〈ImA (x)O(0)〉 = δ(4)(x)〈QAO(0)〉

Symmetry breaking terms: Im0 (x), Ima (x), Imab(x). They are O(a)
artifacts: 〈Ima (x)〉 → 0, 〈Imab(x)〉 → 0 in the continuum limit.

S. Catterall, J. Giedt and A.J. [Work in progress]
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Simulating SYM Theories on the Lattice

The basic algorithms we use to simulate them are borrowed
directly from lattice QCD.

Rational Hybrid Monte Carlo (RHMC) algorithm

To compute the (non-local) fermion determinant with
fractional power.

Leapfrog algorithm

To evolve the system of equations in discrete (simulation)
time steps.

Metropolis test

To accept or reject the configurations.

S. Catterall and A.J. [Comput.Phys.Commun. 183 (2012) 1336-1353]
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Sign problem in 4d N = 4 SYM

Integration measure involves only the fields (η, ψa, χab).

Not their complex conjugates.

Thus we have a Pfaffian rather than a determinant: Pf(M(U)).

There can be a phase in general: Pf = |Pf(M(U)|eiα(U).
Positive definite measure is needed for Monte Carlo. We can
reweight:

〈O(U)〉 =
〈O(U)eiα(U)〉pq

〈eiα(U)〉pq
.

Fluctuations in α large =⇒ statistical error in such
measurement grows exponentially with volume: sign problem.
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Sign problem in 4d N = 4 SYM [contd.]

Observed phase small in phase quenched simulations of 4d
N = 4 SYM.

The phase of the Pfaffian can be ignored in actual simulations.

0 0.5 1 1.5 2 2.5
λ

-0.5

0

0.5

1

1.5

<cos(α)>

<sin(α)>

U(2) apbc µ=1.0 L=3

S. Catterall, P. Damgaard, T. Degrand, R. Galvez and D. Mehta [JHEP 1211 (2012) 072]

Same is true for Q = 4 and Q = 16 SYM theories in 2d.
S. Catterall, R. Galvez, A.J. and D. Mehta [JHEP 1201 (2012) 108]
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Applications: Gauge-gravity Dualities

Fig. taken from: The Road to Reality: A Complete Guide to the Physical Universe, R. Penrose.

AdS/CFT conjecture: String theory on M = AdS5 × S5 is
equivalent to N = 4 SYM on E , the conformal boundary of
AdS5.
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Applications: Gauge-gravity Dualities [contd.]

Gravitational theory

Low energy string theory (SUGRA)

Contains semi-classical black Dp-branes

N units of charge

At temperature T

Gauge theory

16 supercharge YM theory in d = (p+ 1) dimensions

SU(N) gauge group

Strongly coupled

At temperature T
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Black Holes from YM

Case p = 0:

Gauge theory - Strongly coupled 16 supercharge SYM in 1d
taken at large N and temperature T .

Gravitational theory - Black holes with N units of D0-charge at
temperature T .

The energy of this black hole can be precisely computed in
SUGRA

ε = cN2t14/5, c ' 7.41,

Dimensionless energy ε = Eλ−1/3 and temperature t = Tλ−1/3.

N. Itzhaki, J. M. Maldacena, J. Sonnenschein, S. Yankielowicz [Phys.Rev. D58, 046004 (1998)]

Can we reproduce the thermodynamics of this black hole in
dual SYM theory?
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Black Holes from YM [contd.]

Numerical study using a non-lattice formulation of SYMQM
(BFSS model).

K. N. Anagnostopoulos, M. Hanada, J. Nishimura, S. Takeuchi [Phys.Rev.Lett. 100 (2008)

021601]
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Black Holes from YM [contd.]

Numerical study using the twisted formulation of SYMQM.

SUH2L

SUH3L

SUH5L

SUH8L

SUH12L thermal

Black Hole

HTE

1 2 3 4 5

t0

2

4

6

Ε�t

S. Catterall, T. Wiseman [Phys. Rev. D78 (2008) 041502]

Non-vanishing Polyakov line even at low T =⇒ no phase
transition in the SUSY case, as predicted by the gauge/gravity
correspondence. A single deconfined phase.
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Black Strings from YM [contd.]

Case p = 1:

Gauge theory: Strongly coupled 16 supercharge SYM in 2d
taken at large N and temperature T . Spatial direction
compactified on a circle.

Gravitational theory: N D1-branes wrapping on a circle at
temperature T .

AdS/CFT correspondence maps charged black solutions of
SUGRA on R8,1 × S1 to thermal phases of 16 supercharge SYM
on S1.

Radii rx =
√
λR and rτ =

√
λβ. t’ Hooft coupling, λ = g2YMN
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Black Strings from YM [contd.]

Depending on rx, rτ black string solution may become less
stable than black hole.

Supergravity analysis predicts first order thermal phase
transition between uniform black string and localized black
holes.

Line of first order phase transition

r2x = ccritrτ

ccrit not yet known in SUGRA.

SUGRA predicts: ccrit should be of order 1 and greater
than 2.29.
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Black Strings from YM [contd.]

Black string solutions are unstable!

Develops Gregory-Laflamme instability.
R. Gregory and R. Laflamme [Phys.Rev.Lett. 70 (1993) 2837-2840]

In dual gauge theory:

Thermal phase transition associated with breaking of
center symmetry

Order parameter spatial Polyakov line Ps.
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Black Strings from YM [contd.]

Px = 1
N

〈∣∣∣Tr ΠL−1
ax=0Uax

∣∣∣
〉

, Pτ = 1
N

〈∣∣∣Tr ΠT−1
aτ=0Uaτ

∣∣∣
〉

.

Temporal Polyakov lines

Spatial Polyakov linesm = 0.10

LX = LY = 1

LZ = 8, LΤ = 2

SUH2L

SUH3L

SUH4L

0.2 0.4 0.6 0.8 1.0
rΤ

0.2
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0.6

0.8

1.0
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Black Hole-Black String Phase Transition
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Good agreement with supergravity - blue curve - r2x = ccritrτ
with fitted ccrit ∼ 3.5
Good agreement with high temperature prediction (red curve).
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Conclusions/Further Explorations

Exciting time for lattice SUSY - much activity, many
developments.

Lattice actions retaining some exact SUSY possible.
They describe topologically twisted SYMs in continuum
limit.

Possibility for non-perturbative exploration of N = 4 SYM.
Tests of AdS/CFT. Beyond SUGRA using lattice?

Dimensional reductions - duality between strings with
Dp-branes and (p + 1)-SYM. eg: thermal D0/D1/D2
branes.

For d = 4 SYM theory - most pressing question - what
residual (fine) tuning needed to get full SUSY as a→ 0?
Nonperturbative study (Ward identities) required.
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