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Motivation: Why is SUSY interesting?

SUSY is a natural extension of Poincaré symmetry.

Poincaré symmetry group plays a central role in field theories
(including the Standard Model) on flat spacetime.

Generators: P, ¥,,.
P: 4-vector, X: anti-symmetric tensor
Algebra: [P,P] =0, [P,X] ~ P, [£,X] ~ X.

We can extend Poincaré algebra to include fermionic generators

Q and Q.
{Q,Q}=0,[P,Q] =0, [Q.%] ~Q, {Q,Q} ~ P.

Super Poincaré algebra.
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Motivation: Why is SUSY interesting? [contd.]
Supersymmetric theories come with new
particles.

New types of bosons and fermions. (SUSY is
a symmetry connecting bosons and fermions.)

Dark matter particles?

particle

SUSY could solve the hierarchy problem.
kN w (Why weak force is much stronger than grav-
,+=P== wsparticle 1ty7)
CIRY ',: H Supersymmetric extensions of the Standard
h Model are being tested now (at the LHC...)

SUSY is an important ingredient of string theory.

Some low energy theories with extra-dimensions include SUSY
as part of their symmetry group.
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Supersymmetric Yang—Mills Theory

In this talk I will focus on Supersymmetric Yang—Mills (SYM)
theories.

(QCD is a Yang—Mills theory with SU(3) gauge group.)

o Supersymmetric Yang—Mills: Many interesting
features/results

o Confinement
e Spontaneous chiral symmetry breaking
e Strong coupling - weak coupling duality
o Electric-magnetic duality
o Conformal field theory (CFT)
@ There are intriguing connections between N' =4 SYM
theory and string theory. (AdS/CFT correspondence.)

o Interesting features at strong coupling. Non-perturbative
definition is needed: lattice construction.
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SUSY and Lattice: Are they compatible?

o SUSY has spinor generators ):

P: generator of infinitesimal translations.

o Above relation is broken on the lattice.

o No discreet subgroup of SUSY.
o Folklore: Impossible to put SUSY on the lattice exactly.

o Leads to (very) difficult fine tuning - lots of relevant SUSY
breaking counter-terms.

o N =4 SYM theory is particularly difficult - contains scalar
fields - scalar mass terms are relevant operators.

Can SUSY and Lattice co-exist?
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SUSY on the Lattice: Options

OPTION 1:
Let SUSY emerge as “accidental symmetry” in the continuum
limit.

EXampleS: N = 1 SYM ln 4d, SQCD [Curci and Veneziano 1987],

[Kaplan and Schmaltz 2000], [Huet, Narayanan, Neuberger 1996]

OPTION 2:

Preserve a subset of SUSY algebra exactly on the lattice: Exact
lattice SUSY.

Examples: N =2 SYM in 2d, N' =4 SYM in 4d,
dimensional reductions Of these theories... [Catterall, Sugino, Kawamoto,

d’Adda, Matsuura, Giedt 2000 -], [Kaplan, Cohen, Damgaard, Matsuura, Unsal 2002 -]
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SUSY on the Lattice: Exact Lattice SUSY

I will focus on the second option - Exact lattice SUSY.

Recent T€VIEWS: D. B. Kaplan, [Nucl. Phys. Proc. Suppl. 129, 109 (2004)],
S. Catterall, D. B. Kaplan, M. Unsal, [Phys. Rept. 484, 71 (2009)],
A.J., [Int. J. Mod. Phys. A 26, 5057 (2011)]

There are two approaches.

o Topological Twisting. [catterall, Sugino, Kawamoto, Matsuura, Giedt, ...]
Inspired by techniques in topological field theory.
E. Witten [Commun. Math. Phys. 117 (1988) 353]
o Orbifolding/deconstruction. [Kaplan, tmsal, Cohen, Damgaard,
Matsuura, Giedt, ...]
Inspired by the method of “Deconstruction” by
Arkani-Hamed, Cohen, Georgi (AHCG).

N. Arkani-Hamed, A. G. Cohen, H. Georgi [Phys. Rev. Lett. 86 (2001) 4757]

These two approaches produce identical lattice theories!

S. Catterall, D. B. Kaplan and M. Unsal [Phys. Rept. 484 (2009) 71]
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The Idea of Twisting

SYM theories that allow twisting in d (Euclidean) spacetime
dimensions have the property:

SO(d)E X SO(d)R C SO(d)E x GR.

Gpr : R-symmetry group of the theory.

Idea of twisting: Replace SO(d)g by another subgroup - the
diagonal subgroup - of SO(d)g x SO(d)R.

New rotation group - twisted rotation group - SO(d)":
SO(d)" = Diagonal Subgroup [SO(d)g x SO(d)R].

Twisted rotation group acts the same way on spacetime.

Note: Whenever we make a rotation in spacetime R, we
accompany this by SO(d)r (internal) transformation.
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Example: N =2 SYM in 2d

Obtained by dimensional reduction of 4d A" =1 SYM theory.
The 4d theory has symmetry group: SO(4)g x U(1).

After dimensional reduction it splits into:
G = SO(2)E X 50(2)R1 X U(l)R2~

SO(2)g: Euclidean Lorentz symmetry,
SO(2)R,: rotational symmetry along reduced dimensions,
U(1)R,: chiral U(1) symmetry of the original theory.

Twist gives:

SO(2)" = Diag Subgroup [SO(2)g x SO(2)g,]-
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N =2SYM in 2d [contd.]

Untwisted theory has a two component Dirac fermion ¥, a
gauge field A, and a complex scalar s = (s1 + is2).

Counting the number of degrees of freedom: 4 fermionic and 4
bosonic.

Decompose the Dirac fermion in the following way

Woi = 0] +Uuve + 5xp21 (1172 — %271)

(%)

The components 7, 9, X transform under SO(2)" as
anti-symmetric tensors (p-forms).

They are called twisted fermions. They form components of a
Dirac-Kéhler field.

We can place twisted fermions on sites, links and plaquettes of
the unit cell of the lattice.
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N =2SYM in 2d [contd.]

We can place the two scalars (s1, s2) on links too.

Under SO(2)’, gauge field and scalars transform as vectors.
Ap = (A1, A2), By = (51, 52)

We can package the gauge field and scalars to obtain a
complexified gauge field.

A, =A,+iB, and Xu =A, —1iB,.

We can place these complexified gauge fields on links of the unit
cell of the lattice.
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N =2SYM in 2d [contd.]
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N =2SYM in 2d [contd.]

Supersymmetric charges transform as p-forms under twisted
rotation group.

In the untwisted A’ =2 SYM we have
{Qair Qpj} = 201575 Pu-
Qi 1s supercharge.

a(=1,2): Lorentz spinor index, i(= 1,2): label two different
N = 2 supercharges.

Qui = [QI + Qv + 3 Q2 (M2 — 2) i
Twisted N = 2, 2d supersymmetry algebra:
Define Q = € Quv
{Q,9}=0, {Q,0}=0, {Q,9} =0, {Q,Q} =0,
{9, 9.} =Py, {Q, Qut = e b
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N =2SYM in 2d [contd.]

The scalar supersymmetry Q is nilpotent (similar to BRST
charge):

Q2 =0.
It does not generate any translations on the lattice.

That means we can implement a subalgebra of the twisted
SUSY algebra on the lattice - exact lattice SUSY!

Q-Au = Yy, Qi =0,
qu =0, QX;U/ = _[ﬁuvﬁl/L
Qn=d, Qd = 0.

d: auxiliary field.

Complexified covariant derivatives: Dy, = 0, + Ay,
D, =0, + A,
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N =2SYM in 2d [contd.]

Action of the theory takes a Q-exact form:
S = QA,
A= [Tr (XW]-"W +7[D,y, D] — %nd).
Integrating out the auxiliary field:
_ 1 _
S = /Tr <_-FMVELV + §[D;L7D/L]2 - X;u/D[uwu] - 77Du¢u> .

Action is Q invariant:

QS5 =0.
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2d N =2 SYM on the Lattice

Can be discretized on a hypercube.

Fermions on sites, links and plaquettes... Complex bosons on
links...

Complex bosons — complexified Wilson links: A, — U,

Covariant derivatives — covariant differences: D,(f) and D,(f).
DY f,(n) = U(0) fy (0 + 7)) — f (U + 7).

Dii” fu() = U(0) fu(0) = fuln — i, (0 — ).
Use of forward and backward difference operators =—-
Solutions of the lattice theory map one-to-one with that of the
continuum theory.

Fermion doubling problems are hence evaded.

T. Banks, Y. Dothan, D. Horn [Phys. Lett. B117, 413 (1982)]
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2d N =2 SYM on the Lattice [contd.]

Orientation of fields on the lattice ensures gauge invariance.

n) — Gn)nn)G (n)

= Gm)yu(n)G'(n+1,)

n(n) (
(n) (

Xuw(@m) = G+ fi, + fi,)xuw(n)G'(n)
(n) (
(n) (

n

Q

Up(n) — GUu(n)C (0 + )
Uun) — G+, Un)G (n)

n

n

Terms in the action form closed loops: gauge-invariant.

5= 5,1 (D1, () (DU () + 3 (DL, (m)
= Xy ()P4, (1) = ()DL (m).

2
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2d N =2 SYM on the Lattice [contd.]

Scalar SUSY transformations on the lattice:

Quu(n) = %(n),
QYy(n) = 0,

Qﬁu(n) = U

Oxu(m) = —D.U,(n),
On(n) = d(n),
Qd(n) = 0.

Only scalar supercharge is unbroken by discretization.

Transformations interchange bosons and fermions at the same
place on the lattice.
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4d N =4 SYM

Obtained by dimensional reduction of 10d A" =1 SYM down to
4d.

The theory has a 4d gauge field A,,, 4 Majorana fermions and
six scalars.

The action is
S = /d4a:Tr< Fu P — —D A;DFA; + - [Az,A] )

7 — —
—§TI‘ ()\P“Du)\ + Z/\PZ‘ [Az, /\])

It has a Euclidean Lorentz rotation symmetry group SOg(4)
and an R-symmetry group SOg(6).
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Twist of 4d N =4 SYM

o Appropriate twist due to Marcus. N. Marcus [Nucl. Phys. B452 (1995)
331-345)
SO(4)" = Diag Subgroup [SOg(4) x SOg(4)].
o After twisting we have a Dirac-Kéhler (DK) fermion field
with 16 components:
(777 w,lu X}LV7 0/U/p7 ’%1234)' p—forms, p:O71727374
o A 4d gauge field A, transforming as a vector.

e Six scalars decompose as a vector B, and two scalars.
(SO(6) — SO(4) x SO(2).)

e A, and B, transform the same way under twisted rotation
group. We can combine them: A, = A, + iB,,.
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Twist of 4d N =4 SYM [contd ]

o A more compact expression - package these fields as
dimensional reduction of a 5d theory!
Fermions: ¥ = (0, ¥m, Xmn), myn=1,---5
Bosons: A,,, m=1,---5.

o Action of the twisted theory

S = Q/TI‘ (Zanern + Zn[fmapm] - %nd> + SC]OSGd?

mn m
where ) B
Sclosed = — 7 €abedeXdeDeXab-
o Same as 2d example but with extra Q-closed piece in the
action.
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4d N = 4 SYM on the Lattice

o Discretization on a hypercube. The scalar supercharge is
preserved.

o Fundamental cell of the hypercubic lattice: one site, four
links, six faces, four cubes and one hypercube.

o Place a p-form tensor fermion on p-cell of the hypercube.
o Place complexified bosons on the links.

o Basis vectors:
{ﬁl = (17 0, 070)7 ﬁ2 - (07 1,0, 0)7 //'\"3 = (0, 0,1, 0)7
ty=(0,0,0,1), p5 = (—1,-1,-1,-1)}, with >, ; = 0.
o There is a more symmetrical lattice arrangement: A}
lattice. Unit cell has 5 basis vectors correspond from center
of a 4-simplex to vertices.
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4d N =4 SYM on the Lattice [contd.]

Lattice action:
S = (Sl + 52)

S = Z Tr (f;rbfab + %<52,)ua>2 - XabD[(;)%] - 7755;)%)

1 ~ —~ —~ —_—| — —~
Sy = _Z Z Tr €abcdeXd6(n + Mg+ + I’I’C)Di )Xab(n + I“LC)
n

o Bosonic action is just Wilson plaquette if ugua =1
Fermions: Dirac-Ké&hler action - no doublers (staggered).

o Well defined prescription for difference operators: Dé+),
Dy,

o The action is Q-supersymmetry invariant: QS = 0.
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4d N = 4 SYM: One-loop Renormalization

Dangerous operators can be generated on the lattice through
radiative corrections.

But they all must respect symmetries of the underlying lattice
theory:
o Gauge invariance.
o Lattice point group symmetry - S° (subgroup of SO(4)").
o Q-supersymmetry.
S point group symmetry guarantees that twisted rotation

group SO(4)" is restored in the continuum limit.

Power counting shows that only relevant counter-terms
correspond to renormalizations of existing terms in the action:

S = f Tr Q(alxmn}"mn + 04277[5117 Da] - 043%77d> + O44Sclosed-

S. Catterall, E. Dzienkowski, J. Giedt, A.J., R. Wells [JHEP 1104 (2011) 074]
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4d N = 4 SYM: One-loop Renormalization [contd.]

Propagators and vertices
@ Bosonic propagator (Feynman gauge)
(AS (k) AD (= k)) = =z 0P, foe = 2sin(ks).
@ Fermionic propagator
Migs6(k) = > k2 == Miex16(k), where Migxie is a
block-matrix acting on fermions (7, ¥, Xmn)-
o Vertices: ¥y — 1, Ym — Xmn a0d Xmn — Xrs-

Four one-loop Feynman diagrams are needed to renormalize the
three fermion propagators. They give three a’s.

The remaining « is obtained from one-loop correction to the
bosonic propagator.
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4d N = 4 SYM: One-loop Renormalization [contd.]

A A A A A AN AAAAA
o i T k) i

Xab(P) X2, k) xo (=

Contributions of amputated diagrams all vanish in the limit

p — 0. Mass counter-terms are absent in the lattice theory at
one-loop.

In fact, no mass counter-terms are needed at any finite order of
perturbation theory.

Note: Tadpole diagrams do not appear in this particular
construction of the lattice theory.
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4d N = 4 SYM: One-loop Renormalization [contd.]

o All these diagrams possess identical logarithmic
divergences of the form In(ua).
a: lattice spacing,
1: a mass scale introduced to regulate the small
momentum behaviour of the integrands.

o This divergence can be absorbed by a common
wavefunction renormalization Z of the twisted fermions
and bosons.

o It is expected, since lattice theory is in one-to-one
correspondence with the continuum twisted theory.
Untwisting the fields require a common wavefunction
renormalization.

N=4 SYM(g) — 0 at

o Similar arguments indicate that ;) o

one-loop.
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Restoration of full SUSY

o There are 15 other SUSYs - Q, and 9, - that are broken
on the lattice.

o What about restoration of the full set of SUSY as we take
the continuum limit?

o Apparent solution: Construct SUSY Ward-Takahashi
(WT) identities and examine the restoration of SUSYs as
we approach the continuum limit.

(Om ST (2)0(y)) = 6@ (z — y)(QaO(¥)).

o Check how strongly these WT relations hold on the lattice
for a given operator O.

o A way of measuring the amount of SUSY breaking by the
lattice.
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Restoration of full SUSY [contd]

Need to know supercurrents Sf'(x) and ()4 supersymmetries.
(A corresponds to O-form, 1-form or 2-form)
For example, we have the Q, transformations:

1
QaAp = 56ab777 Qan =0,
— 1
QaAp = —Xab> QaXbe = _Eeabcgh}—ghv

Qad = 07 Qawb = %6(Lbd + (1 - 5ab)[§a7Db]~
On the lattice WT identities take the form:
I (SF(x)0(0)) + (I (x)0(0)) = 6™ (x)(Q40(0))

Symmetry breaking terms: 17*(x), 1" (x), I7:(x). They are O(a)
artifacts: (17*(x)) — 0, (I7(x)) — 0 in the continuum limit.

S. Catterall, J. Giedt and A.J. [Work in progress]
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Simulating SYM Theories on the Lattice

o The basic algorithms we use to simulate them are borrowed
directly from lattice QCD.
e Rational Hybrid Monte Carlo (RHMC) algorithm

o To compute the (non-local) fermion determinant with
fractional power.

©

Leapfrog algorithm

o To evolve the system of equations in discrete (simulation)
time steps.

©

Metropolis test
o To accept or reject the configurations.

S. Catterall and A.J. [Comput.Phys.Commun. 183 (2012) 1336-1353]
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Sign problem in 4d N' =4 SYM

Integration measure involves only the fields (1, %q, Xab)-

Not their complex conjugates.

Thus we have a Pfaffian rather than a determinant: Pf(M (U1)).
There can be a phase in general: Pf = [Pf(M (U)|e').

Positive definite measure is needed for Monte Carlo. We can
reweight:

_ (O(U)em(u)>pq
(O(u)) = LU

Fluctuations in « large = statistical error in such
measurement grows exponentially with volume: sign problem.
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Sign problem in 4d N' =4 SYM [contd ]

Observed phase small in phase quenched simulations of 4d
N =4 SYM.
The phase of the Pfaffian can be ignored in actual simulations.

U(2) apbe u=1.0 L=3
1 T T

@ <cos(a)>
m <sin(a)>

0.

S. Catterall, P. Damgaard, T. Degrand, R. Galvez and D. Mehta [JHEP 1211 (2012) 072]

Same is true for @ =4 and Q = 16 SYM theories in 2d.

S. Catterall, R. Galvez, A.J. and D. Mehta [JHEP 1201 (2012) 108]
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Applications: Gauge-gravity Dualities

-
~J
Fig. taken from: The Road to Reality: A Complete Guide to the Physical Universe, R. Penrose.

AdS/CFT conjecture: String theory on M = AdS5 x S° is
equivalent to N =4 SYM on &, the conformal boundary of
AdSs.
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Applications: Gauge-gravity Dualities [contd ]

Gravitational theory

o Low energy string theory (SUGRA)

Contains semi-classical black Dp-branes

©

(]

N units of charge

(]

At temperature T’

Gauge theory

©

16 supercharge YM theory in d = (p + 1) dimensions

©

SU(N) gauge group

(]

Strongly coupled

(]

At temperature T
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Black Holes from YM

Case p = 0:

Gauge theory - Strongly coupled 16 supercharge SYM in 1d
taken at large N and temperature T'.

Gravitational theory - Black holes with IV units of DO-charge at
temperature 7'.

The energy of this black hole can be precisely computed in
SUGRA

€ =cN2tW/5 e~ 741,

1/3 1/3.

Dimensionless energy e = EA™"/° and temperature t = TA™

N. Itzhaki, J. M. Maldacena, J. Sonnenschein, S. Yankielowicz [Phys.Rev. D58, 046004 (1998)]

Can we reproduce the thermodynamics of this black hole in
dual SYM theory?
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Black Holes from YM [contd ]

Numerical study using a non-lattice formulation of SYMQM
(BFSS model).

3.0 ¥ T T T [/ T
N=17, A=6 —e— //
[ = = e
2 NS /o
741728558740 0
20 / e ]
SUGRA —
o~
Z 15t
w
10
ion
0.5 :
0.0 ._,/ | 1 L L L I
00 01 02 03 04 05 06 07 08 09

T
K. N. Anagnostopoulos, M. Hanada, J. Nishimura, S. Takeuchi [Phys.Rev.Lett. 100 (2008)

021601]
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Black Holes from YM [contd ]

Numerical study using the twisted formulation of SYMQM.

et

©  SU(12) thermal
SU®)
SuU(s)
Su@3)
Su2)
— Black Hole
- HTE

S. Catterall, T. Wiseman [Phys. Rev. D78 (2008) 041502]
Non-vanishing Polyakov line even at low T' = no phase
transition in the SUSY case, as predicted by the gauge/gravity
correspondence. A single deconfined phase.
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Black Strings from YM f[contd.]

Case p=1:

Gauge theory: Strongly coupled 16 supercharge SYM in 2d
taken at large N and temperature 1. Spatial direction
compactified on a circle.

Gravitational theory: N D1-branes wrapping on a circle at
temperature 7.

AdS/CFT correspondence maps charged black solutions of
SUGRA on R®! x S! to thermal phases of 16 supercharge SYM
on S*.

Radii 7, = VAR and r- = vV AB. t” Hooft coupling, A = g%MN
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Black Strings from YM f[contd.]

o Depending on 7, r, black string solution may become less
stable than black hole.

o Supergravity analysis predicts first order thermal phase
transition between uniform black string and localized black
holes.

o Line of first order phase transition
Tg% = CeritTr
@ cqrit nOt yet known in SUGRA.

o SUGRA predicts: cqriz should be of order 1 and greater
than 2.29.
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Black Strings from YM f[contd.]

o Black string solutions are unstable!

1l.-

o Develops Gregory-Laflamme instability.

R. Gregory and R. Laflamme [Phys.Rev.Lett. 70 (1993) 2837-2840]

o In dual gauge theory:

Thermal phase transition associated with breaking of
center symmetry

Order parameter spatial Polyakov line P;.
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Black Strings from YM f[contd.]

)

P, = %<‘Tr T Uy

). Pr = <(Tr 117! Usr

P, and P,
1.0fgeeee o 00 © & 8 o0 o o Temporal Polyakov lines
e - N N [] ] ) n
®
L]
L4 e SUQ)
0.8F e SU®B)
¢ SUM)
L3
P
0.6F e é
H ! ® ®
) ¢ ¢ L
L] 8 s
0.4f L] .
.
° . . . .
02f m=010 Spatial Polyakov lines
Ly=Ly=
L;=8,L =2
s s s s o
0.2 0.4 0.6 0.8 1.0

S. Catterall, A.J., T. Wiseman [JHEP 1012 (2010) 022]
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Black Hole-Black String Phase Transition

08
0.6

04l

02+

7
0.0 L L L L L r
0.0 0.5 1.0 15 2.0 25 3.0

Boundary between confined /deconfined phases of SYM
corresponds to % | Ps| = 0.5 s. catterall, A.J., T. Wiseman [JHEP 1012 (2010) 22]
Good agreement with supergravity - blue curve - r% = CeritTr
with fitted ceprie ~ 3.5

Good agreement with high temperature prediction (red curve).
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Conclusions/Further Explorations

o Exciting time for lattice SUSY - much activity, many
developments.

o Lattice actions retaining some exact SUSY possible.
They describe topologically twisted SYMs in continuum
limit.

o Possibility for non-perturbative exploration of N'= 4 SYM.
Tests of AdS/CFT. Beyond SUGRA using lattice?

o Dimensional reductions - duality between strings with
Dp-branes and (p + 1)-SYM. eg: thermal D0/D1/D2
branes.

o For d =4 SYM theory - most pressing question - what
residual (fine) tuning needed to get full SUSY as a — 07
Nonperturbative study (Ward identities) required.
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