Extracting 3-particle scattering amplitudes from the finite-volume spectrum

Steve Sharpe University of Washington

M. Hansen \& S. Sharpe, arXiv:1 408.5933 (PRD in press) + work in progress

The fundamental issue

- Lattice simulations are done in finite volumes
- Experiments are not

How do we connect these?

The fundamental issue

- Lattice QCD can calculate energy levels of multiple particle systems in a box
- How are these related to scattering amplitudes?

The fundamental issue

- Lattice QCD can calculate energy levels of multiple particle systems in a box
- How are these related to scattering amplitudes?

Discrete energy spectrum

$i \mathcal{M}_{n \rightarrow m}$

Scattering amplitudes

When is spectrum related to scattering amplitudes?

No "outside" region.
Spectrum NOT related to scatt. amps.
Depends on finite-density properties

$L>2 R$
There is an "outside" region. Spectrum IS related to scatt. amps. up to corrections proportional to
$e^{-M_{\pi} L}$
[Lüscher]

Problems considered today
 L>2R
 L>3R (?)

Previously solved;
solution used by simulations; will sketch as warm-up problem

Will present new solution; practical applicability under investigation

Outline

- Background \& motivation
- Set-up and main ideas
- 2-particle quantization condition
- 3-particle quantization condition
- Utility of result: truncation
- Important check: threshold expansion
- Conclusions and outlook

Background \& motivation

2-particle resonances

- To predict \& study the properties of hadrons using lattice QCD, we need to be able to study resonances
- Resonances are not asymptotic states; show up in behavior of phase-shift
- Luscher's method allows determination of $2 \rightarrow 2$ phase shifts in elastic regime

Decay amplitudes

- Also want to calculate weak decay amplitudes, e.g. $K \rightarrow \pi T$
- Lattice QCD can calculate $\langle K| H_{w}|\pi \pi\rangle_{L}$, but to use this requires determining the composition of the finite volume $\Pi \pi$ state (which contains several partial waves with different normalizations). Solved by [Lellouch \& Lüscher]
- $\quad[R B C / U K Q C D]$ obtained $K \rightarrow \pi \Pi$ ($\mathrm{I}=2$) amplitude with physical kinematics
- For $I=0$, pilot study completed, with results consistent with $\Delta I=I / 2$ rule
- In ~3-5 years, we should be able to determine Standard Model prediction for direct CP violation in $\mathrm{K} \rightarrow \pi \pi$, and compare to experimental result $\left(\varepsilon^{\prime} / \varepsilon\right)$

Why 3 particles?

- Resonances with 3-particle decays

$$
\omega(782) \rightarrow \pi \pi \pi \quad K^{*} \longrightarrow K \pi \pi \quad N(1440) \rightarrow N \pi \pi
$$

- 3-body interactions

$$
\pi \pi \pi \rightarrow \pi \pi \pi \quad \quad N N N \rightarrow N N N
$$

- Weak decays to 3 (or more) particles

$$
K \rightarrow \pi \pi \pi \quad D \rightarrow \underset{\substack{\text { (coupled to } \pi \pi \pi \pi \\ \text {) }}}{\rightarrow}
$$

Theoretical status for 2 particles

- Underlying idea is simple in I-d: $\quad e^{2 i \delta(k)}=e^{-i k L}$
- Generalizations to 3-d in QM [Huang \& Yang 57,]
- [Lüscher 86 \& 91] derived quantization formula for energies below inelastic threshold (and for $\mathbf{P}=\mathbf{0}$) by converting QFT problem to one in NRQM
- [Rummukainen \& Gottlieb 85] generalized to general \mathbf{P} (using rel. QM)
- [Lellouch \& Lüscher 00] generalized to weak decay amplitudes
- [Kim, Sachrajda \& SS 05] gave alternate derivation directly in QFT allowing generalization of LL formula to general \mathbf{P} (see also [Christ, Kim \& Yamazaki 05])
- [Hansen \& SS I2, Briceno \& Davoudi I2, ...] generalized the quantization (and LL formula) to the case of any number of two particle channels (e.g. $\pi \pi, K K, \eta \eta$)
- Used in recent work of [Dudek, Edwards, Thomas and Wilson, 14]
- [Briceno, Hansen \& Walker-Loud I4] generalized to calculation of general I $\rightarrow 2$ form factors (e.g. $\gamma \pi \rightarrow \pi \pi$)

State of the art

S-WAVE $\pi K / \eta K$ SCATTERING

Theoretical status for 3 particles

- [Beane, Detmold \& Savage `07 and Tan `08] derived threshold expansion for n particles in NRQM, and argued it applied also in QFT
- [Polejaeva \& Rusetsky 'I 2] Showed in NREFT that spectrum determined by infinite-volume scattering amplitudes, using integral equation
- [Briceno \& Davoudi `I2] Used a dimer approach in NREFT, with s-wave interactions only, to determine relation between spectrum and a finite volume quantity, itself related to infinite-volume amplitudes by an integral equation
- Our aim: work in general, relativistic QFT and determine an algebraic relation between spectrum and scattering amplitudes

Set-up \& main ideas

Set-up

- Work in continuum (assume that LQCD can control discretization errors)
- Cubic box of size L with periodic $B C$, and infinite (Minkowski) time

- Spatial loops are sums: $\quad \frac{1}{L^{3}} \sum_{\vec{k}} \quad \vec{k}=\frac{2 \pi}{L} \vec{n}$
- Consider identical particles with physical mass m, interacting arbitrarily except for a Z_{2} (G-parity-like) symmetry
- Only vertices are $2 \rightarrow 2,2 \rightarrow 4,3 \rightarrow 3,3 \rightarrow I, 3 \rightarrow 5,5 \rightarrow 7$, etc.
- Even \& odd particle-number sectors decouple

Methodology

- Calculate (for some $\mathbf{P}=2 \pi \mathbf{n}_{\mathbf{P}} / \mathrm{L}$)
$C M$ energy is
$F^{*}=\sqrt{ }\left(E^{2}-P^{2}\right)$

$$
C_{L}(E, \vec{P}) \equiv \int_{L} d^{4} x e^{-i \vec{P} \cdot \vec{x}+i E t}\langle\Omega| T \sigma(x) \sigma^{\dagger}(0)|\Omega\rangle_{L}
$$

- Poles in C_{L} occur at energies of finite-volume spectrum
- For 2 \& 3 particle states, $\sigma \sim \pi^{2} \& \pi^{3}$, respectively
- E.g. for 2 particles:

Boxes indicated summation over finite-volume momenta

3-particle correlator

Full propagator

$$
+\cdots
$$

Key step 1

- Replace loop sums with integrals where possible
- Drop exponentially suppressed terms ($\sim e^{-M L}$, $e^{-(M L)^{\wedge} 2}$, etc.) while keeping power-law dependence

$$
\frac{1}{L^{3}} \sum_{\vec{k}} g(\vec{k})=\int \frac{d^{3} k}{(2 \pi)^{3}} g(\vec{k})+\sum_{\vec{l} \neq 0} \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i L \vec{l} \cdot \vec{k}} g(\vec{k})
$$

Key step 1

- Replace loop sums with integrals where possible
- Drop exponentially suppressed terms ($\sim e^{-M L}, e^{-(M L)^{\wedge} 2}$, etc.) while keeping power-law dependence

$$
\frac{1}{L^{3}} \sum_{\vec{k}} g(\vec{k})=\int \frac{d^{3} k}{(2 \pi)^{3}} g(\vec{k})+\sum_{\vec{l} \neq 0} \int^{3} k e^{i L l} \cdot \vec{k} g(\vec{k})
$$

Key step 2

- Use "sum=integral + [sum-integral]" if integrand has pole, with [KSS]

$$
\begin{gathered}
\left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+i \epsilon} \frac{1}{(P-k)^{2}-m^{2}+i \epsilon} g(k) \\
\quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \mathcal{F}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)+\text { exp. suppressed } \\
\begin{array}{c}
\mathrm{q}^{*} \text { is relative momentum } \\
\text { of pair on left in } \mathrm{CM}
\end{array}
\end{gathered}
$$

- Example

Key step 2

- Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$
\begin{aligned}
& \left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+i \epsilon} \frac{1}{(P-k)^{2}-m^{2}+i \epsilon} g(k) \\
& \quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \mathcal{F}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)
\end{aligned}
$$

- Decomposed into spherical harmonics, \mathcal{F} becomes

$$
\begin{aligned}
& F_{\ell_{1}, m_{1}, \ell_{2}, m_{2}} \equiv \eta\left[\frac{R e q^{*}}{8 \pi E^{*}} \delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}}+\right. \\
&\left.\frac{i}{2 \pi E L} \sum_{\ell, m} x^{-\ell} \mathcal{Z}_{\ell m}^{P}\left[1 ; x^{2}\right] \int d \Omega Y_{\ell_{1}, m_{1}}^{*} Y_{\ell, m}^{*} Y_{\ell_{2}, m_{2}}\right] \\
& x \equiv q^{*} L /(2 \pi) \text { and } \mathcal{Z}_{\ell m}^{P} \text { is a generalization of the zeta-function }
\end{aligned}
$$

Kinematic functions

$Z_{4,0} \& Z_{6,0}$ for $\mathbf{P}=\mathbf{0} \quad\left[\right.$ Luu \& Savage, ${ }^{\prime}$ II]

FIG. 29. The functions $Z_{4,0}\left(1 ; \tilde{q}^{2}\right)$ (left panel) and $Z_{6,0}\left(1 ; \tilde{q}^{2}\right)$ (right panel).

Key step 2

- Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$
\begin{aligned}
& \left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+i \epsilon} \frac{1}{(P-k)^{2}-m^{2}+i \epsilon} g(k) \\
& \quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \mathcal{F}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)
\end{aligned}
$$

- Diagrammatically

Variant of key step 2

- For generalization to 3 particles use (modified) PV prescription instead of í

$$
\begin{gathered}
\left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\widetilde{P V} \int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+\chi} \frac{1}{(P-k)^{2}-m^{2}+\chi} g(k) \\
\quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \underset{\widetilde{P V}}{ }\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)
\end{gathered}
$$

- Key properties of Fpv (discussed below): real and no unitary cusp at threshold
- Example of appearance in 3-particle analysis:

Key step 3

- Identify potential singularities: can use time-ordered PT (i.e. do k_{0} integrals)
- Example

Key step 3

- 2 out of 6 time orderings:

Key step 3

- 2 out of 6 time orderings:

- If restrict $M<E^{*}<5 M$ then only 3-particle "cuts" have singularities, and these occur only when all three particles to go on-shell

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 3-particle example, find:

Must sum momenta
passing through box

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 2-particle example, find:

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 2-particle example, find:

- Then repeatedly use sum=integral + "sum-integral" to simplify

Key issues 4-6

- Dealing with cusps, avoiding divergences in 3-particle scattering amplitude, and dealing with breaking of particle interchange symmetry
- Discuss later!

2-particle quantization condition

Following method of [Kim, Sachrajda \& SS 05]

- Apply previous analysis to 2-particle correlator ($0<\mathrm{E}^{*}<4 \mathrm{M}$)

- Collect terms into infinite-volume Bethe-Salpeter kernels

- Apply previous analysis to 2-particle correlator
- Collect terms into infinite-volume Bethe-Salpeter kernels

- Leading to

$$
\begin{aligned}
C_{L}(E, \vec{P})=\sigma^{\dagger} & \sigma \sigma+\sigma^{\dagger}(i B \\
& \left.+\sigma^{\dagger}: i B\right) \\
& (i B): \sigma+\cdots
\end{aligned}
$$

- Next use sum identity

- And regroup according to number of "F cuts"

$$
\begin{aligned}
C_{L}(E, \vec{P}) & =C_{\infty}(E, \vec{P}) \leftarrow \text { zero } \mathbf{F} \text { cuts } \\
& +\underbrace{\left\{\sigma^{\dagger}-\sigma^{\dagger}\right.}_{A} \rightarrow i B)+\cdots\}
\end{aligned}
$$

matrix elements:

- Next use sum identity

- And keep regrouping according to number of " F cuts"

$$
\left.C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A A A^{\prime}\right)
$$

the infinite-volume, on-shell $\mathbf{2 \rightarrow 2}$ scattering amplitude

- Next use sum identity

- Alternate form if use PV-tilde prescription: $F_{\overparen{P V}}$

$$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A A A^{\prime}
$$

$$
+A \text { (iB-}+i B \rightarrow
$$

the infinite-volume, on-shell $\mathbf{2 \rightarrow 2} \mathbf{K - m a t r i x}$

- Final result:

$$
\begin{aligned}
C_{L}(E, \vec{P}) & =C_{\infty}(E, \vec{P}) \\
& \left.+A A^{\prime}+A\right) \\
& +A A^{\prime} \\
C_{L}(E, \vec{P}) & =C_{\infty}(E, \vec{P})+\sum_{n=0}^{\infty} A^{\prime} i F\left[i \mathcal{M}_{2 \rightarrow 2} i F\right]^{n} A
\end{aligned}
$$

- Correlator is expressed in terms of infinite-volume, physical quantities and kinematic functions encoding the finite-volume effects
- Final result:

$$
\begin{aligned}
& C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P}) \\
&+A A_{\infty} \\
& C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+\sum_{n=0}^{\infty} A^{\prime} i F\left[i \mathcal{M}_{2 \rightarrow 2} i F\right]^{n} A \\
& C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A^{\prime} i F \frac{1}{1-i \mathcal{M}_{2 \rightarrow 2} i F} A_{R} \\
& C_{\substack{\text { no poles, } \\
\text { only cuts }}}^{\text {no poles, }} \begin{array}{c}
\text { only cuts }
\end{array} \\
& C_{L}(E, \vec{P}) \text { diverges whenever } i F \frac{1}{1-i \mathcal{M}_{2 \rightarrow 2} i F} \text { diverges }
\end{aligned}
$$

2-particle quantization condition
 $$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A^{\prime} i F \frac{1}{1-i \mathcal{M}_{2 \rightarrow 2} i F} A
$$

- At fixed L \& \mathbf{P}, the finite-volume spectrum E_{1}, E_{2}, \ldots is given by solutions to

$$
\Delta_{L, \vec{P}}(E)=\operatorname{det}\left[(i F)^{-1}-i \mathcal{M}_{2 \rightarrow 2}\right]=0
$$

- \mathcal{M} is diagonal in I,m: $i \mathcal{M}_{2 \rightarrow 2 ; \ell^{\prime}, m^{\prime} ; \ell, m} \propto \delta_{\ell, \ell^{\prime}} \delta_{m, m^{\prime}}$
- F is off-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{M} vanishes above $I_{\text {max }}$
- For example, if $I_{\max }=0$, obtain

$$
i \mathcal{M}_{2 \rightarrow 2 ; 00 ; 00}\left(E_{n}^{*}\right)=\left[i F_{00 ; 00}\left(E_{n}, \vec{P}, L\right)\right]^{-1}
$$

Generalization of s-wave Lüscher equation to moving frame [Rummukainen \& Gottlieb]

Equivalent K-matrix form

- At fixed L \& \mathbf{P}, the finite-volume spectrum E_{1}, E_{2}, \ldots is given by solutions to

$$
\Delta_{L, \vec{P}}(E)=\operatorname{det}\left[\left(F_{\widetilde{P V}}\right)^{-1}+\mathcal{K}_{2}\right]=0
$$

- \mathcal{K}_{2} is diagonal in I,m
- Fpv is off-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{K}_{2} vanishes above $I_{\max }$
- For example, if $I_{\max }=0$, obtain

$$
i \mathcal{K}_{2 ; 00 ; 00}\left(E_{n}^{*}\right)=\left[i F_{\widetilde{P V} ; 00 ; 00}\left(E_{n}, \vec{P}, L\right)\right]^{-1}
$$

3-particle quantization condition

Following [Hansen \& SS I4]

"Final" result

- Spectrum is determined (for given L, P) by solutions of

Infinite volume
3-particle scattering quantity

Known kinematical quantity: essentially the same as $F_{p v}$ in 2-particle analysis

$$
G_{p, \ell^{\prime}, m^{\prime} ; k, \ell, m} \equiv\left(\frac{k^{*}}{q_{p}^{*}}\right)^{\ell^{\prime}} \frac{4 \pi Y_{\ell^{\prime}, m^{\prime}}\left(\hat{k}^{*}\right) H(\vec{p}) H(\vec{k}) Y_{\ell, m}^{*}\left(\hat{p}^{*}\right)}{2 \omega_{k p}\left(E-\omega_{k}-\omega_{p}-\omega_{k p}\right)}\left(\frac{p^{*}}{q_{k}^{*}}\right)^{\ell} \frac{1}{2 \omega_{k} L^{3}}
$$

- Superficially similar to 2-particle form ...

$$
\operatorname{det}\left[F_{\widetilde{\mathrm{PV}}}^{-1}+\mathcal{K}_{2}\right]
$$

- ... but F_{3} contains both kinematical, finite-volume quantities ($\mathrm{FPv}_{\mathrm{pv}} \mathrm{G}$) and the dynamical, infinite-volume quantity \mathcal{K}_{2}

"Final" result

$$
\begin{aligned}
& \Delta_{L, P}(E)=\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0 \\
& F_{3}=\frac{F_{\widetilde{\mathrm{PV}}}}{2 \omega L^{3}}\left[-\frac{2}{3}+\frac{1}{1+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F_{\widetilde{\mathrm{PV}}}}\right]
\end{aligned}
$$

- All quantities are (infinite-dimensional) matrices, e.g. $\left(F_{3}\right)_{\mathbf{k l m} ; \mathbf{l}^{\prime} \mathrm{m}^{\prime} \text {, with indices }}$
[finite volume "spectator" momentum: $\mathbf{k}=2 \pi \mathbf{n} / \mathrm{L}] \times$ [2-particle CM angular momentum: $I, m]$

Three on-shell particles with total energy-momentum (E, P)

- For large \mathbf{k} other two particles are below threshold; must include such configurations by analytic continuation up to a cut-off at $\mathrm{k} \sim \mathrm{m}$ [provided by $\mathrm{H}(\mathbf{k})$]

"Final" result

$$
\begin{aligned}
& \Delta_{L, P}(E)=\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0 \\
& F_{3}=\frac{F_{\widetilde{\mathrm{PV}}}}{2 \omega L^{3}}\left[-\frac{2}{3}+\frac{1}{1+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F_{\widetilde{\mathrm{PV}}}}\right]
\end{aligned}
$$

- Successfully separated infinite volume quantities from finite volume kinematic factors
- But what is $\mathcal{K}_{\mathrm{df}, 3}$?
- How do we obtain this result?
- How can it be made useful?

Key issue 4: dealing with cusps

- Can sum subdiagrams without 3-particle cuts into Bethe-Salpeter kernels
- Want to replace sums with integrals + F-cuts as in 2-particle analysis
- Straightforward implementation fails when have 3 particle intermediate states adjacent to $2 \rightarrow 2$ kernels

Skeleton expansion in terms of Bethe-Salpeter kernels

Key issue 4: dealing with cusps

- Can sum subdiagrams without 3-particle cuts into Bethe-Salpeter kernels
- Want to replace sums with integrals + F-cuts as in 2-particle analysis
- Straightforward implementation fails when have 3 particle intermediate states adjacent to $2 \rightarrow 2$ kernels

Skeleton expansion in terms of Bethe-Salpeter kernels

Cusp analysis (1)

- Aim: replace sums with integrals + finite-volume residue
interpolating
- E.g.
$(E, \vec{P}) \longrightarrow \quad \frac{1}{L^{6}} \sum_{\vec{k}} \sum_{\vec{a}}$

- Can replace sums with integrals for smooth, non-singular parts of summand
- Singular part of left-hand 3-particle intermediate state

$$
\frac{1}{L^{6}} \sum_{\vec{k}} \sum_{\vec{a}} \frac{A(\vec{k}, \vec{a}) B(\vec{k}, \vec{a})}{E-\omega_{k}-\omega_{a}-\omega_{k a}}
$$

Cusp analysis (2)

Step 2: treat sum over \mathbf{k}

- Want to replace sum over \mathbf{k} with integral for $\int_{\vec{a}}$ term
- Only possible if integral over a gives smooth function
- i\& prescription and standard principal value (PV) lead to cusps at threshold \Rightarrow sum-integral $\sim 1 / L^{4}$ [Polejaeva \& Rusetsky]

F has multiple singularities, so leave \mathbf{k} summed for F-term

- Requires use of modified $\widetilde{\mathrm{PV}}$ prescription

Result:

$$
\frac{1}{L^{6}} \sum_{\vec{k}} \sum_{\vec{a}}=\int_{\vec{k}} \int_{\vec{a}}+\sum_{\vec{k}} \text { "F term" }
$$

Cusp analysis (3)

$$
x \sim\left(a^{*}\right)^{2}
$$

- Simple example: $\int_{\vec{a}} \frac{A(\vec{k}, \vec{a}) B(\vec{k}, \vec{a})}{E-\omega_{k}-\omega_{a}-\omega_{k a}} \longrightarrow f(c)=\int_{0}^{\infty} d x \frac{\sqrt{x} e^{-(x-c)}}{c-x}$
$\operatorname{Ref}(\mathrm{c})$

Im f(c)

- Far below threshold, $\widetilde{\text { PV }}$ smoothly turns back into PV

Cusp analysis (4)

- Bottom line: must use $\widetilde{P V}$ prescription for all loops
- This is why K-matrix \mathcal{K}_{2} appears in 2-particle summations
- \mathcal{K}_{2} is standard above threshold, and given below by analytic continuation (so there is no cusp)

$$
\mathcal{K}_{2}^{\ell}=\frac{16 \pi E^{*}}{a^{*} \cot \delta_{\ell}\left(a^{*}\right)}
$$

- This prescription is that used previously when studying finite-volume effects on bound-state energies using two-particle quantization condition [Detmold, Savage,...]
- Far below threshold smoothly turns into $\mathcal{M}_{2}{ }^{\text {l }}$

Key issue 5: dealing with "switches"

$c_{L}(E, \vec{P})=0=0+\square=0+\square=0=0+\cdots$

$+\cdots$

Key issue 5: dealing with "switches"

$c_{L}(E, \vec{P})=0=0+0=0+0=0=0+\cdots$
0 switches: + O-a<: isvich $+0=010=0+0=0-10=0+0=010=0=0+\cdots$

+ O-O

Key issue 5: dealing with "switches"

$C_{L}(E, \vec{P})=0=0+\square=0+\square=0=0+\cdots$
0 switches: +0

- With cusps removed, no-switch diagrams can be summed as for 2-particle case, leading to dimer propagator $[\mathcal{A}]$
- "Switches" present a new challenge

One-switch diagrams

- There are now two spectator momenta, at least one of which must be on-shell to create a finite volume contribution
- Only get new feature if both are on shell

- Term between \mathcal{A} 's is our first contribution to a $3 \rightarrow 3$ on-shell scattering qty

One-switch problem

- Amplitude is singular for some choices of \mathbf{k}, \mathbf{p} in physical regime
- Propagator goes on shell if top two (and thus bottom two) scatter elastically
- Not a problem per se, but leads to difficulties when amplitude is symmetrized
- Occurs when include three-switch contributions

- Singularity implies that decomposition in $\mathrm{Y}_{l, m}$ will not converge uniformly
- Cannot usefully truncate angular momentum expansion

One-switch solution

- Define divergence-free amplitude by subtracting singular part
- Utility of subtraction noted in [Rubin, Sugar \&Tiktopoulos, '66]

- Key point: $\mathcal{K}_{d f, 3}$ is local and its expansion in harmonics can be truncated
- Subtracted term must be added back---leads to G contributions to F_{3}
- Can extend divergence-free definition to any number of switches

Key issue 6: symmetry breaking

- Using $\widetilde{\mathrm{PV}}$ prescription breaks particle interchange symmetry
- Top two particles treated differently from spectator
- Leads to very complicated definition for $\mathcal{K}_{\mathrm{df}, 3}$, e.g.

- Can extend definition of $\mathcal{K}_{\mathrm{df}, 3}$ to all orders, in such a way that it is symmetric under interchange of external particles

Key issue 6: symmetry breaking

- Final definition of $\mathcal{K}_{\mathrm{df}, 3}$ is, crudely speaking:
- Sum all Feynman diagrams contributing to \mathcal{M}_{3}
- Use $\widetilde{\text { PV }}$ prescription, plus a (well-defined) set of rules for ordering integrals
- Subtract leading divergent parts
- Apply a set of (completely specified) "decorations" (i.e. extra factors) to ensure external symmetrization
- $\mathcal{K}_{\mathrm{df}, 3}$ is an UGLY infinite-volume quantity related to scattering
- At the time of our initial paper, we did not know the relation between $\mathcal{K}_{\mathrm{df}, 3}$ and $\mathcal{M}_{3} \& \mathcal{M}_{2}$, although we had reasons to think that such a relationship exists
- We now think we know the relationship, which, if correct, completes the formal analysis for the three-particle quantization condition

"Final" result

$$
\begin{aligned}
& \Delta_{L, P}(E)=\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0 \\
& F_{3}=\frac{F_{\widetilde{\mathrm{PV}}}}{2 \omega L^{3}}\left[-\frac{2}{3}+\frac{1}{1+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F_{\widetilde{\mathrm{PV}}}}\right]
\end{aligned}
$$

- Successfully separated infinite volume quantities from finite volume kinematic factors
- But what is $\mathcal{K}_{\mathrm{df}, 3}$?
- How do we obtain this result?
- How can it be made useful?

Utility of result: truncation

Truncation in 2 particle case

$$
\operatorname{det}\left[F_{\widehat{\mathrm{PV}}}^{-1}+\mathcal{K}_{2}\right]
$$

- If \mathcal{M} (which is diagonal in I, m) vanishes for $l>I_{\text {max }}$ then can show that need only keep $I \leq I_{\max }$ in F (which is not diagonal) and so have finite matrix condition which can be inverted to find $\mathcal{M}(\mathrm{E})$ from energy levels

Truncation in 3 particle case

$$
\begin{gathered}
\Delta_{L, P}(E)=\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{d f, 3}\right]=0 \\
F_{3}=\frac{F_{\widetilde{\mathrm{PV}}}}{2 \omega L^{3}}\left[-\frac{2}{3}+\frac{1}{1+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F_{\widetilde{\mathrm{PV}}}}\right]
\end{gathered}
$$

- For fixed E \& P, as spectator momentum $|\mathbf{k}|$ increases, remaining two-particle system drops below threshold, so Fpv becomes exponentially suppressed
- Smoothly interpolates to $\mathrm{F}_{\mathrm{PV}}=0$ due to H factors; same holds for G
- Thus \mathbf{k} sum is naturally truncated (with, say, N terms required)
- I is truncated if both \mathcal{K}_{2} and $\mathcal{K}_{\mathrm{df}, 3}$ vanish for $I>I_{\text {max }}$
- Yields determinant condition truncated to $\left[\mathrm{N}\left(21_{\max }+\mathrm{I}\right)\right]^{2}$ block

Truncation in 3 particle case

$$
\begin{gathered}
\Delta_{L, P}(E)=\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{d f, 3}\right]=0 \\
F_{3}=\frac{F_{\widetilde{\mathrm{PV}}}}{2 \omega L^{3}}\left[-\frac{2}{3}+\frac{1}{1+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F_{\widetilde{\mathrm{PV}}}}\right]
\end{gathered}
$$

- Given prior knowledge of \mathcal{K}_{2} (e.g. from 2-particle quantization condition) each energy level E_{i} of the 3 particle system gives information on $\mathcal{K}_{\mathrm{df}, 3}$ at the corresponding 3-particle CM energy $\mathrm{E}_{\mathrm{i}}{ }^{*}$
- Probably need to proceed by parameterizing $\mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$, in which case one would need at least as many levels as parameters at given energy
- If our preliminary result is correct, given \mathcal{K}_{2} and $\mathcal{K}_{\mathrm{df}, 3}$ one can reconstruct \mathcal{M}_{3}
- The locality of $\mathcal{K}_{\mathrm{df}, 3}$ is crucial for this program
- Clearly very challenging in practice, but there is an existence proof....

Isotropic approximation

$$
\begin{gathered}
\Delta_{L, P}(E)=\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{d f, 3}\right]=0 \\
F_{3}=\frac{F_{\widetilde{\mathrm{PV}}}}{2 \omega L^{3}}\left[-\frac{2}{3}+\frac{1}{1+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F_{\widetilde{\mathrm{PV}}}}\right]
\end{gathered}
$$

- Assume $\mathcal{K}_{d f, 3}$ depends only on E^{*} (and thus is indep. of \mathbf{k}, I, m)
- Also assume \mathcal{K}_{2} only non-zero for s-wave $\left(\Rightarrow I_{\max }=0\right)$ and known
- Truncated [$\mathrm{N} \times \mathrm{N}$] problem simplifies: $\mathcal{K}_{\mathrm{df}, 3}$ has only I non-zero eigenvalue, and problem collapses to a single equation:

Imporłant check: threshold expansion

Threshold expansion

- For $\mathbf{P}=0$ and near threshold: $\mathrm{E}=3 \mathrm{~m}+\Delta \mathrm{E}$, with $\Delta \mathrm{E} \sim \mathrm{I} / \mathrm{L}^{3}+\ldots$
- In other words, study energy shift of three particles (almost) at rest
- Dominant effects $\left(\mathrm{L}^{-3}, \mathrm{~L}^{-4}, \mathrm{~L}^{-5}\right)$ involve 2-particle interactions, but 3-particle interaction enters at L^{-6}
- For large L , particles are non-relativistic $(\Delta \mathrm{E} \ll \mathrm{m})$ and can use NREFT methods
- This has been done previously by [Beane, Detmold \& Savage, 0707.I670] and [Tan, 0709.2530]

NR EFT results

[Beane, Detmold \& Savage, 0707.1670]
2 particles

$$
\begin{align*}
E_{0}(2, L)= & \frac{4 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}-\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+3 I \mathcal{J}-\mathcal{K}\right]\right\} \\
& +\frac{8 \pi^{2} a^{3}}{M L^{6}} r+\mathcal{O}\left(L^{-7}\right) \tag{11}
\end{align*}
$$

3 particles

$$
\begin{align*}
E_{0}(3, L)= & \frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}+\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+I \mathcal{J}+15 \mathcal{K}-8(2 \mathcal{Q}+\mathcal{R})\right]\right\} \\
& +\frac{64 \pi a^{4}}{M L^{6}}(3 \sqrt{3}-4 \pi) \log (\mu L)+\frac{24 \pi^{2} a^{3}}{M L^{6}} r \\
& +\frac{1}{L^{6}} \eta_{3}(\mu)+\mathcal{O}\left(L^{-7}\right) \tag{12}
\end{align*}
$$

- 2-particle result agrees with [Luscher]
- Scattering length a is in nuclear physics convention
- r is effective range
- I, J, \mathcal{K} are zeta-functions
- 3 particle result through L^{-4} is $3 \times(2$-particle result $)$ from number of pairs
- Not true at $\mathrm{L}^{-5}, \mathrm{~L}^{-6}$ where additional finite-volume functions $\mathcal{Q} \mathcal{R}$ enter
- $\eta_{3}(\mu)$ is 3-particle contact potential, which requires renormalization

NR EFT results

[Beane, Detmold \& Savage, 0707.1670]

2 particles

$$
\begin{align*}
E_{0}(2, L)= & \frac{4 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}-\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+3 I \mathcal{J}-\mathcal{K}\right]\right\} \\
& +\frac{8 \pi^{2} a^{3}}{M L^{6}} r+\mathcal{O}\left(L^{-7}\right) \tag{11}
\end{align*}
$$

3 particles

$$
\begin{aligned}
E_{0}(3, L)= & \frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}+\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+I \mathcal{J}+15 \mathcal{K}-8(2 \mathcal{Q}+\mathcal{R})\right]\right\} \\
& +\frac{64 \pi a^{4}}{M L^{6}}(3 \sqrt{3}-4 \pi) \log (\mu L)+\frac{24 \pi^{2} a^{3}}{M L^{6}} r \\
& +\frac{1}{L^{6}} \eta_{3}(\mu)+\mathcal{O}\left(L^{-7}\right),
\end{aligned}
$$

- 2-particle result agrees with [Luscher]
- Scattering length a is in nuclear physics convention
- r is effective range
- I, J, \mathcal{K} are zeta-functions
- 3 particle result through L^{-4} is $3 \times$ (2-particle result) from number of pairs
- Not true at $\mathrm{L}^{-5}, \mathrm{~L}^{-6}$ where additional finite-volume functions $\mathcal{Q} \mathcal{R}$ enter
- $\eta_{3}(\mu)$ is 3 -particle contact potential, which requires renormalization

NR EFT results

$$
\begin{aligned}
E_{0}(3, L)= & \frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}+\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+I \mathcal{J}+15 \mathcal{K}-8(2 Q+\mathcal{R})\right]\right\} \\
& +\frac{64 \pi a^{4}}{M L^{6}}(3 \sqrt{3}-4 \pi) \log (\mu L)+\frac{24 \pi^{2} a^{3}}{M L^{6}} r \\
& +\frac{1}{L^{6}} \eta_{3}(\mu)+\mathcal{O}\left(L^{-7}\right),
\end{aligned}
$$

[Beane, Detmold \& Savage, 0707.1670]
zeta-functions

$$
\mathcal{I}=Z_{00}(1,0)=\sum_{\vec{n} \neq 0}^{\Lambda} \frac{1}{\vec{n}^{2}}-4 \pi \Lambda, \quad \mathcal{J}=Z_{00}(2,0)=\sum_{\vec{n} \neq 0} \frac{1}{\left(\vec{n}^{2}\right)^{2}}, \quad \mathcal{K}=Z_{00}(3,0)=\sum_{\vec{n} \neq 0} \frac{1}{\left(\vec{n}^{2}\right)^{3}}
$$

$$
\begin{gathered}
\quad \text { additional finite-volume quantities } \\
\hat{\mathcal{Q}}=\sum_{\mathbf{i} \neq \boldsymbol{0}} \sum_{\mathbf{j} \neq \boldsymbol{0}} \frac{1}{\left.\mathbf{i}\right|^{2}|\mathbf{j}|^{2}\left(|\mathbf{i}|^{2}+|\mathbf{j}|^{2}+|\mathbf{i}+\mathbf{j}|^{2}\right)} \xrightarrow{\text { dim. reg. }} \rightarrow \mathcal{Q}+\frac{4}{3} \pi^{4} \log (\mu L)-\frac{2 \pi^{4}}{3(d-3)} \\
\hat{\mathcal{R}}=\sum_{\mathbf{j} \neq \mathbf{0}} \frac{1}{|\mathbf{j}|^{4}}\left[\sum_{\mathbf{i}} \frac{1}{|\mathbf{i}|^{2}+|\mathbf{j}|^{2}+|\mathbf{i}+\mathbf{j}|^{2}}-\frac{1}{2} \int d^{d} \mathbf{i} \frac{1}{|\mathbf{i}|^{2}}\right] \rightarrow \mathcal{R}-2 \sqrt{3} \pi^{3} \log (\mu L)+\frac{\sqrt{3} \pi^{3}}{d-3}
\end{gathered}
$$

Expanding our result
 $$
\operatorname{det}\left[1+F_{3} \mathcal{K}_{\mathrm{df}, 3}\right]=0
$$

$$
F_{3}=\frac{1}{L^{3}} \frac{1}{2 \omega}\left[\frac{F}{3}-F \frac{1}{\mathcal{K}_{2}^{-1}+F+G} F\right] \quad{ }^{7}
$$

- Only terms with $\mathrm{I}=\mathrm{m}=0$ contribute to the desired order
- $\left[F_{3}\right]_{0,0}$ dominates other terms in F_{3} by $\sim L^{3}$, so quantization condition becomes

Evaluated at threshold $\longrightarrow \mathcal{K}_{\mathrm{df}, 3}=-\left(\left[F_{3}\right]_{0,0}\right)^{-1}$

- $\mathrm{F}, \mathrm{G} \& \mathcal{K}_{2}$ are matrices with indices \mathbf{k}, \mathbf{p}, truncated by cutoff function H
- F is $O\left(L^{0}\right)$, so to cancel the I / L^{3} in F_{3} need $\left[\mathcal{K}_{2}^{-1}+F+G\right]^{-1} \sim L^{3}$
- Roughly speaking this requires the cancellation of $\mathrm{L}^{0}, \mathrm{~L}^{-1} \& \mathrm{~L}^{-2}$ terms in $\left[\mathcal{K}_{2}^{-1}+F+G\right.$, which requires tuning E and determines the $L^{-3}, L^{-4} \& L^{-5}$ in ΔE
- The L^{-6} term in $\Delta \mathrm{E}$ is then determined by the quantization condition

Our threshold expansion

- L^{-3}, L^{-4}, L^{-5} terms agree with previous results, which checks details of F \& G
- L-6 relates $\mathcal{K}_{\mathrm{df}, 3}$ to 3 -body contact potential of NREFT

$$
\begin{aligned}
\frac{\mathcal{K}_{\mathrm{df}, 3 ; 00}}{48 m^{3}} & =-\eta_{3}(\mu)+\frac{36 \pi^{2} a^{2}}{m^{3}}+\frac{48 \pi^{2} r a^{3}}{m} \\
& +\left(\frac{a}{\pi}\right)^{3}\left[\frac{32 \pi^{3}}{a m} \widetilde{d}_{3}+16 \pi^{4}\left(\widetilde{e}_{2}+\widetilde{f}_{2}\right)+16 Q+8 R+\frac{16 \pi^{3}}{3}(3 \sqrt{3}-4 \pi) \log \left(\frac{m}{2 \pi \mu}\right)\right]
\end{aligned}
$$

- Agreement of coefficient of logarithm is another non-trivial check
- Final step will be to relate this to \mathcal{M}_{3}

Conclusions \& Outlook

Summary: successes

- Confirmed that 3-particle spectrum determined by infinite-volume scattering quantities
- Obtained an "algebraic" result directly in terms of these amplitudes
- Derivation leads us to introduce divergence-free $3 \rightarrow 3$ scattering quantity
- Threshold expansion and other checks give us confidence in the expression
- Truncation to obtain finite problem occurs naturally

Summary: limitations

- $\mathcal{K}_{\mathrm{df}, \mathrm{B}}$ is not physical---rather an intermediate infinite-volume quantity
- We now think we can relate it to \mathcal{M}_{3}
- \mathcal{K}_{2} is needed below (as well as above) 2-particle threshold
- Formalism fails when K_{2} is singular \Rightarrow each two-particle channel must have no resonances within kinematic range
- Warning (in case you want to run off and apply this!): σ couples also to the single "pion" state (which is why we kept E* > M). In Euclidean space this pole will be the lowest lying state. All " 3 pion" states will thus be excited states.
- Applies to identical, spinless particles, with Z_{2} symmetry
- We expect generalizing to other cases to be (relatively) straightforward

Plans

- Extend result to non-degenerate masses \& other spins
- Detailed studies of practical utility using simple forms for amplitudes
- Detailed comparison with [Polejaeva \& Rusetsky] and [Briceno \& Davoudi]
- Derive generalization of Lellouch-Lüscher formula (for $K \rightarrow 3 \pi$, etc.)
- Efimov states?
- Include $2 \rightarrow 3$ vertices and other Z_{2} violating interactions
- Onward to four particles ?!

Thank you! Questions?

Backup Slides

Skeleton expansion

- If remove "endcaps", drop first diagram, and change internal sums to integrals, then have skeleton expansion for $\mathcal{M}_{3 \rightarrow 3}$

"No switch" diagrams

- Do k_{0} integral, keeping only on-shell pole at $\mathrm{k}_{0}=\omega_{\mathrm{k}}$
- Other poles give terms in which remaining sums can be replaced by integrals, and thus contribute to $\left.\mathrm{C}^{(1)}\right)_{\infty}$

- Substitute identity
 \& proceed as for 2-particle case

"No switch" diagrams

"Dimer" propagator $[\mathcal{A}]=\frac{i F}{2 \omega L^{3}} \frac{1}{1+\mathcal{K}_{2} F}$
mismatch of symmetry factors.
Absent if bottom particle non-interacting

- Matrix notation: indices are expanded compared to 2-particle case
["spectator" momentum: $\mathbf{k}=2 \pi \mathbf{n} / \mathrm{L}] \times[2-$ particle CM angular momentum: I,m]

$$
\text { e.g. } i F_{k^{\prime}, \ell^{\prime}, m^{\prime} ; k, \ell, m}=\delta_{k, k^{\prime}} i F_{\ell^{\prime}, m^{\prime} ; \ell, m}(\underbrace{\left.E-\omega_{k}, \vec{P}-\vec{k}\right)}_{\text {4-momentum of non-spectator pair }}
$$

- Obtain correct quantization condition if bottom particle is non-interacting

