Extracting 3-particle scattering amplitudes from the finite-volume spectrum

Steve Sharpe University of Washington

M. Hansen & S. Sharpe, arXiv:1408.5933 (PRD in press) + work in progress

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

1 /71

The fundamental issue

- Lattice simulations are done in finite volumes
- Experiments are not

How do we connect these?

The fundamental issue

- Lattice QCD can calculate energy levels of multiple particle systems in a box
- How are these related to scattering amplitudes?

The fundamental issue

- Lattice QCD can calculate energy levels of multiple particle systems in a box
- How are these related to scattering amplitudes?

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

When is spectrum related to scattering amplitudes?

R (interaction range)

L<2R No "outside" region. Spectrum NOT related to scatt. amps. Depends on finite-density properties

L>2R There is an "outside" region. Spectrum IS related to scatt. amps. up to corrections proportional to $e^{-M_{\pi}L}$ [Lüscher]

Problems considered today L>2R L>3R (?)

Previously solved; solution used by simulations; will sketch as warm-up problem

Will present new solution; practical applicability under investigation

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Outline

- Background & motivation
- Set-up and main ideas
- 2-particle quantization condition
- 3-particle quantization condition
- Utility of result: truncation
- Important check: threshold expansion
- Conclusions and outlook

Background & motivation

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

2-particle resonances

- To predict & study the properties of hadrons using lattice QCD, we need to be able to study resonances
 - Resonances are not asymptotic states; show up in behavior of phase-shift
 - Luscher's method allows determination of $2 \rightarrow 2$ phase shifts in elastic regime

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Decay amplitudes

- Also want to calculate weak decay amplitudes, e.g. $K \rightarrow \pi \pi$
 - Lattice QCD can calculate $\langle K|H_W|\pi\pi\rangle_L$, but to use this requires determining the composition of the finite volume $\pi\pi$ state (which contains several partial waves with different normalizations). Solved by [Lellouch & Lüscher]
 - [RBC/UKQCD] obtained $K \rightarrow \pi \pi$ (I=2) amplitude with physical kinematics
 - For I=0, pilot study completed, with results consistent with $\Delta I=I/2$ rule
 - In ~3-5 years, we should be able to determine Standard Model prediction for direct CP violation in $K \rightarrow \pi\pi$, and compare to experimental result (ϵ'/ϵ)

Why 3 particles?

• Resonances with 3-particle decays

$$\omega(782) \to \pi\pi\pi \qquad K^* \longrightarrow K\pi\pi \qquad N(1440) \to N\pi\pi$$

- 3-body interactions
 - $\pi\pi\pi \to \pi\pi\pi$ $NNN \to NNN$
- Weak decays to 3 (or more) particles

$$K \to \pi \pi \pi$$
 $D \to \pi \pi$ $D \to K \overline{K}$ (coupled to $\pi \pi \pi \pi \pi$)

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Theoretical status for 2 particles

- Underlying idea is simple in I-d: $e^{2i\delta(k)} = e^{-ikL}$
- Generalizations to 3-d in QM [Huang & Yang 57,]
- [Lüscher 86 & 91] derived quantization formula for energies below inelastic threshold (and for P=0) by converting QFT problem to one in NRQM
- [Rummukainen & Gottlieb 85] generalized to general P (using rel. QM)
- [Lellouch & Lüscher 00] generalized to weak decay amplitudes
- [Kim, Sachrajda & SS 05] gave alternate derivation directly in QFT allowing generalization of LL formula to general P (see also [Christ, Kim & Yamazaki 05])
- [Hansen & SS 12, Briceno & Davoudi 12, ...] generalized the quantization (and LL formula) to the case of any number of two particle channels (e.g. $\pi\pi$, KK, $\eta\eta$)
 - Used in recent work of [Dudek, Edwards, Thomas and Wilson, 14]
- [Briceno, Hansen & Walker-Loud 14] generalized to calculation of general 1→2 form factors (e.g. γπ→ππ)

State of the art

Theoretical status for 3 particles

- [Beane, Detmold & Savage `07 and Tan `08] derived threshold expansion for n particles in NRQM, and argued it applied also in QFT
- [Polejaeva & Rusetsky '12] Showed in NREFT that spectrum determined by infinite-volume scattering amplitudes, using integral equation
- [Briceno & Davoudi `I2] Used a dimer approach in NREFT, with s-wave interactions only, to determine relation between spectrum and a finite volume quantity, itself related to infinite-volume amplitudes by an integral equation
- Our aim: work in general, relativistic QFT and determine an algebraic relation between spectrum and scattering amplitudes

Set-up & main ideas

- Work in continuum (assume that LQCD can control discretization errors)
- Cubic box of size L with periodic BC, and infinite (Minkowski) time
 - Spatial loops are sums:

$$\frac{1}{L^3}\sum_{\vec{k}} \qquad \vec{k} = \frac{2\pi}{L}\vec{n}$$

- Consider identical particles with physical mass m, interacting <u>arbitrarily</u> except for a Z₂ (G-parity-like) symmetry
 - Only vertices are $2 \rightarrow 2, 2 \rightarrow 4, 3 \rightarrow 3, 3 \rightarrow 1, 3 \rightarrow 5, 5 \rightarrow 7$, etc.
 - Even & odd particle-number sectors decouple

Methodology

Calculate (for some P=2πn_P/L)

CM energy is $E^* = \sqrt{(E^2 - P^2)}$

$$C_L(E,\vec{P}) \equiv \int_L d^4x \ e^{-i\vec{P}\cdot\vec{x}+iEt} \langle \Omega | T\sigma(x)\sigma^{\dagger}(0) | \Omega \rangle_L$$

- \bullet Poles in CL occur at energies of finite-volume spectrum
- For 2 & 3 particle states, $\sigma \sim \pi^2$ & π^3 , respectively
- E.g. for 2 particles:

3-particle correlator

- Replace loop sums with integrals where possible
 - Drop exponentially suppressed terms (~e^{-ML}, e^{-(ML)^2}, etc.) while keeping power-law dependence

$$\frac{1}{L^3} \sum_{\vec{k}} g(\vec{k}) = \int \frac{d^3k}{(2\pi)^3} g(\vec{k}) + \sum_{\vec{l}\neq\vec{0}} \int \frac{d^3k}{(2\pi)^3} e^{iL\vec{l}\cdot\vec{k}} g(\vec{k})$$

Key step 1

- Replace loop sums with integrals where possible
 - Drop exponentially suppressed terms (~e^{-ML}, e^{-(ML)^2}, etc.) while keeping power-law dependence

$$\frac{1}{L^3} \sum_{\vec{k}} g(\vec{k}) = \int \frac{d^3k}{(2\pi)^3} g(\vec{k}) + \sum_{\vec{l} \neq \vec{0}} \int \frac{d^3k}{(2\pi)^5} e^{iL\vec{l}\cdot\vec{k}} g(\vec{k})$$

Exp. suppressed

Exp. suppressed if g(k) is smooth and scale of derivatives of g is ~1/M

• Use "sum=integral + [sum-integral]" if integrand has pole, with [KSS]

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

20/71

• Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} - \int \frac{d^4k}{(2\pi)^4} \right) f(k) \frac{1}{k^2 - m^2 + i\epsilon} \frac{1}{(P - k)^2 - m^2 + i\epsilon} g(k)$$
$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F} \ (q^*, q^{*'}) g^*(\hat{q}^{*'})$$

 \bullet Decomposed into spherical harmonics, $\mathcal F$ becomes

$$F_{\ell_{1},m_{1};\ell_{2},m_{2}} \equiv \eta \left[\frac{\operatorname{Re}q^{*}}{8\pi E^{*}} \delta_{\ell_{1}\ell_{2}} \delta_{m_{1}m_{2}} + \frac{i}{2\pi EL} \sum_{\ell,m} x^{-\ell} \mathcal{Z}_{\ell m}^{P}[1;x^{2}] \int d\Omega Y_{\ell_{1},m_{1}}^{*} Y_{\ell,m}^{*} Y_{\ell_{2},m_{2}} \right]$$

 $x \equiv q^* L/(2\pi)$ and $\mathcal{Z}^P_{\ell m}$ is a generalization of the zeta-function

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Kinematic functions

FIG. 29. The functions $Z_{4,0}(1; \tilde{q}^2)$ (left panel) and $Z_{6,0}(1; \tilde{q}^2)$ (right panel).

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

22/71

• Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} - \int \frac{d^4k}{(2\pi)^4} \right) f(k) \frac{1}{k^2 - m^2 + i\epsilon} \frac{1}{(P - k)^2 - m^2 + i\epsilon} g(k)$$
$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F} \ (q^*, q^{*'}) g^*(\hat{q}^{*'})$$

• Diagrammatically

Variant of key step 2

• For generalization to 3 particles use (modified) PV prescription instead of iε

$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} -\int \frac{\widetilde{PV}}{(2\pi)^4} \int f(k) \frac{1}{k^2 - m^2} + \swarrow \frac{1}{(P-k)^2 - m^2} + \swarrow \frac{g(k)}{(P-k)^2 - m^2} + \bigwedge \frac{g(k)}{(P-k)^2 - m$$

- Key properties of FPV (discussed below): real and no unitary cusp at threshold
- Example of appearance in 3-particle analysis:

- Identify potential singularities: can use time-ordered PT (i.e. do k₀ integrals)
- Example

• 2 out of 6 time orderings:

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

• 2 out of 6 time orderings:

Monday, December 15, 14

26/71

Combining key steps 1-3

• For each diagram, determine which momenta must be summed, and which can be integrated

Must sum momenta passing through box

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 2-particle example, find:

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 2-particle example, find:

• Then repeatedly use sum=integral + "sum-integral" to simplify

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Key issues 4-6

- Dealing with cusps, avoiding divergences in 3-particle scattering amplitude, and dealing with breaking of particle interchange symmetry
- Discuss later!

2-particle quantization condition

Following method of [Kim, Sachrajda & SS 05]

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

30 /71

• Apply previous analysis to 2-particle correlator ($0 < E^* < 4M$)

• Collect terms into infinite-volume Bethe-Salpeter kernels

- Apply previous analysis to 2-particle correlator
- Collect terms into infinite-volume Bethe-Salpeter kernels

Leading to

• Next use sum identity

• And regroup according to number of "F cuts"

• Next use sum identity

• And keep regrouping according to number of "F cuts" F $C_{L}(E, \vec{P}) = C_{\infty}(E, \vec{P}) + (A) + (A) + (B) + (B) + (B) + (B) + (A) + (A) + (A) + (A) + (B) + ($

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

34/71

• Next use sum identity

• Alternate form if use PV-tilde prescription: $C_{L}(E, \vec{P}) = C_{\infty}(E, \vec{P}) + (A) + (A) + (B) + (B) + (B) + (B) + (A) + (A) + (A) + (B) +$

•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + \sum_{n=0}^{\infty} A' i F[i\mathcal{M}_{2\to 2}iF]^n A$$

 Correlator is expressed in terms of infinite-volume, physical quantities and kinematic functions encoding the finite-volume effects

$$C_{L}(E, \vec{P}) = C_{\infty}(E, \vec{P})$$

$$+ (A) = (A') + (A) = (A') =$$

•
$$C_L(E, \vec{P}) = C_\infty(E, \vec{P}) + \sum_{n=0}^{\infty} A' i F[i\mathcal{M}_{2\to 2}iF]^n A$$

•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + A'iF \frac{1}{1 - i\mathcal{M}_{2 \to 2}iF} A$$
 no poles,
only cuts matrices in l,m space

•
$$C_L(E, \vec{P})$$
 diverges whenever $iF \frac{1}{1 - i\mathcal{M}_{2 \to 2}iF}$ diverges

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

2-particle quantization condition
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + A'iF \frac{1}{1 - i\mathcal{M}_{2 \to 2}iF}A$$

• At fixed L & P, the finite-volume spectrum E₁, E₂, ... is given by solutions to

$$\Delta_{L,\vec{P}}(E) = \det\left[(iF)^{-1} - i\mathcal{M}_{2\to 2}\right] = 0$$

- \mathcal{M} is diagonal in *I,m*: $i\mathcal{M}_{2\to 2;\ell',m';\ell,m} \propto \delta_{\ell,\ell'}\delta_{m,m'}$
- F is off-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{M} vanishes above I_{max}
- For example, if *I*_{max}=0, obtain

$$i\mathcal{M}_{2\to2;00;00}(E_n^*) = [iF_{00;00}(E_n,\vec{P},L)]^{-1}$$

Generalization of s-wave Lüscher equation to moving frame [Rummukainen & Gottlieb]

Equivalent K-matrix form

$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + A' i F_{\widetilde{\text{PV}}} \frac{1}{1 + \mathcal{K}_2 F_{\widetilde{\text{PV}}}} A$$

$$\propto [\mathcal{A}] \quad \text{``dimer propagator''}$$

• At fixed L & P, the finite-volume spectrum $E_1, E_2, ...$ is given by solutions to

$$\Delta_{L,\vec{P}}(E) = \det\left[(F_{\widetilde{PV}})^{-1} + \mathcal{K}_2\right] = 0$$

- \mathcal{K}_2 is diagonal in *l,m*
- F_{PV} is off-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{K}_2 vanishes above I_{max}
- For example, if *I*_{max}=0, obtain

$$i\mathcal{K}_{2;00;00}(E_n^*) = \left[iF_{\widetilde{PV};00;00}(E_n,\vec{P},L)\right]^{-1}$$

3-particle quantization condition

Following [Hansen & SS 14]

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

40 /71

• Spectrum is determined (for given L, P) by solutions of

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}}\right]$$
Known
kinematical
quantity
essentially
the same
as Frv in
2-particle
analysis

$$G_{p,\ell',m';k,\ell,m} \equiv \left(\frac{k^*}{q_p^*}\right)^{\ell'} \frac{4\pi Y_{\ell',m'}(\hat{k}^*) H(\vec{p}) H(\vec{k}) Y_{\ell,m}^*(\hat{p}^*)}{2\omega_{kp}(E - \omega_k - \omega_p - \omega_{kp})} \left(\frac{p^*}{q_k^*}\right)^{\ell} \frac{1}{2\omega_k L^3}$$
G is known
kinematical
quantity
essentially
the same
as Frv in
2-particle
analysis
G is known
kinematical
quantity
containing
quantity
containing

 $\det \left[F_{\widetilde{\mathrm{PV}}}^{-1} + \mathcal{K}_2 \right]$

• ... but F₃ contains both kinematical, finite-volume quantities (F_{PV} & G) and the dynamical, infinite-volume quantity \mathcal{K}_2

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

function H

"Final" result

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}}\right]$$

• All quantities are (infinite-dimensional) matrices, e.g. (F₃)_{klm;pl'm'}, with indices

[finite volume "spectator" momentum: $\mathbf{k}=2\pi\mathbf{n}/L$] x [2-particle CM angular momentum: l,m]

Three on-shell particles with total energy-momentum (E, \mathbf{P})

 For large k other two particles are below threshold; must include such configurations by analytic continuation up to a cut-off at k~m [provided by H(k)]

"Final" result

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}}\right]$$

- Successfully separated infinite volume quantities from finite volume kinematic factors
- But what is $\mathcal{K}_{df,3}$?
- How do we obtain this result?
- How can it be made useful?

Key issue 4: dealing with cusps

- Can sum subdiagrams without 3-particle cuts into Bethe-Salpeter kernels
- Want to replace sums with integrals + F-cuts as in 2-particle analysis
- Straightforward implementation fails when have 3 particle intermediate states adjacent to 2→2 kernels

Skeleton expansion in terms of Bethe-Salpeter kernels

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

44/71

Key issue 4: dealing with cusps

- Can sum subdiagrams without 3-particle cuts into Bethe-Salpeter kernels
- Want to replace sums with integrals + F-cuts as in 2-particle analysis
- Straightforward implementation fails when have 3 particle intermediate states adjacent to 2→2 kernels

Skeleton expansion in terms of Bethe-Salpeter kernels

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Cusp analysis (1)

- Can replace sums with integrals for smooth, non-singular parts of summand
- Singular part of left-hand 3-particle intermediate state

46/71

Cusp analysis (2)

- it prescription and standard principal value (PV) lead to cusps at threshold \Rightarrow sum-integral ~1/L⁴ [Polejaeva & Rusetsky]
- Requires use of modified $\widetilde{\mathrm{PV}}$ prescription

Result:

$$\frac{1}{L^6} \sum_{\vec{k}} \sum_{\vec{a}} = \int_{\vec{k}} \int_{\vec{a}} + \sum_{\vec{k}} \text{"F term"}$$

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

for F-term

• Far below threshold, \widetilde{PV} smoothly turns back into PV

Cusp analysis (4)

- \bullet Bottom line: must use \widetilde{PV} prescription for all loops
- This is why K-matrix \mathcal{K}_2 appears in 2-particle summations
- \mathcal{K}_2 is standard above threshold, and given below by analytic continuation (so there is no cusp)

- This prescription is that used previously when studying finite-volume effects on bound-state energies using two-particle quantization condition [Detmold, Savage,...]
- Far below threshold smoothly turns into \mathcal{M}_2^ℓ

Key issue 5: dealing with "switches"

Key issue 5: dealing with "switches"

Key issue 5: dealing with "switches"

- With cusps removed, no-switch diagrams can be summed as for 2-particle case, leading to dimer propagator [A]
- "Switches" present a new challenge

One-switch diagrams

- There are now two spectator momenta, at least one of which must be on-shell to create a finite volume contribution
 - Only get new feature if **both** are on shell

• Term between \mathcal{A} 's is our first contribution to a $3 \rightarrow 3$ on-shell scattering qty

One-switch problem

- Amplitude is **singular** for some choices of **k**, **p** in physical regime
 - Propagator goes on shell if top two (and thus bottom two) scatter elastically
- Not a problem per se, but leads to difficulties when amplitude is symmetrized
 - Occurs when include three-switch contributions

- Singularity implies that decomposition in $Y_{l,m}$ will not converge uniformly
 - Cannot usefully truncate angular momentum expansion

One-switch solution

- Define divergence-free amplitude by subtracting singular part
 - Utility of subtraction noted in [Rubin, Sugar & Tiktopoulos, '66]

$$G_{p,\ell',m';k,\ell,m} \equiv \left(\frac{k^*}{q_p^*}\right)^{\ell'} \frac{4\pi Y_{\ell',m'}(\hat{k}^*)H(\vec{p}\,)H(\vec{k}\,)Y_{\ell,m}^*(\hat{p}^*)}{2\omega_{kp}(E-\omega_k-\omega_p-\omega_{kp})} \left(\frac{p^*}{q_k^*}\right)^{\ell} \frac{1}{2\omega_k L^3}$$

- Key point: $\mathcal{K}_{df,3}$ is local and its expansion in harmonics can be truncated
- Subtracted term must be added back---leads to G contributions to F₃
- Can extend divergence-free definition to any number of switches

Key issue 6: symmetry breaking

- \bullet Using $\dot{P}\dot{V}$ prescription breaks particle interchange symmetry
 - Top two particles treated differently from spectator
 - Leads to very complicated definition for $\mathcal{K}_{df,3}$, e.g.

• Can extend definition of $\mathcal{K}_{df,3}$ to all orders, in such a way that it is symmetric under interchange of external particles

Key issue 6: symmetry breaking

- Final definition of $\mathcal{K}_{df,3}$ is, crudely speaking:
 - Sum all Feynman diagrams contributing to \mathcal{M}_3
 - Use $\widetilde{\mathrm{PV}}$ prescription, plus a (well-defined) set of rules for ordering integrals
 - Subtract leading divergent parts
 - Apply a set of (completely specified) "decorations" (i.e. extra factors) to ensure external symmetrization
- $\mathcal{K}_{df,3}$ is an UGLY infinite-volume quantity related to scattering
- At the time of our initial paper, we did not know the relation between $\mathcal{K}_{df,3}$ and \mathcal{M}_3 & \mathcal{M}_2 , although we had reasons to think that such a relationship exists
- We now think we know the relationship, which, if correct, completes the formal analysis for the three-particle quantization condition

$\begin{aligned} & \overset{``}\mathsf{Final'' result} \\ & \Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{\mathrm{df},3} \right] = 0 \\ & F_3 = \frac{F_{\widetilde{\mathrm{PV}}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{\mathrm{PV}}}} \right] \end{aligned}$

- Successfully separated infinite volume quantities from finite volume kinematic factors
- But what is $\mathcal{K}_{df,3}$?
- How do we obtain this result?
- How can it be made useful?

Utility of result: truncation

Truncation in 2 particle case

$$\det \left[F_{\widetilde{\mathrm{PV}}}^{-1} + \mathcal{K}_2 \right]$$

• If \mathcal{M} (which is diagonal in l,m) vanishes for $l > l_{\max}$ then can show that need only keep $l \leq l_{\max}$ in F (which is not diagonal) and so have finite matrix condition which can be inverted to find $\mathcal{M}(E)$ from energy levels Truncation in 3 particle case

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

- For fixed E & P, as spectator momentum |k| increases, remaining two-particle system drops below threshold, so F_{PV} becomes exponentially suppressed
 - Smoothly interpolates to $F_{PV}=0$ due to H factors; same holds for G
- Thus **k** sum is naturally truncated (with, say, **N** terms required)
- I is truncated if both \mathcal{K}_2 and $\mathcal{K}_{df, 3}$ vanish for $I > I_{max}$
- Yields determinant condition truncated to $[N(2l_{max}+I)]^2$ block

Truncation in 3 particle case

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$
$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

- Given prior knowledge of \mathcal{K}_2 (e.g. from 2-particle quantization condition) each energy level E_i of the 3 particle system gives information on $\mathcal{K}_{df,3}$ at the corresponding 3-particle CM energy E_i^{*}
- Probably need to proceed by parameterizing $\mathcal{K}_{df,3\to3}$, in which case one would need at least as many levels as parameters at given energy
- If our preliminary result is correct, given \mathcal{K}_2 and $\mathcal{K}_{df,3}$ one can reconstruct \mathcal{M}_3
- The locality of $\mathcal{K}_{df,3}$ is crucial for this program
- Clearly very challenging in practice, but there is an existence proof....

Isotropic approximation

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$
$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

- Assume $\mathcal{K}_{df,3}$ depends only on E^* (and thus is indep. of **k**, *l*, *m*)
- Also assume \mathcal{K}_2 only non-zero for s-wave ($\Rightarrow I_{max}=0$) and known
- Truncated [N x N] problem simplifies: $\mathcal{K}_{df,3}$ has only 1 non-zero eigenvalue, and problem collapses to a single equation:

$$1 + F_3^{\text{iso}} \mathcal{K}_{df,3}^{\text{iso}}(E^*) = 0$$

$$\underset{F_3^{\text{iso}}}{\overset{\text{verms}}{=}} \sum_{\vec{k},\vec{p}} \frac{1}{2\omega_k L^3} \left[F_{\widetilde{\text{PV}}}^s \left(-\frac{2}{3} + \frac{1}{1 + [1 + \mathcal{K}_2^s G^s]^{-1} \mathcal{K}_2^s F_{\widetilde{\text{PV}}}^s} \right) \right]_{k,p}$$

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

Important check: threshold expansion

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

62 /71

Threshold expansion

- For **P**=0 and near threshold: E=3m+ Δ E, with Δ E~1/L³+...
- In other words, study energy shift of three particles (almost) at rest
- Dominant effects (L⁻³, L⁻⁴, L⁻⁵) involve 2-particle interactions, but 3-particle interaction enters at L⁻⁶
- For large L, particles are non-relativistic ($\Delta E \ll m$) and can use NREFT methods
- This has been done previously by [Beane, Detmold & Savage, 0707.1670] and [Tan, 0709.2530]

NR EFT results

[Beane, Detmold & Savage, 0707.1670]

2 particles

$$E_{0}(2,L) = \frac{4\pi a}{ML^{3}} \left\{ 1 - \left(\frac{a}{\pi L}\right) I + \left(\frac{a}{\pi L}\right)^{2} [I^{2} - \mathcal{J}] + \left(\frac{a}{\pi L}\right)^{3} [-I^{3} + 3I\mathcal{J} - \mathcal{K}] \right\} + \frac{8\pi^{2}a^{3}}{ML^{6}}r + \mathcal{O}(L^{-7}), \qquad (11)$$

- 2-particle result agrees with [Luscher]
- Scattering length *a* is in nuclear physics convention
- r is effective range
- I, J, \mathcal{K} are zeta-functions

3 particles

$$E_{0}(3,L) = \frac{12\pi a}{ML^{3}} \left\{ 1 - \left(\frac{a}{\pi L}\right)I + \left(\frac{a}{\pi L}\right)^{2}[I^{2} + \mathcal{J}] + \left(\frac{a}{\pi L}\right)^{3}[-I^{3} + I\mathcal{J} + 15\mathcal{K} - 8(2\mathcal{Q} + \mathcal{R})] \right\} + \frac{64\pi a^{4}}{ML^{6}}(3\sqrt{3} - 4\pi)\log(\mu L) + \frac{24\pi^{2}a^{3}}{ML^{6}}r + \frac{1}{L^{6}}\eta_{3}(\mu) + \mathcal{O}(L^{-7}),$$
(12)

- 3 particle result through L⁻⁴ is 3x(2-particle result) from number of pairs
- Not true at L⁻⁵,L⁻⁶ where additional finite-volume functions *Q*, *R* enter
- η₃(µ) is 3-particle contact potential, which requires renormalization

NR EFT results

[Beane, Detmold & Savage, 0707.1670]

2 particles

$$E_{0}(2,L) = \frac{4\pi a}{ML^{3}} \left\{ 1 - \left(\frac{a}{\pi L}\right)I + \left(\frac{a}{\pi L}\right)^{2} [I^{2} - \mathcal{J}] + \left(\frac{a}{\pi L}\right)^{3} [-I^{3} + 3I\mathcal{J} - \mathcal{K}] \right\} + \frac{8\pi^{2}a^{3}}{ML^{6}}r + \mathcal{O}(L^{-7}), \qquad (11)$$

- 2-particle result agrees with [Luscher]
- Scattering length *a* is in nuclear physics convention
- r is effective range
- I, J, \mathcal{K} are zeta-functions

3 particles

$$E_{0}(3,L) = \frac{12\pi a}{ML^{3}} \left\{ 1 - \left(\frac{a}{\pi L}\right)I + \left(\frac{a}{\pi L}\right)^{2} [I^{2} + \mathcal{J}] + \left(\frac{a}{\pi L}\right)^{3} [-I^{3} + I\mathcal{J} + 15\mathcal{K} - 8(2\mathcal{Q} + \mathcal{R})] \right\} + \frac{64\pi a^{4}}{ML^{6}} (3\sqrt{3} - 4\pi)\log(\mu L) + \frac{24\pi^{2}a^{3}}{ML^{6}}r + \frac{1}{L^{6}}\eta_{3}(\mu) + \mathcal{O}(L^{-7}),$$
(12)
Tan has 36 instead of 24, but a different definition of η_{3}

- 3 particle result through L⁻⁴ is 3x(2-particle result) from number of pairs
- Not true at L⁻⁵,L⁻⁶ where additional finite-volume functions *Q*, *R* enter
- η₃(µ) is 3-particle contact potential, which requires renormalization

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

64/71

NR EFT results

[Beane, Detmold & Savage, 0707.1670]

$$E_{0}(3,L) = \frac{12\pi a}{ML^{3}} \left\{ 1 - \left(\frac{a}{\pi L}\right)I + \left(\frac{a}{\pi L}\right)^{2} [I^{2} + \mathcal{J}] + \left(\frac{a}{\pi L}\right)^{3} [-I^{3} + I\mathcal{J} + 15\mathcal{K} - 8(2\mathcal{Q} + \mathcal{R})] \right\}$$

$$+ \frac{64\pi a^{4}}{ML^{6}} (3\sqrt{3} - 4\pi) \log(\mu L) + \frac{24\pi^{2}a^{3}}{ML^{6}}r$$

$$+ \frac{1}{L^{6}}\eta_{3}(\mu) + \mathcal{O}(L^{-7}), \qquad (12)$$

zeta-functions

$$\mathcal{I} = Z_{00}(1,0) = \sum_{\vec{n}\neq 0}^{\Lambda} \frac{1}{\vec{n}^2} - 4\pi\Lambda, \quad \mathcal{J} = Z_{00}(2,0) = \sum_{\vec{n}\neq 0} \frac{1}{(\vec{n}^2)^2}, \quad \mathcal{K} = Z_{00}(3,0) = \sum_{\vec{n}\neq 0} \frac{1}{(\vec{n}^2)^3}$$

additional finite-volume quantities

.

$$\hat{\mathcal{Q}} = \sum_{\mathbf{i}\neq\mathbf{0}} \sum_{\mathbf{j}\neq\mathbf{0}} \frac{1}{|\mathbf{i}|^2 |\mathbf{j}|^2 (|\mathbf{i}|^2 + |\mathbf{j}|^2 + |\mathbf{i}+\mathbf{j}|^2)} \xrightarrow{\text{dim. reg.}} \mathcal{Q} + \frac{4}{3} \pi^4 \log(\mu L) - \frac{2\pi^4}{3(d-3)}$$

$$\hat{\mathcal{R}} = \sum_{\mathbf{j}\neq\mathbf{0}} \frac{1}{|\mathbf{j}|^4} \left[\sum_{\mathbf{i}} \frac{1}{|\mathbf{i}|^2 + |\mathbf{j}|^2 + |\mathbf{i}+\mathbf{j}|^2} - \frac{1}{2} \int d^d \mathbf{i} \frac{1}{|\mathbf{i}|^2} \right] \xrightarrow{\mathcal{R}} \mathcal{R} - 2\sqrt{3}\pi^3 \log(\mu L) + \frac{\sqrt{3}\pi^3}{d-3}$$

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

Expanding our result

$$det[1 + F_3 \mathcal{K}_{df,3}] = 0$$

$$F_3 = \frac{1}{L^3} \frac{1}{2\omega} \left[\frac{F}{3} - F \frac{1}{\mathcal{K}_2^{-1} + F + G} F \right]$$
Means

- Only terms with I=m=0 contribute to the desired order
- $[F_3]_{0,0}$ dominates other terms in F_3 by $\sim L^3$, so quantization condition becomes

Evaluated at threshold $\longrightarrow \mathcal{K}_{df,3} = -\left([F_3]_{0,0} \right)^{-1}$

- F, G & \mathcal{K}_2 are matrices with indices **k**,**p**, truncated by cutoff function H
- F is O(L⁰), so to cancel the I/L^3 in F_3 need $[\mathcal{K}_2^{-1}+F+G]^{-1}\sim L^3$
- Roughly speaking this requires the cancellation of L⁰, L⁻¹ & L⁻² terms in $[\mathcal{K}_2^{-1}+F+G]$, which requires tuning E and determines the L⁻³, L⁻⁴ & L⁻⁵ in ΔE
- The L⁻⁶ term in ΔE is then determined by the quantization condition

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar
Our threshold expansion

- L-3, L-4, L-5 terms agree with previous results, which checks details of F & G
- \bullet L-6 relates $\mathcal{K}_{df,3}$ to 3-body contact potential of NREFT

$$\begin{aligned} \frac{\mathcal{K}_{\mathrm{df},3;00}}{48m^3} &= -\eta_3(\mu) + \frac{36\pi^2 a^2}{m^3} + \frac{48\pi^2 r a^3}{m} \\ &+ \left(\frac{a}{\pi}\right)^3 \left[\frac{32\pi^3}{am} \widetilde{d}_3 + 16\pi^4 (\widetilde{e}_2 + \widetilde{f}_2) + 16Q + 8R + \frac{16\pi^3}{3} (3\sqrt{3} - 4\pi) \log\left(\frac{m}{2\pi\mu}\right)\right] \end{aligned}$$

- Agreement of coefficient of logarithm is another non-trivial check
- Final step will be to relate this to \mathcal{M}_3

Conclusions & Outlook

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

68 /71

Summary: successes

- Confirmed that 3-particle spectrum determined by infinite-volume scattering quantities
- Obtained an "algebraic" result directly in terms of these amplitudes
- Derivation leads us to introduce divergence-free $3 \rightarrow 3$ scattering quantity
- Threshold expansion and other checks give us confidence in the expression
- Truncation to obtain finite problem occurs naturally

Summary: limitations

- $\mathcal{K}_{df,3}$ is not physical---rather an intermediate infinite-volume quantity
 - We now think we can relate it to \mathcal{M}_3
- \mathcal{K}_2 is needed below (as well as above) 2-particle threshold
- Formalism fails when K₂ is singular ⇒ each two-particle channel must have no resonances within kinematic range
- Warning (in case you want to run off and apply this!): σ couples also to the single "pion" state (which is why we kept $E^* > M$). In Euclidean space this pole will be the lowest lying state. All "3 pion" states will thus be excited states.
- Applies to identical, spinless particles, with Z₂ symmetry
 - We expect generalizing to other cases to be (relatively) straightforward

Plans

- Extend result to non-degenerate masses & other spins
- Detailed studies of practical utility using simple forms for amplitudes
- Detailed comparison with [Polejaeva & Rusetsky] and [Briceno & Davoudi]
- Derive generalization of Lellouch-Lüscher formula (for $K \rightarrow 3\pi$, etc.)
- Efimov states?
- Include $2 \rightarrow 3$ vertices and other Z_2 violating interactions
- Onward to four particles ?!

Thank you! Questions?

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Backup Slides

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Monday, December 15, 14

73 /71

Skeleton expansion

• If remove "endcaps", drop first diagram, and change internal sums to integrals, then have skeleton expansion for $\mathcal{M}_{3\rightarrow 3}$

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

"No switch" diagrams

• Do k_0 integral, keeping only on-shell pole at $k_0 = \omega_k$

• Other poles give terms in which remaining sums can be replaced by integrals, and thus contribute to $C^{(1)}$

S. Sharpe, "3-particle quantization condition" 12/15/2014, JLab Theory Seminar

Matrix notation: indices are expanded compared to 2-particle case

["spectator" momentum: **k**=2π**n**/L] x [2-particle CM angular momentum: *l,m*]

e.g.
$$iF_{k',\ell',m';k,\ell,m} = \delta_{k,k'} \ iF_{\ell',m';\ell,m}(E - \omega_k, \vec{P} - \vec{k})$$

4-momentum of non-spectator pair

• Obtain correct quantization condition if bottom particle is non-interacting