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Spectral functions in lattice QCD



Spectral functions in lattice QCD

» Lattice QCD is formulated in Euclidean space-time

» For hadron spectroscopy the central observable on the lattice
is the correlation function of two currents J,;:

Gu(T, T) = / d*x(J, (7, %) 4, (0)T) (1)

= directly calculable in lattice QCD computations.

» However, there is also a different representation of the
correlator as integral over the spectral function p(w):

> dw cosh[w(5/2 — 7)]
G, T) = /0 27 P T) sinh[wf/2] (2)

= only indirectly calculable via inverse Laplace-Transform.

» But, p(w) is common both to Euclidean and Minkowski
space-times. = in this sense it is a more "universal” quantity.



Spectral functions in lattice QCD

> In the case of the electromagnetic current, assuming VMD,

the spectral function p(w) can be linked to
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- Transport and dissociation in heavy-ion collisions



Spectral functions at finite temperature

> At finite temperature and especially in the deconfined phase
the spf undergoes dramatic changes.
» Dissociation of bound state particles
» Emergence of transport phenomena

plw
Transport phenomena
Dissociation phen.
\ 1)
P1=0(®)

PT>T ()




Spectral functions at finite temperature

» These phenomena have visible effects in heavy-ion collisions

» Spf of light quarks = Dilepton rates in the low energy regime
» Diffusion of heavy quarks = Elliptic flow
» Dissociation of heavy quarkonium = QGP thermometer
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Charmonium spf via Maximum Entropy Method (MEM)

» MEM is a Bayesian technique that computes the most
probable spectral function given some input model.
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» Due to the gap between the transport and particle-peak
regions, MEM works well here.

» Clear information for the diffusion coefficient and the
dissociation pattern of the shown 7). can be read off the spf.

H.T.Ding, A.F., et al.; Phys.Rev. D86 (2012) 014509



Heavy quark diffusion via lattice HQET

» In the quarkonium case the diffusion contribution can be
isolated via the HQET correlator of the chromo-electric force:

Ge(r) ~ lim / d3x(Jr (. %) Jr (0)') (5)

» Note: No systematic extraction of the diffusion constant, yet.
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oe in the continuum limit of quenched QCD

» For light quarks here is no gap between the transport region
and the continuous spectrum. = MEM is inconclusive.

> Here: Eliminate lattice effects by taking continuum limit.

» Then fit oo to physics constrained Ansatz.

» The fit result yields p(w) and its parameters give o.
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o In two-flavour QCD

» Much smaller lattices, continuum limit not feasible.
» But: Both T > T, and T ~ 0 available.

» Exploit sum rule:
% dw > dw
0= / ?(p,-,-(w, T) — pii(w,0)) = / UAp(w’ ) (6)

» Extract oo from the intercept Ap(w, T).
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Spectral functions at finite temperature

Achievements so far

» Study of the electrical Future goals
conductivity of light quarks » Extend also the charmonium
in the continuum limit of study to the dynamical
quenched QCD. regime.

» Study of heavy quark » Take the continuum limit of
diffusion using HQET. the HQET inspired study.

» Charmonium dissociation » Increase the range of
and diffusion via the available temperatures in
Maximum Entropy Method. the dynamical regime.

» Extending the light quark » Study the dissociation of the
study to dynamical p-particle accross the
ensembles and establishing deconfinement phase
the electrical conductivity transition.

also in this regime.
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- HLO anomalous magnetic moment of the muon



Spectral functions and (g — 2),

» The experimental observation and theoretical predictions of
(g —2),, show a dicrepancy of ~ 3.40
» This computation is a precision test of the standard model.

> The leading hadronic order contribution to the anomalous
magnetic moment of the muon constitutes one of the major
uncertainties (along with light-by-light scattering).

a,/10™"
Bonayoun. £ur Phys. . C (2012) 72:1648 116591753.7  53.1
QED incl 4-loops+LO 5-loops 116584718.1 0.2
weak 2-loop 153.2 1.8
lead. had. VP (experimentally ete™, 1) 6877.2 46.3
light-by-light (model) 105.0 26.0

Table borrowed from A. Jiittner's presentation at Confinement X, 2012 in Munich, Germany.



Spectral functions, aijO and ﬁ(QQ)

» We can write the leading hadronic contribution aﬁ’-o as
aHLO _ <g>2 dQ2 K (Q2 m )ﬁ(Q2) (7)
W - T EW ) 123

where Keyw (Q?, m,,) is a known electroweak kernel and
(Q%) = 47°[N(Q?) — N(0)].

» The key quantity to be calculated is therefore ﬁ(QZ), which
can be written in terms of R(s) and consequently the spf p(w)

X @ R(s) [~ 42 @ p(w?)
@)= | o= et o ©

> Idea: Re-write p(w?) in terms of the correlator G(7)!



A new representation of ﬁ(Qz) for lattice QCD

» Replacing p(w?) is indeed possible, the result is:

A(Q?) = /OOO drG(r) [~ gz sin?(5Qn  (9)

» This representation of [1(Q?) ...

» ... is available at any value of the virtuality Q2, while only the
p = 0 correlator is required.

> .. does not require an extrapolation of 1(Q2) — 0, eliminating
one of the largest uncertainties in current lattice results.

» ... comes at the cost of having to extrapolate the correlator to
all times 7 — oc.

» ... however, a Liischer-type analysis and/or highly accurate
spectroscopy poses a systematic route to reduce this cost.
» ... in principle, also a highly accurate determination of the

vacuum spf via e.g. MEM could render this issue irrelevant.



First results of the mixed-representation method

» Setup: 96 x 483 lattice with m,; = 324MeV and m,L = 5.0.
» Side remark: The mixed-rep. method also enables simply
computing derivatives of [1(Q?) by change of kernel.
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Spectral functions and (g — 2),

Achievements so far

» Development of a new

n Future goals
representation for [1(Q?) in

> Repeat the analysis on all

lattice QCD.

Implementation and test of
the new method.

First results achieve a very
good agreement with the
standard method,...

. without however having
to extrapolate I1(0) or to use
twisted-boundary conditions
to boost the number of
available virtualities.

available CLS ensembles.

Compute a/’j’-o in the chiral

and continuum limits.

Develop strategy to fully
control systematic
uncertainties.

Combine the two available
representations to boost
precision.
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- Bound/Un-bound nature of the H-dibaryon



Bound states in multi-baryon systems

» The study of multi-baryon systems poses a difficult challenge
to lattice QCD and many interesting questions in this field are
unanswered.

» One of these is the quark model prediction of a possibly stable
six-quark state, the H-dibaryon (quark composition udsuds).

» Embarking on a study of the H-dibaryon, as the simplest
multi-baryon system, some issues to be tackled are:
» The signal-to-noise ratio is expected to scale as the product of
those of the individual baryons.
» The factorial growth of necessary quark contractions to form
the desired system.

» We could handle part of these issues by using the newly
developed, sophisticated algorithms put forward by the
NPLQCD and HALQCD collaborations.



Bound states in multi-baryon systems

» To this extent we implemented a " blocking” -algorithm to
carry out the necessary contractions
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> In the next step we coded six different six-quark operators
that all have overlap with the H-dibaryon in order to be able
to set up a GEVP to compute the dibaryon-operator masses.

X1Y1 — XaY2 = (Ox, v, (t) Ox, v,(0)) (10)

where XiYi e N\; XX, N=;



First results of H-dibaryon masses

» Setup: 64 x 323 lattice with m, = 451MeV and m,L = 4.7.
» The GEVP results are promising,

» However, they are not yet precise enough to decide on a
bound or unbound nature of the H-dibaryon in our study.
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A. F., C. Miao, T. D. Rae, H. Wittig; PoS LATTICE2013 (2013) 440



Bound states in multi-baryon systems

Achievements so far

>

Implementation of a
blocking procedure to handle
multi-baryon contractions.

Set-up of the necessary code
for studying the H-dibaryon.

Spectrum analysis via GEVP.
First results look promising

Still large statistical errors.

Future goals
» Increase statistics and
reduce errors.
» Implement also
non-relativistic operators.
» Go to larger, more chiral
ensembles.

> In the farer future, go
beyond the H-dibaryon and
six-quark states.
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Overview

el. conductivity
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block-algo.
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HQ diffusion
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Thank you for your attention!
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