b) Structure Function of the Deuteron

Gerald A. Miller
 Univ. of Washington

G. A. Miller, in Electronuclear Physics with Internal Targets, ed. R. G. Arnold (World Scientific, Singapore, 1989), p. 30 .

Patricia Solvignon

arXiv:1311.4561v1

Outline

- What is the $b_{\text {I }}$ Structure Function of the Deuteron?
- Nucleonic contributions negligible
- Pion exchange contributions
- 6 quark, hidden-color contributions
- Double scattering (shadowing) contributions
- Close-Kumano sum rule

b। structure function DIS

Hoodbhoy, Jaffe, Manohar NPB3I2,57I

Direction of photon= spin quantization axis

$$
\mathrm{d}^{2} \sigma(\mathrm{~m}) \propto \ell \ell^{\mu \nu} \mathrm{W}_{\mu \nu}^{(\mathrm{m})} \quad \text { unpolarized lepton, polarized target }
$$

$$
W_{\mu \nu}^{(m)}=\int d^{4} r\left\langle T, J=1, J_{z}=m\right|\left[j^{\mu}(r), j^{\nu}(0)\right]\left|T, J=1, J_{z}=m\right\rangle
$$

$\mathrm{F}_{1}(\mathrm{x})=\frac{1}{3} \sum_{\mathrm{m}} \mathrm{W}_{11}^{(\mathrm{m})}$

$$
\mathrm{b}_{1}(\mathrm{x})=\mathrm{W}_{11}^{(1)}-\mathrm{W}_{11}^{(0)}
$$

usual average over target spin directions
Depends on spin direction of target

Experimentalist's Definition

$$
\begin{aligned}
\sigma_{\mathrm{meas}} & =\sigma^{\mathrm{U}}\left[1-P_{B} P_{z} A_{\|}+\frac{1}{2} P_{z z} A_{z z}\right] \\
P_{z z}= & \frac{\left(n^{+}+n^{-}\right)-2 n^{0}}{n^{+}+n^{-}+n^{0}}, \\
\frac{b_{1}}{F_{1}} & =-\frac{3}{2} A_{z z}
\end{aligned}
$$

b। structure function: potentially interesting

J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998).
J. L. Forest et al., Phys. Rev. C54, 646 (1996).
constant density surfaces small np separations

Hoodbhoy et al: b। measures the extent to which a target nucleus deviates from a trivial bound state of nucleons
JLab proposal PRI2-I3-0II K. Silfer et al HERMES PRL 95,24200I

HERMES

C. Riedl, Ph. D thesis, DESY-THESIS-2005-027 (2005).
A. Airapetian et al., Phys. Rev. Lett. 95, 242001 (2005).

General remarks

$$
\mathrm{q}^{(\mathrm{m})}(\mathrm{x})=<\mathrm{T}, \mathrm{~J}=1, \mathrm{~m}|\mathrm{Ol}| \mathrm{T}, \mathrm{~J}=1, \mathrm{~m}>
$$

Wigner Eckhart: O is tensor of rank I or 2 Parity $q^{(1)}=q^{(-1)}$, O can't be rank I and give non-zero b_{1}

O is a rank 2 tensor, so bı measures tensor effects
Consequence:
s-wave component of deuteron gives no contribution to b । because m is not relevant

Nucleon contributions

Miller 1989

$$
q^{(m)}(x)=\int_{X} d y q^{N}(x / y) f^{(m)}(y)
$$

G. A. Miller, in Electronuclear Physics with Internal Targets, ed. R. G. Arnold (World Scientific,

Singapore, 1989), p. 30 .

$$
\begin{aligned}
& \mathrm{f}^{(\mathrm{m})}(\mathrm{y})=\int \mathrm{d}^{4} \mathrm{p}\left[1+\frac{\mathrm{p}^{3}}{\sqrt{\mathrm{p}^{2}+\mathrm{M}^{2}}}\right] \mathrm{S}^{(\mathrm{m})} \underset{\mathrm{D}}{(\mathrm{p}) \delta\left(\mathrm{y}-\frac{\mathrm{p}^{0}+\mathrm{p}^{3}}{\mathrm{MD}_{\mathrm{D}}}\right)} \\
& S_{D}^{(m)}=\sum_{s}\langle D, m| b_{p, s}^{\dagger} \delta\left(-p_{0}+M_{D}-H\right) b_{p, s}|D, m\rangle \\
& \mathrm{b}_{1}(\mathrm{x})=\int_{\mathrm{x}} \mathrm{dy}_{\mathrm{x}}\left(\mathrm{~F}_{1}^{\mathrm{p}}(\mathrm{x} / \mathrm{y})+\mathrm{F}_{1}^{\mathrm{n}}(\mathrm{x} / \mathrm{y})\right) \Delta \mathrm{f}_{\mathrm{sd}}(\mathrm{y}) \\
& \Delta \mathrm{f}_{\mathrm{sd}}(\mathrm{y})=\frac{-4 \sqrt{2}}{8 \pi} \int \mathrm{~d}^{3} \mathrm{p} \mathrm{u}(\mathrm{p}) \mathrm{w}(\mathrm{p})\left(3 \cos ^{2} \theta-1\right) \quad \delta\left(\frac{\mathrm{p} \cos \theta+\mathrm{p}^{0}}{\mathrm{M}}-\mathrm{y}\right)\left[1+\frac{\mathrm{p} \cos \theta}{\mathrm{M}}\right] .
\end{aligned}
$$

Result: $b_{1}=0$
Remark $\int d x b_{1}(x) \propto \int d y \Delta f_{s d}(y) \propto \int d^{3} p u(p) w(p)\left(3 \cos ^{2} \theta-1\right)=0$ Example of (genesis of) Close-Kumano sum rule Vanishing integral consistent with b। being very small

Convenient parametrization for deep inelastic structure functions of the deuteron

Hafsa Khan and Pervez Hoodbhoy

$F_{1}{ }^{D}$ is of order I

b। very small

Physics Letters B 391 (1997) 177-184

Relativistic calculation of structure functions $b_{1.2}(x)$ of the deuteron $\triangle \mathrm{Yu}_{\mathrm{u}}$ Umnikov

Solid Bethe-Salpeter Dashed Bonn

b। very small

Difference between calcs due to different nucleon sf

Pionic contribution

$$
\begin{aligned}
& \Delta_{\pi} q^{(m)}(x)=\int_{x}^{\infty} \frac{d y}{y} q^{\pi}(x / y) f_{\pi}^{(m)}(y), \\
& f_{\pi}^{(m)}\left(y_{A}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{-i y_{A} P_{D}^{P} \xi^{-}}\langle D, m| \phi_{\pi}\left(\xi^{-}\right) \phi_{\pi}(0)|D, m\rangle_{c}, \\
& f_{\pi}^{(m)}(y)=\frac{-3 y g^{2}}{(2 \pi)^{3}} \int \frac{d^{3} q}{\left(\mathbf{q}^{2}+m_{\pi}^{2}\right)^{2}} \frac{G_{A}^{2}\left(\mathbf{q}^{2}\right)}{G_{A}^{2}(0)} \delta\left(M y-q_{z}\right) F_{m}(\mathbf{q}), \quad F_{m}(\mathbf{q}) \equiv \int d^{3} r\langle D, m| e^{-i \mathbf{q} \cdot \mathbf{r}} \boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{q}|D, m\rangle \\
& \delta f_{\pi}(y) \equiv f_{\pi}^{(0)}(y)-f_{\pi}^{(1)}(y): \sim-y \int \frac{d^{3} q}{\left(\mathbf{q}^{2}+m_{\pi}^{2}\right)^{2}} \cdots \delta\left(M y-q_{z}\right)\left(\mathbf{q}^{2}-3 q_{z}^{2}\right) \\
& b_{1}^{\pi}(x)=\frac{1}{2} \int_{x}^{\infty} \frac{d y}{y} q^{\pi}(x / y) \delta f_{\pi}(y) . \\
& \text { - ~Independent of Deut wave function }
\end{aligned}
$$

- Double node structure -tensor op

$$
\int d y \frac{f(y)}{y}=0
$$

Pionic effects

FIG. 3: Color online. Computed values of b_{1}^{π}, for different pion structure function at $Q^{2}=1.17$ GeV^{2}. Solid- full structure function [29] short-dashed (blue) valence [29], Dot Dashed (Red) full structure function (mode 3) [35],Long dashed (green) (mode 3) [35]

HERMES

Non 0 at high x

$\langle x\rangle$	$\left\langle Q^{2}\right\rangle$	$b_{1} \pm \delta b_{1}^{\text {stat }} \pm \delta b_{1}^{\text {sys }}$			$b_{1}^{\pi}[29] b_{1}^{\pi}[35]$ (1) $b_{1}^{\pi}[35](3)$		
	$\left[\mathrm{GeV}^{2}\right]$	$\left[10^{-2}\right]$	$\left[10^{-2}\right]$	$\left[10^{-2}\right]$	$\left[10^{-2}\right]$	$\left[10^{-2}\right]$	$\left[10^{-2}\right]$
0.012	0.51	11.20	5.51	2.77	10.5	15.5	24.1
0.032	1.06	5.50	2.53	1.84	5.6	6.8	8.9
0.063	1.65	3.82	1.11	0.60	4.2	3.7	4.1
0.128	2.33	0.29	0.53	0.44	1.6	1.3	1.3
0.248	3.11	0.29	0.28	0.24	-0.55	. 13	0.12
0.452	4.69	-0.38	0.16	0.03	-0.02	-0.02	-0.022

Hidden color, 6-quark states

- Maybe deuteron has non-nucleon baryonic components
- 6 quark contribution ~orthogonal to two nucleons
- Dominated by hidden color (two color octets form a color singlet Harvey NPA32, 301
- 6 quarks in same s state wave function:

0

$$
|6 q\rangle=\sqrt{1 / 9}\left|N^{2}\right\rangle+\sqrt{4 / 45}\left|\Delta^{2}\right\rangle+\sqrt{4 / 5}|C C\rangle
$$

Just call this state 6q (mainly hidden color)

Hidden color model-simplest possible

- S-state of deuteron has component with 6 quarks in s-state- $\mathrm{S}=\mathrm{I}, \mathrm{T}=0$
- D-state has 6-quark component with any one quark in $\mathrm{d}_{3 / 2}$ state
$\mathcal{Y}_{j l m_{j}}$ is a spinor spherical harmonic.

$$
\begin{gathered}
\psi_{j, l, H}(\mathbf{p})=\sqrt{N_{l}} f_{l}(p) \sum_{m_{s}, m_{j}} \mathcal{Y}_{j l m_{j}}\left\langle j m_{j}, \left.\frac{1}{2} m_{s} \right\rvert\, 1 H\right\rangle, \quad J_{z}=H \\
l, j, \quad s_{1 / 2} \text { or } d_{3 / 2}, \\
F_{H}\left(x_{6 q}\right)=\frac{1}{2} \int d^{3} p \bar{\psi}_{1 / 2,0, H}(\mathbf{p}) \gamma^{+} \psi_{3 / 2,2, H}(\mathbf{p}) \delta\left(\frac{p \cos \theta+E(p)}{M_{6 q}}-x_{6 q}\right),
\end{gathered}
$$

Harmonic oscillator wave functions

$$
\begin{aligned}
& f_{0}(p)=e^{-p^{2} R^{2} / 2}, f_{2}(p)=-p^{2} R^{2} e^{-p^{2} R^{2} / 2} \\
& E(p)=\sqrt{p^{2}+m^{2}} m=338 \mathrm{MeV} \text { quark mass } R=1.2 \mathrm{fm} \text { from bag }
\end{aligned}
$$

$$
b_{1}^{6 q}(x)=-\sqrt{\frac{N_{0} N_{2}}{2}} \frac{3}{4 \pi} \int d^{3} p f_{0} f_{2}\left(3 \cos ^{2} \theta-1\right) \delta\left(\frac{p \cos \theta+E(p)}{M}-x P_{P_{6 q}}\right)
$$

$P_{6 q}=0.00 I 5$ to reproduce Hermes $x=0.452$ (very small $P_{6 q}$)

6 quark model

FIG. 4: (Color online) Computed values of $b_{1}^{6 q}$ from Eq. (26). Sensitivity to parameters is displayed. (a) Solid (blue) uses $R=1.2 \mathrm{fm}, \mathrm{m}=338 \mathrm{MeV}$, long dashed (Red) R is decreased by 10%, dotted(green) R is increased by 10%.(b) Solid (blue) uses $R=1.2 \mathrm{fm}, \mathrm{m}=338 \mathrm{MeV}$, long dashed (Red) m isincreased by 10%, dotted(green), m is decreased by 10%.

Small at low x, where pionic effect is relevant Valence quarks carry higher momentum

pionic and 6 q contributions

Can reproduce data, so far JLab experiment needed to test no other known mechanism contributes at the higher values of x

Shadowing -double scattering

Bora, Jaffe PRD57,6906

Small at JLab x

Prediction for JLab

FIG. 6: (Color online) Computed values of $100\left(b_{1}^{\pi}+b_{1}^{6 q}\right)$, for values of $Q^{2}=1.17,1.76,2.12$ and 3.25 GeV^{2} [29] distributions and for [35] (lowest curve at $x=0.15$). For the other curves, b_{1}^{π} increases as Q^{2} increases for small values of x.

Close Kumano PR D42, 2377 Sum Rule CKSR

- Derived assuming $\begin{gathered}d x b_{1}(x)=0 \\ \text { is carried by valence }\end{gathered}$ quarks
- Analogous to Gottfried sum rule for the integral of $F_{2 p}-F_{2 n}$ which assumed $\bar{u}=\bar{d}$
- various effects of the sea violate CKSR
- violations may be more interesting than the sum rule

CKSR-pion effect

$$
\begin{aligned}
& \left.\int_{0}^{1} d x b_{1}^{\pi}(x)=\frac{1}{2} \int_{0}^{1} d x \int_{x}^{\infty} \frac{d y}{y} q^{\pi}(x / y)\right) \delta f_{\pi}((y)) \\
& =\frac{1}{2} \int_{0}^{2} d y \delta f_{\pi}(y) \int_{0}^{1} d u q^{\pi}(u) . \quad \neq 0, \quad=\infty
\end{aligned}
$$

CKSR- nucleon

$$
\int b_{1}^{N}(x)=\int_{0}^{2} d y \int d^{3} p F_{d}(p)\left(3 \cos ^{2} \theta-1\right) \delta\left(y-\frac{p \cos \theta+E}{M}\right) \int_{0}^{1} F_{1 N}(u) d u
$$

If integrate over all y, get $0 \times \infty$
Can't, so get ∞

CKSR - shadowing - CKSR is not 0

CKSR- six quark effect

$$
b_{1}^{6 q}(x)=-\sqrt{\frac{N_{0} N_{2}}{2}} \frac{3}{4 \pi} \int d^{3} p f_{0} f_{2}\left(3 \cos ^{2} \theta-1\right) \delta\left(\frac{p \cos \theta+E(p)}{M}-x\right) P_{6 q} .
$$

Integral over all x vanishes

Summary of bı results

- Pionic effects sizable for $\mathrm{x}<0.2$
- Reproduces HERMES data there
- 6-quark hidden color effects can enter at larger values of x
- Combination reproduces HERMES data
- Predictions made for future JLAB data
- CKSR does not hold except for 6-quark effects
- If CKSR holds, $b_{ı}$ must be both positive and negative
- Observing such would provide evidence for 6-quark hidden-color components of the deuteron

