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VI. SUMMARY

This paper contains an evaluation of the pion exchange and six-quark, hidden-color contri-
bution to the b1 structure function of the deuteron. The pion-nucleon form factor is constrained
phenomenologically to reduce a possible uncertainty. There is some numerical sensitivity to
using different pionic structure functions. The pionic mechanism is sizable for small values
of x, and can reproduce Hermes data [3] for values of x less than 0.2. A postulated model
involving hidden-color components of the deuteron is shown to complement the effects of pion
exchange in reproducing the Hermes data for all measured values of x. Predictions are made
for an upcoming JLab experiment [7]. The sum-rule of Close & Kumano, Eq. (28) is shown
to be violated for the three previously published mechanisms that contribute to b1. However,
the sum rule holds when the mechanism involves valence quarks, such as in the present hid-
den color model. This means that such contributions (if non-zero) must yield negative and
positive contributions to b1. Finding such an up-down pattern is an interesting and significant
problem for experimentalists. A clear observation of such a pattern would provide significant
evidence for the existence of hidden-color components of the deuteron.
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Outline

• What is the b1 Structure Function of the Deuteron?

• Nucleonic contributions negligible

• Pion exchange contributions

• 6 quark, hidden-color contributions

• Double scattering (shadowing) contributions

• Close-Kumano sum rule



b1 structure function DIS

Direction of photon= spin quantization axis
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ABSTRACT

The b1 structure function is measurable in deep inelastic scattering from polarized nuclei

with unpolarized beams. The contributions of nuclear pions are evaluated and found to be

smal| about2%o.

INTRODUCTION

The b1 structure function is measurable in
deep inelastic lepton scattering from
polarized nuclei of spin i. Hoodbhoy et

al1 have pointed out that novel (non-

nucleonic) effects migftt be discemable in
such measurements. The purpose here is

to evaluate the b1 structure function for the

simplest nuclear target-the deuteron.

Much is known about the deuteron wave
function, so that one may have reasonable

confidence in the compued resula fu b1.

Moreover, one may use the deuteron and

simplecounting arguments o guess the
resflts for other targets. The results I
present provide another concrete

illustration of the formalismpresented by

Jaffe.2,3

Here is an outline of the presentation. I
will define the function b1(x). Then some

general criteria to obtain b1 * 0 are

discussed The nucleonic contributions
for the deuteron target are found to be

small, except at very high values of the

Bjorken x variable. Then the pionic
contributions are evaluated- These amount

to abott2%o at low x. Finally, ttre 6Li

target is examined, but the pionic effects

are also small.

DEFINMONS

Consider deep inelastic scattering from a

polarized J=l target (T) with Jr=rs. (f[s
direction of the virnral photon momentum
(z) is used as the spin quantization axis.)
The differential cross section can be

written as

626(m) * Jpv wlfi] (1)

with 2pv as the standard lepton tensor and

49 = Jaar eie'' < T,J=1,m1

Ur.r.(r)'jv(0)llT,J=1,m>' (2)

The F1 strucnrrc function is obtained for
an unpolarized targel Hence

Fr(x) = |

where x = Q/Q};/lq\. A different
strucftue function b1 may be dehned:

b1(x) =w!']-4? s)

In the parton model b1 can be given in
terms of quark distribution functions

b1(x) = q(o)(x)-q(l)(x). (5)

Note that q(m)(x) depends on the J2 of the
target nucleus. It is independent of the

helicity ofthe quarks. Indeed, q(m)(x) is

an averagel

n(m)1x) =l,nF, (*) + qS)) (6)

in which the subscript t indicates the

distribution for a quark ofpositive helicity.

(If conservation of parity hotOs, qf )1 
1x; =

{}.1 ciu"n Eqs. (5) and (6), one may

investigate the content of the b1

observable. Note that the beam need not
be polarized.

(3)> *tT)
m

* Permanent address: Physics Depr, FM-15, Univ. of Washington, Seattle, WA 98195.

unpolarized lepton, polarized target  

W (m)
µν =

∫
d4r〈T, J = 1, Jz = m|[jµ(r), jν(0)]|T, J = 1, Jz − m〉

Hoodbhoy, Jaffe, Manohar NPB312, 571
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* Permanent address: Physics Depr, FM-15, Univ. of Washington, Seattle, WA 98195.

usual average over target spin directions
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Depends on spin direction of target



Experimentalist’s Definition

2.1 Hermes: setup

2.1.2 The polarized Hermes atomic-gas target

Vector and tensor polarization. For a spin-1
2 target (like the proton), the z-

component of the nuclear spin, sz, has two projections m onto the z-axis7, namely
+1

2 and −1
2 (Fig. 2.2, left side). Spin-1 particles have one further possibility to set

their spin in the m = 0 state (Fig. 2.2, right side). For a spin-1
2 target, the vector

polarization Pz is defined for an ensemble of particles n (see Fig. 2.2) as

Pz =
n+ − n−

n+ + n− , |P |z ! 1 (2.1)

and for a spin-1 target

Pz =
n+ − n−

n+ + n− + n0
, |P |z ! 1. (2.2)

Only for a spin-1 target, the tensor polarization Pzz is defined as:

Pzz =
(n+ + n−) − 2n0

n+ + n− + n0
, −2 ! Pzz < 1. (2.3)

The notations for the vector and tensor polarizations Pz and Pzz, respectively, follow
the Madison convention [60].

m = −1
2 +1

2

n+
n−

z

!

m =

n+n− z

−1 0
+1

n0

Figure 2.2: Projections m of the spin z-component onto the z-axis for a spin-1
2

(left) and spin-1 particle (right). nsign(m) denotes the number of particles with spin

quantum number sign(m) · |m | in the ensemble.

If only the m = +1 or m = −1 state is populated, the vector polarization reaches its
largest (absolute) value of 1. For a spin-1 target, the tensor polarization’s absolute value

is then also 1. The extreme value of Pzz = −2 is achieved for vanishing populations
of m = ±1. If in the spin-1 case the target is purely vector polarized (Pzz = 0 and

n0 = 1
2 (n+ + n−)), the state m = 0 is populated with 1

3 of the particles, like for an
unpolarized ensemble. That means that Pz is restricted to values |Pz| ≤ 2

3 . If higher
Pz is desired, the state m = 0 has to be depopulated resulting in a non-vanishing

tensor polarization, except for the very special case that n+/(n+ +n− + n0) = 0.66 (or

7Formally, sz is a quantum mechanical operator with eigenvalues m.

24

2 How can Hermes measure bd
1?

Pzz is25

σmeas = σU

[
1 − PBPzA‖ +

1

2
PzzAzz

]
. (2.13)

σmeas can solely be expressed in terms of the spin-independent cross section σU and the
spin-dependent cross section σP:

σmeas = σU + σP. (2.14)

σP is the sum of the terms in Eq. 2.13 which depend on beam and target polarizations
P and which introduce the inclusive vector and tensor asymmetries A‖ and Azz. The
contribution of the tensor asymmetry to the measured cross section does not depend

on the beam polarization.
Such an asymmetry A compares cross sections σ measured under different polarization

conditions of the target (and possibly the beam). Here, two data modes from scat-
tering off a deuteron target are distinguished: For the vector modes (data with high

vector target polarization Pz), data are discriminated with respect to the particular
relative beam and vector target polarization (denoted by

→⇐ for antiparallel and
→⇒

for parallel spin orientation), and for the tensor modes (data with close-to-zero vector

target polarization), with respect to the sign of the tensor polarization Pzz (positive
for ⇔, negative for 0), compare to Tab. 2.2.

In these terms, the vector asymmetry A‖ compares only subsamples of vector mode
data with each other, taking into account the beam helicity:

A‖ :=
σ

→⇐ − σ
→⇒

2σU
≈ σ

→⇐ − σ
→⇒

σ
→⇐ + σ

→⇒
, (2.15)

where the “≈” in Eq. 2.15 refers to the small tensor dilution term for a spin-1 target in

Eq. 2.32. Azz is a cross section asymmetry discriminating between target states with
the nuclei being in the |m | = 1, or m = 0 state:

Azz :=
2σ1 − 2σ0

3σU
=

2σ1 − 2σ0

2σ1 + σ0
. (2.16)

The cross section σ1 has to be weighted double in the denominator because σ0 is
P 0

zz = 2 (ideal case) times as large as σ1. As can be seen from Tab. 2.2, there are

several compositions possible for the data set with |m | = 1; they are compiled in
Fig 2.10. If n subsets mi with |m | = 1, mi = +1,−1, or ±1, are used, then

σ1 =
1

n

n∑

i

σmi . (2.17)

25The symbol σ denotes here a double differential cross section, double with respect to any two
independent kinematic DIS variables.
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1 Spin physics in polarized DIS

In an experiment, actually A‖ is measured, the asymmetry which probes the question
how many more quarks have their spin anti-aligned to the parent nucleus’ one, than
have it aligned (see Eqs. 2.15 and 2.19). A‖ is a superposition of the two virtual photon

absortion asymmetries:

A‖ = D(A1 + ηA2). (1.17)

Then the ratio g1/F1 can be determined by using Eqs. 1.15-1.17:

g1

F1
=

1

1 + γ2

(
A‖

D
+ (γ − η)A2

)
. (1.18)

At least some knowledge about the magnitude of A2 is required for an unambiguous
determination of g1 from the measured cross section. The spin-dependent structure

function g1 is usually extracted by multiplying the measured ratio from Eq. 1.18 by F1

which has been obtained via Eq. 1.14 from a parameterization of world data on F2:

g1(x, Q2) =

(
g1

F1

)
(x, Q2) · F1(x, Q2) (1.19)

Recent results from g1 measurements and moments are for example compiled in Ref. [3].

The tensor asymmetry Azz is the inclusive cross section asymmetry for a spin-1 target
(like the deuteron) which compares the spin states |m | = 1 and m = 0 (see Eqs. 2.16

and 2.20). The measurement of the tensor asymmetry allows to extract the ratio b1/F1:

b1

F1
= −3

2
Azz. (1.20)

The tensor structure function b1 is obtained from the measured ratio b1/F1 and world

data on F1:

b1(x, Q2) =

(
b1

F1

)
(x, Q2) · F1(x, Q2). (1.21)

Similarily to F1 and F2 in Eq. 1.14, b1 and b2 are related to each other by

2xb1(x, Q2) =
1 + γ2

1 + R
b2(x, Q2). (1.22)

1.5 The tensor structure function of the deuteron

The deuteron. The deuteron is a rather dilute neutron-proton bound state with
a binding energy of only 2.2 MeV. Among possible nuclear targets, it is the best

testing ground for the precise description of nucleon-nucleon interaction since its wave
function |ψd〉 is known far better than that of any other nucleus. It is a superposition of

13



b1 structure function:
potentially interesting

Figure 1: Nucleon densities of the deuteron in its two spin projections, Iz = 0 and Iz = ±1,
respectively. Reproduced from [4, 5].

1.2 Deep Inelastic Scattering from Spin-1 Targets

Four independent helicity amplitudes are sufficient to describe virtual Compton scattering from a

spin-1/2 target, after requiring parity and time reversal invariance. This number doubles for a spin-

1 target, as the spin can be in three states (+, 0, -). This gives rise to a tensor structure which was

first discussed for the deuteron for the real photon case by Pais [6], and later in the virtual photon

case, by Frankfurt and Strikman [7]. Hoodbhoy, Jaffe and Manohar [8] introduced the notation

which we now follow, whereby the tensor structure is described by the four functions b1, b2, b3 and

b4. To summarize, the hadronic tensor can be decomposed as:

Wµν = −F1gµν + F2
PµPν

ν

−b1rµν +
1

6
b2(sµν + tµν + uµν)

+
1

2
b3(sµν − uµν) +

1

2
b4(sµν − tµν)

+i
g1

ν
εµνλσq

λsσ + i
g2

ν2
εµνλσq

λ(p · qsσ − s · qpσ) (4)

where the purely kinematic expressions rµν , sµν , tµν and uµν can be found in [8]. The terms are

all proportional to the polarization of the target E. The spin-1 structure functions F1, F2, g1 and

g2 have the same expressions and are measured the same way as for a spin-1/2 target. The spin-

dependent structure functions b1, b2, b3, b4 are symmetric under µ ↔ ν and E ↔ E∗ and therefore

can be isolated from F1 and g1 by unpolarized beam scattering from a polarized spin-1 target.

1.2.1 Interpretation in the Operator Product Expansion

In the Operator Product Expansion (OPE) framework, the leading operators Oµ1...µn

V and Oµ1...µn

A

in the expansion are twist two. For a spin-1 target, the matrix elements of the time-ordered product

8

Hoodbhoy et al: b1 measures the extent to 
which a target nucleus deviates from a trivial 

bound state of nucleons

m=0 m=1
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Figure 2: Top: HERMES [9] measurement of the inclusive tensor asymmetry Azz(x) and xb1(x)
of the deuteron. Bottom : The tensor structure function b1(x) without x-weighting, which reveals
a steep rise as x → 0.
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CRITERLA FOR br(x) * 0

Use (2), (4) and (5) to absract

n(m)1x) - (T,J-l,mlolT,J=1,m> (7)

in which O is an integral over a current
courmutator, tjr(r)jr(o)1. For b1* 0, O
can not be a scalar operator. The Wigner
Eckhart (WE) theory and (5) constrain O
to be a vector or rank-2 tensor operator.

Furttremrore the parity condition q(1) = (-D
along with the WE theorem says that O
can't be a vector operator. Thus O is a
rank-2 tensor. One may therefore expect

that br(x) measures effects of tensor

forces. This turns out to be the case.

EXAMPLES

It is worthwhile to illustrate the above

argument with some specific examples.

1. Two non-interacting nucleons (total

spin=l) atrest. In this case, the use of(6)
and (7) lbads o

11
q(m)1x) =,-I- <lmfmr i^rrt

Mr,Mz

!tnry''t * n|'*t * nf'*'* qy'*tl (s)

in which nlo'* * the distribution of a

positive helicity quark in a nucleon of
Jz=m. Eq. (8) leads to

q(r)(x)=-i*.tli

and

NUCI.EONIC CONTRIBUTIONS

Now consider deep inelastic scattering
from polarized deuterons @). (This topic
was also considered in Ref. 4). We expect
a non-zero result since the tensor force
provided by the one pion exchange
potential is manife$ in the deuteron
quadrupole moment.

I use a well-known formalism5'6 to
compute the effect of nucleons moving in
the nuclear @) targer One has a

convolution of two probabilities

q(m)1x;= il, n"fvrl fl*)(y)
x

(1 i)

(e)

in which f(m)(y) is a nucleon momentum
distribution

fl')g)=Jdaplr+#

s( g )tnl a<r - SFr 02)

where M is the nucleon mass, Mp is the
deuteron mass, and

s$) ol = .E_, -,-lS,*
m,m

6(-po + Mo-H) bF,m'lD,m>.(i3)

For deuterons at rest, one has p6 = 14-

2.zMeYffi. No closure approximation

is necessary.

Standard techniques may be used to show

b1(x) Jdy (rrp {x/y)+4n(>dy))Afsa(y) (1a)

where

Afsa(y) = 
-ff 

latnu(p)w(p) (3cos20- t;

r($.-r[,*n@* ] <rsr

Here only the s-d interference terms aro

kept. The functions u(p) and w(p) are the
usual s and d-state radial wavefunctions.
The tensor nature of the operator 0 leads to
the 3cos20-1 term. In doing the
calculations, I found that Afso(y) could not
be approximated as a sum of a delta
function and the second derivative of a
delta function.

&

q(o)G)+rqf,irq,|.*;,-i.{,+r (10)

The parity condition says rrr", q'4 = qr!

*d q+ =qlr! . rnu, q(1)1x;=q(o)1x;

and b1(x)=Q.

2. Two nucleons in a relative s-state.
Again J=1, but now the nucleons have
relativo isotropic motion. It takes but a
moment's thought to realize that again
b1(x) must vanish. These two examples
are not surprising, since there are no
tensor operators. Irt's tum to a more
realistic alemple.

Wigner Eckhart: O is tensor of rank 1 or 2
Parity  q(1)=q(-1),  O can’t be rank 1 and 

give non-zero b1

O is a rank 2 tensor, so b1 measures tensor effects

Consequence:

s-wave component of deuteron gives no contribution 
to b1  because m is not relevant
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S(m)
D =

∑

s

〈D,m|b†p,sδ(−p0 + MD − H)bp,s|D,m〉
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Result:  b1=0

Example of (genesis of) Close-Kumano sum rule 
Vanishing integral consistent with b1 being very small

Remark
∫

dxb1(x) ∝
∫

dy∆fsd(y) ∝
∫

d3p u(p)w(p)(3 cos2 θ − 1) = 0

14

VI. SUMMARY

This paper contains an evaluation of the pion exchange and six-quark, hidden-color contri-
bution to the b1 structure function of the deuteron. The pion-nucleon form factor is constrained
phenomenologically to reduce a possible uncertainty. There is some numerical sensitivity to
using different pionic structure functions. The pionic mechanism is sizable for small values
of x, and can reproduce Hermes data [3] for values of x less than 0.2. A postulated model
involving hidden-color components of the deuteron is shown to complement the effects of pion
exchange in reproducing the Hermes data for all measured values of x. Predictions are made
for an upcoming JLab experiment [7]. The sum-rule of Close & Kumano, Eq. (28) is shown
to be violated for the three previously published mechanisms that contribute to b1. However,
the sum rule holds when the mechanism involves valence quarks, such as in the present hid-
den color model. This means that such contributions (if non-zero) must yield negative and
positive contributions to b1. Finding such an up-down pattern is an interesting and significant
problem for experimentalists. A clear observation of such a pattern would provide significant
evidence for the existence of hidden-color components of the deuteron.
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The spin, as well as spin-averaged, twist-two structure functions of the deuteron are calculated in a

version of the convolution model that incorporates relativistic and binding energy corrections. A simple

parametrization of these structure functions is given in terms of a few deuteron wave-function parame-

ters and the free nucleon structure functions. This allows for an easy comparison of structure functions

calculated using different deuteron models.

Deep inelastic scattering (DIS) from nuclear targets
with spin J 1 is interesting for a variety of reasons.
Among possible targets, the deuteron has a position of
privilege because its wave function is known far better
than that of any other nucleus. The fact that it is a rath-
er dilute neutron-proton bound state allows for the ex-

traction of neutron structure functions F&, Fz, g ", , and g 2,
which, because of the absence of neutron targets, cannot
be directly measured. The extraction of g &

is particularly

important in view of the current controversies regarding
the spin of the proton as deduced from the measurements
of g ~. But DIS from a polarized deuteron target is im-

portant for other reasons as well: It was noted rather re-

cently [1] that a J = 1 target has a total of eight different
structure functions which are potentially measurable.

One of these, denoted by b, (x, g ) in Ref. [1], is of con-
siderable interest since it provides a clear measure of pos-
sible exotic effects in nuclei, i.e., the extent to which the
nuclear ground state deviates from being a composite of
nucleons only. A DIS experiment with polarized deute-

rons planned at HERA will allow for the measurement of
all deuteron structure functions [2].
In view of the experimental importance, it would

perhaps be timely to collect together a set of si'mple ex-

pressions by means of which one could calculate the
effect of nuclear Fermi motion and binding upon various

deuteron structure functions. To this end, in this Brief
Report, we use Jaffe's formulation [3] of the convolution
model, which correctly embodies relativistic Fermi
motion corrections as well as binding energy effects. The
limitations of the convolution model have been dwelt

upon earlier [3,4] and will not concern us here. Other

calculations of deuteron structure functions have been

performed by a number of authors using various other

formulations of the convolution model [5]. However, the

results to be presented below are considerably simpler,

and this simplicity affords for an easy comparison be-

tween structure functions obtained from different deute-

ron wave functions. Moreover, spin-dependent and spin-

independent structure functions are obtained simultane-

ously. We also take this opportunity to correct for errors
given in the expression for b, in Ref. [1].
The results for the deuteron structure functions Fj,

b, , and g, are summarized below:

FP(x)= (a, +a +22a )3F&( x)+( az+4a )3xFI(x)

+a,x F", (x),

b i (x)= (Pi+P~+2P3)Fi(x)+(Pq+4P3)xFI (x)

+P3x F", (x),

g t (x)= (y, +yz+2y3)g, (x)+(y2+4y3)xg', (X)

+y3x g')'(x)

where the constants a& are defined by

o.(=1,

the P& by

p, =O,

and the y; by

M

15V2 (M') 20 (M')~~ '

—„'-,(-")., '.(.")„
6 M s 15 2 m sd

60 M'
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FIG. 2. b& (x) (solid curve), the s-d contribution to b& (x)
(dashed curve), and the d-d contribution to b

&
(x) {dot-dashed

curve).

FIG. 3. g& (x) {solid curve), g&(x) (dotted curve), and g& {x)
(dot-dashed curve). The nucleon structure functions are taken
from Ref. [8].

ing to the Reid soft core potential [6] and typical nucleon
structure functions. These are graphed in Figs. 1—3 for
F] b], and gi. hF& /F& where AFi =Fi —Fi —Fi,
is plotted in Fig. 1 along with F&. The Fermi motion of
the nucleon in the deuteron plays an important role at in-
termediate values of x in this ratio. The binding energy
term dominates its behavior at large x. The behavior of
g& (x) is more involved. At small x, g& (x) is quite small

because the g, 's of the neutron and proton tend to cancel
each other. For x)0.45, it starts decreasing and ap-
proaches zero for x ~1. It peaks at x =0.4, the value of
which is less than the sum of the g, 's of the nucleons for

pure s state, while for large x values, g j is greater than

gi +gi.

There is no s-s term in b
&
(x), while s-d and d-d contri-

butions tend to cancel each other. The dominant contri-
bution to b, (x) comes from the interference term, that

is, the s-d term. The zeroth moment of bP(x) is zero,
which merely expresses the conservation of nucleon num-

ber and follows immediately from Eq. (15). The first mo-
ment is calculated to be —6.65X10 . This is a small

number, and hence deviations from this will be a good
signature of exotic eff'ects in the deuteron wave function.
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F1D is of order 1

b1 very small
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Abstract 

The structure functions b&(x) of the deuteron me studied within the c~variant approach. It is shown that the usual 

nonreiativistic convolution model results in an incorrect behavior of these structure functions at small x and violates the 

exact sum rules, Realistic calculations are carried out with the Bethe-Salpeter amplitude of the deuteron and compared with 

the nonrelativistic results. 

The study of the deep inelastic leptun scattering 

with polarized targets and beams provides refined in- 

formation about the quark content of hadrons. These 

days much attention is attracted to the nucleon’s spin- 

dependent Structure Functions (SF), gtz (see, e.g., 

review [ I 1 and references therein). The SFs gt ,Z are 

the simplest example of the spin-de~ndent SFs, which 

exist for all targets witb a nonzero spin, starting s = 

t/2. At the same time, hadrons with a spin higher than 

l/2 have additional spin-dependent SFs [2}. 

The spin-dependent SFs bl,z (n) 2 of spin-1 hadrons 

have been studied on a few occasions, including the 

vector mesons and deuteron (3-83. For mesons some 

qualitative estimates have been done, but “a real un- 

derstanding of bt (x) at the quark level is not yet avail- 

abie” [ 5 1. The only exact sum r&s for mesons have 

been proposed by Efremov and Teryaev 13 f : 

i XNFN postdoctoral fellow. 

‘The notation b1.2 is used, followiag Ref. IS]. 

0  

(for the first of these sum rules see also [6,7] )+ 

It would be unrealistic to suggest that these sum 

roles will be experimentally ver%ed for the mesons 

any time soon. However, they are independent of the 

target, i.e. it is supposed to be valid for the spin- 

1 nuclei as well. The deuteron is the most probable 

candidate for its SFs b1.2 to be measured. Indeed, a 

number of deep inelastic experiments on the polarized 

deuterons are run or being prepared at the world’s best 

facilities, such as SLAC, CERN, CEBAF and DESY. 

These experiments are usually aiming to extract a neu- 

tron SF gt f however, in principke, the same data can be 

nsed to obtain SFs bt,~. The problem is caused only 

by the yet insufficient accuracy of measurements. Re- 

alistic caleuiations with the deuteron wave functions 
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tivistic copulations with good accuracy, despite the 

approximate numerical “inverse Wick rotation” and 

the discussion after Eq. (30). The correspondent in- 

tegrals are N 5 - 10T4 and N 3 s 10e5 and they should 

be compared to the estimate (33). The sum rule ( 15) 

may be used to improve distributions AfNiD by mak- 

ing the integrals for fi”‘” and f~/~ ~ct~y the same. 

However, this does not lead to a significant variation 

in the results for SFs, except x --f 0 for bf (x) . 
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calculations, since the nucleon function Fr( x) can be 
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ever, a contribution of singularity can be evaluated. In- 

deed, let us assume a singular behavior as F/ N C/x, 

then Hq. ( 18) leads for small x to 

bf(x-+O) N c 
x J AfN'Dt~)d~ 

- y - CAfNID(0), (34) 

where Z = 0 in exact relativistic formula, but it can be 

a small number in numerical calculations or in the non- 

relativistic formalism. Thus, the limit of the deuteron 

SF bf (x) as x + 0 is a constant, but one has to exer- 

cise great care in performing the numerical computa- 

tions, since any error leads to a divergent behavior at 

small x. In this context, an adjustment of norms of the 

two terms in formulae (2 1) and (30) has the mean- 

ing of subtraction of the numerical error from by at 

small X. 

The situation with the second sum rule (2) is quite 

different. Numerically it is broken more significantly 

than the previous one. Contending integrals are m 

1 I lob3 and N 3 . 10m3 for relativistic and nonrela- 

tivistic calculations respectively, i.e. about 0.7% and 

2% compared to (33). Therefore, numerical approxi- 

mations slightly damage the relativistic formula. It is 

attributed to the numerical rotation to the Minkowski 

space. An adjustment of the no~~ization, as it has 

been discussed, slightly improves the accuracy (to 

0.5%). On the contrary, the result for the nonrelativis- 
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tic approach is stable with respect to any adjustments, 

since it is defined by the formulae (32). 

The SFs bf and b$’ are calculated within two ap- 

proaches as well. The results are shown in Fig. 3a) and 

b) . The behavior of the functions in Fig. 3a) suggests 

the validity of the sum rule ( 1). At the same time, 

the nonrelativistic calculation for bf in Fig. 3b) (dot- 

ted line) obviously does not satisfy sum rule (2). The 

main difference of the relativistic and nonrelativistic 
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different signs for the SFs. To illustrate the effect of 

the presence of the O-function under the integral in 

the nonrelativistic formula (30), the calculations have 

been done as well with a restricted interval of inte- 

gration over IpI. The condition jpl < 0.7 GeV cor- 

responds to the “softer” deuteron wave function, but 

makes sum rule (32) exact. The corresponding SFs 

are shown in Fig. 3a) and b) (dashed line). The result 

of this “experiment” is that the effect of O-function is 

not quantitatively significant. It also does not affect the 

principal conclusion about the second sum rule (2), 

but makes the defect slightly smaller. This is under- 

standable, since the sum rule breaking terms in (32) 

is cc Jp( costi. 

Solid Bethe-Salpeter
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For nonrelativistic nucleons, E(p) =M—e+p /2M, where e is the binding energy of the deuteron. Similarly, it can be
shown that

b
~
(x)= f [2fIy2(y) f Iy2(y) f tyz(y) V'i

X

hbyF,
2 dy x
x y

where

hb(y)= d p
— —sinacosau, (p)ud(p)+ sin aud(p)3 — 3 3 2 2

4n 2 16m

(3/81)1 +pcos8p5pcos8+E(p)
4M 2

(16)

(Equation (15) replaces the corresponding equation for b, in Ref. [1] where some Clebsch-Gordan coefficients were

evaluated incorrectly, and the lower component of the nucleon wave function is in error by a factor of —,. ) Similarly,

the antisymmetric part of the helicity amplitude is

AggsH(x)= f dy f dz 5(x —yz) g g, (y)As,'"h, (z),
s= f$

where

g,"(y)=fd'p 0,"'(p)(1+a3)r54, (p» y- p cos8+E(p) (18)

The spin-averaged distribution function is essentially the difference in the momentum distribution of the nucleon with

momentum fraction y with spin 1' and $ in the deuteron of helicity H modified by relativistic effects,

g, (x)= f dy f dz 5(x —yz)[g, zz(y) —g', &2(y)]g, (z)

= '""~gyg, —",
x

where

bg(y)= fd p cos au, (p)+ —cosasinau, (p)ud(p)(3cos 8—1)

+—sin a ud(p)(3 cos 8—2) p cos8 p (1
—cos 8) p cos8+E(p)'+

M 4M
' ' M

(19)
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expressible to O(p /M ) in terms of the parameters

defined in Eqs. (4)—(6) as
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To illustrate the use of the results derived in this Brief
Report, we take the deuteron wave function correspond-
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encounters an exchanged pion (dashed line), breaking it up forming a complicated state (blob) which
then emits the pion which is absorbed by another nucleon. The imaginary part of this graph is
related to the deep inelastic structure functions of the deuteron.

II. ONE PION EXCHANGE EFFECTS

The pionic contribution to the nuclear quark distribution [25] for a spin 1 target of Jz = m
is given by [4, 26]

∆πq
(m)(x) =

∫ ∞

x

dy

y
qπ(x/y)f (m)

π (y), (3)

where qπ(x) is the charged-weighted quark structure function of the pion (assumed to be the
same for nuclear pions as for free pions):

qπ(x) =
5

9
uπ
v (x) +

10

9
ūπ +

2

9
sπ(x), (4)

where uπ
v is the valence u quark distribution of the π+ and sπ is the sea quark distribution of

a flavor symmetric pion sea, and the probability to find a pion residing in a deuteron D of
Sz = m is given by

f (m)
π (yA) =

∫ dξ−

2π
e−iyAP+

D ξ−〈D,m|φπ(ξ
−)φπ(0)|D,m〉c, (5)

where the subscript c stands for connected terms. The matrix element in Eq. (5) is a light-
cone correlation function evaluated in the laboratory frame, so that P+

D = MD. We suppress
the notation for the Q2 dependence of the pion structure function, but include its effects in
calculations discussed below.

3

π

π

γ∗

γ∗

FIG. 1: Forward Compton scattering diagram for the Sullivan process. The virtual photon γ∗

encounters an exchanged pion (dashed line), breaking it up forming a complicated state (blob) which
then emits the pion which is absorbed by another nucleon. The imaginary part of this graph is
related to the deep inelastic structure functions of the deuteron.

II. ONE PION EXCHANGE EFFECTS

The pionic contribution to the nuclear quark distribution [25] for a spin 1 target of Jz = m
is given by [4, 26]

∆πq
(m)(x) =

∫ ∞

x

dy

y
qπ(x/y)f (m)

π (y), (3)

where qπ(x) is the charged-weighted quark structure function of the pion (assumed to be the
same for nuclear pions as for free pions):

qπ(x) =
5

9
uπ
v (x) +

10

9
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The resulting contribution to b1 is given by

bπ1 (x) =
1

2

(
∆πq

(0)(x)−∆πq
(1)(x)

)
. (6)

The expression, Eq. (5), for f (m)
π is evaluated by saturating the intermediate states with 2

nucleon, 1 pion states. We use the nucleon variable y with yM = yAMD (M is the nucleon
mass). Evaluation using non-relativistic dynamics and neglecting retardation effects in the
pion propagator leads to

f (m)
π (y) =

−3yg2

(2π)3

∫ d3q

(q2 +m2
π)

2

G2
A(q

2)

G2
A(0)

δ(My − qz)Fm(q), (7)

with

Fm(q) ≡
∫

d3r〈D,m|e−iq·r  1 · q  2 · q|D,m〉, (8)

where r is the displacement between the neutron and proton, g is the pion-nucleon coupling
constant (we use 13.5) and M is the nucleon mass. The nucleons involved in non-relativistic
nuclear wave functions are on their mass-shell. This means that one may use the generalized
Goldberger-Treiman relation [27]) to relate the pion-nucleon form factor GπN(t) to the axial
form factor:

GπN(t) =
M

fπ
GA(t), (9)

where t is the square of the four-momentum transferred to the nucleons, GA(t) is the axial
vector form factor and fπ is the pion decay constant and GπN(0) ≈ g. Using Eq. (9) has
obvious practical value because it relates an essentially unmeasurable quantity GπN with one
GA that is constrained by experiments, and has been used in obtaining Eq. (7). We use the
dipole form: GA(Q2)/GA(0) = 1/(1 + (Q2/M2

A))
2, with MA as the so-called axial mass. The

values of MA are given by MA = 1.03± 0.04 GeV as reviewed in [27]. This range is consistent
with the one reported in a later review [28].

To proceed it is convenient to use the following representation [12] of the deuteron wave
function:

〈r|D,m〉 = 1√
4π

[
u(r)

r
|1,m〉+ w(r)

r

(3  1 · r̂  2 · r̂− 1)√
8

|1,m〉
]

, (10)

where |1,m〉 represents the triplet spin wave function. Evaluation of Eq. (7) yields the results

Fm(q) = F uu
m (q) + F uw

m (q) + Fww
m (q), (11)

where

F uu
±1 = q2zIuu0(q), F

uu
0 = (q2⊥ − q2z)Iuu0(q), (12)

F uw
±1 = − 1√

2
(3q2 − q2z)Iuw2(q), F

uw
0 = − 1√

2
(3q2 −

(
q2⊥ − q2z)

)
Iuw2(q), (13)

5

FIG. 2: δfπ(y) of Eq. (19). The results obtained with the Argonne V18 deuteron wave function [30]
overlap with those of the Reid ’93 potential [31].

Fww
±1 = q2zIww0(q) +

1

4
(3q2 − q2z)Iww2(q), (14)

Fww
0 = (q2⊥ − q2z)Iww2(q) +

1

4

(
3q2 − (q2⊥ − q2z)

)
Iww2(q), (15)

IabL(q) ≡
∫ ∞

0
dr a(r)b(r)jL(qr). (16)

where a, b = u, w, L = 0, 2 and q2 = q2 = q2z+q2⊥. We need the combinations F ab
0 (q)−F ab

1 (q) ∝
(q2−3q2z) to compute b1. Therefore it is useful to define the integral which gives the individual
terms of f (0)

π (y)− f (1)
π (y) :

fabL(y) ≡ − 3yg2

(2π)2

∫ d3q

(q2 +m2
π)

2

δ(My − qz)

(1 + q2

M2
A
)4

(
q2 − 3q2z

)
IabL(q), (17)

= −3yg2

8π2

∫ ∞

0

dq2⊥
(q2⊥ +M2y2 +m2

π)
2

1

(1 +
q2⊥+M2y2

M2
A

)4

(
q2⊥ − 2M2y2

)
IabL(

√
q2⊥ +M2y2).(18)

Then

δfπ(y) ≡ f (0)
π (y)− f (1)

π (y) = fuu0(y) +

√
2

2
fuw2(y) + fww0(y)−

1

4
fww2(y), (19)

and

bπ1 (x) =
1

2

∫ ∞

x

dy

y
qπ(x/y)δfπ(y). (20)

The key output of the present section is the function δfπ(y), which is displayed in Fig.2.
The Argonne V18 deuteron wave function [30] is used here, but virtually identical results
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∼ −y

∫
d3q

(q2 + m2
π)2

· · · δ(My − qz)(q2 − 3q2
z)

∫
dy

f(y)
y

= 0

4

The resulting contribution to b1 is given by
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∆πq
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. (6)

The expression, Eq. (5), for f (m)
π is evaluated by saturating the intermediate states with 2

nucleon, 1 pion states. We use the nucleon variable y with yM = yAMD (M is the nucleon
mass). Evaluation using non-relativistic dynamics and neglecting retardation effects in the
pion propagator leads to
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with

Fm(q) ≡
∫
d3r〈D,m|e−iq·rσ1 · qσ2 · q|D,m〉, (8)

where r is the displacement between the neutron and proton, g is the pion-nucleon coupling
constant (we use 13.5) and M is the nucleon mass. The nucleons involved in non-relativistic
nuclear wave functions are on their mass-shell. This means that one may use the generalized
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where t is the square of the four-momentum transferred to the nucleons, GA(t) is the axial
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II. ONE PION EXCHANGE EFFECTS

The pionic contribution to the nuclear quark distribution [25] for a spin 1 target of Jz = m
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cone correlation function evaluated in the laboratory frame, so that P+
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the notation for the Q2 dependence of the pion structure function, but include its effects in
calculations discussed below.
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(m)(x) =

∫ ∞

x

dy

y
qπ(x/y)f (m)

π (y), (3)

where qπ(x) is the charged-weighted quark structure function of the pion (assumed to be the
same for nuclear pions as for free pions):

qπ(x) =
5

9
uπ
v (x) +

10

9
ūπ +

2

9
sπ(x), (4)

where uπ
v is the valence u quark distribution of the π+ and sπ is the sea quark distribution of

a flavor symmetric pion sea, and the probability to find a pion residing in a deuteron D of
Sz = m is given by

f (m)
π (yA) =

∫ dξ−

2π
e−iyAP+

D ξ−〈D,m|φπ(ξ
−)φπ(0)|D,m〉c, (5)

where the subscript c stands for connected terms. The matrix element in Eq. (5) is a light-
cone correlation function evaluated in the laboratory frame, so that P+

D = MD. We suppress
the notation for the Q2 dependence of the pion structure function, but include its effects in
calculations discussed below.

4

The resulting contribution to b1 is given by

bπ1 (x) =
1

2

(
∆πq

(0)(x)−∆πq
(1)(x)

)
. (6)

The expression, Eq. (5), for f (m)
π is evaluated by saturating the intermediate states with 2

nucleon, 1 pion states. We use the nucleon variable y with yM = yAMD (M is the nucleon
mass). Evaluation using non-relativistic dynamics and neglecting retardation effects in the
pion propagator leads to

f (m)
π (y) =

−3yg2

(2π)3

∫ d3q

(q2 +m2
π)

2

G2
A(q

2)

G2
A(0)

δ(My − qz)Fm(q), (7)

with

Fm(q) ≡
∫

d3r〈D,m|e−iq·r  1 · q  2 · q|D,m〉, (8)

where r is the displacement between the neutron and proton, g is the pion-nucleon coupling
constant (we use 13.5) and M is the nucleon mass. The nucleons involved in non-relativistic
nuclear wave functions are on their mass-shell. This means that one may use the generalized
Goldberger-Treiman relation [27]) to relate the pion-nucleon form factor GπN(t) to the axial
form factor:

GπN(t) =
M

fπ
GA(t), (9)

where t is the square of the four-momentum transferred to the nucleons, GA(t) is the axial
vector form factor and fπ is the pion decay constant and GπN(0) ≈ g. Using Eq. (9) has
obvious practical value because it relates an essentially unmeasurable quantity GπN with one
GA that is constrained by experiments, and has been used in obtaining Eq. (7). We use the
dipole form: GA(Q2)/GA(0) = 1/(1 + (Q2/M2

A))
2, with MA as the so-called axial mass. The

values of MA are given by MA = 1.03± 0.04 GeV as reviewed in [27]. This range is consistent
with the one reported in a later review [28].

To proceed it is convenient to use the following representation [12] of the deuteron wave
function:

〈r|D,m〉 = 1√
4π

[
u(r)

r
|1,m〉+ w(r)

r

(3  1 · r̂  2 · r̂− 1)√
8

|1,m〉
]

, (10)

where |1,m〉 represents the triplet spin wave function. Evaluation of Eq. (7) yields the results

Fm(q) = F uu
m (q) + F uw

m (q) + Fww
m (q), (11)

where

F uu
±1 = q2zIuu0(q), F

uu
0 = (q2⊥ − q2z)Iuu0(q), (12)

F uw
±1 = − 1√

2
(3q2 − q2z)Iuw2(q), F

uw
0 = − 1√

2
(3q2 −

(
q2⊥ − q2z)

)
Iuw2(q), (13)
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FIG. 3: Color online. Computed values of bπ1 , for different pion structure function at Q2 = 1.17
GeV2. Solid- full structure function [29] short-dashed (blue) valence [29], Dot Dashed (Red) full
structure function (mode 3) [35],Long dashed (green) (mode 3) [35]

Eq. (26) renders the contribution very small for small values of x. This is seen in the figure.
However, there is a large negative contribution at values of x ≈ 0.4, as well as a double-node
structure. The latter arises from the factor 3 cos2 θ−1 appearing in the integrand of Eq. (25).
The contributions of the hidden-color configurations are generally much smaller than those of
exchanged pions except for values of x larger than about 0.35. We also predict that, for even
larger values of x, b1 changes sign and may have another maximum. This mechanism allows
contributions at large values of x. A quark in a hidden color, six quark configuration can
have up to two units of x. The parameter dependence of the model is also explored. Fig. 4a
shows the dependence on the value of R and Fig. 4a shows the dependence on the value of
m. For each of the curves P6q is chosen so that the value at x = 0.452 is the same. Shifting
the value of R while keeping b6q1 (0.452) fixed requires less than 4% changes in the value of
P6q. Increasing the value of the quark mass produces larger effects. Keeping b6q1 (0.452) fixed
requires that the value of P6q needs to be decreased by 20% if the value of the quark mass
is increased by 10%, and the value of P6q needs to be increased by about a factor of 1.8 if
the value of the quark mass is decreased by 10%. In the remainder of this paper, we use the
central values R = 1.2 fm, m = 338 MeV.

At this stage we can assess the size of our computed bπ1 and b6q1 versus the only existing
data [3]. These data is given in Table I along with our computed values of bπ1 using the pion
structure functions of Re. [29] and the three modes of [35]. These modes differ in the fraction
of momentum carried by the sea: 10%,15% and 20% for modes 1,and 3 respectively. The
differences obtained by using different structure functions are generally not larger than the
experimental error bars. For values of x less than about 0.2, there is qualitative agreement

29 Aicher et al PRL105, 252003 
35 Sutton et al PRD45, 2349
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FIG. 5: Computed values of b1 = bπ1 + b6q1 from Eq. (20) and Eq. (26). The pion structure function
is that of [29], model 1

does contribute at larger values of x. One may roughly think of the prediction for the JLab
experiment as arising from bπ1 for x < 0.2 and from b6q1 for x > 0.2.

V. SUM RULE OF CLOSE & KUMANO [24]

Close & Kumano found a sum rule that the integral of b1(x) vanishes:
∫

dxb1(x) = 0, (28)

TABLE I: Measured values (in 10−2 units) of the tensor structure function b1. Both the statistical
and systematic uncertainties are listed. The numbers in parenthesis refer to the structure function
modes of Ref. [35] .

〈x〉 〈Q2〉 b1 ±δb1
stat ±δb1

sys bπ1 [29] b
π
1 [35] (1) bπ1 [35] (3) b6q1

[GeV2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

0.012 0.51 11.20 5.51 2.77 10.5 15.5 24.1 0.00

0.032 1.06 5.50 2.53 1.84 5.6 6.8 8.9 0.00

0.063 1.65 3.82 1.11 0.60 4.2 3.7 4.1 0.00

0.128 2.33 0.29 0.53 0.44 1.6 1.3 1.3 0.01

0.248 3.11 0.29 0.28 0.24 -0.55 .13 0.12 0.41

0.452 4.69 -0.38 0.16 0.03 -0.02 -0.02 -0.022 -0.38

HERMES

Non 0 at 
high x
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At very small values of x effects of shadowing (double scattering) are expected to be
important [8–10]. Our focus here is on the kinematic region of higher values of x that are
available to the JLab experiment. It is therefore natural to think of the nuclear Sullivan
mechanism [11], Fig. 1, in which an exchanged pion is struck by a virtual photon produced
by an incoming lepton. That the one-pion exchange potential OPEP gives a tensor force of
paramount importance in deuteron physics is a nuclear physics textbook item [12]. Indeed,
realistic deuteron wave functions can be constructed using only the OPEP along with a suitable
cutoff at short distances [13–16]. Therefore it is reasonable to estimate the size of such pionic
effects. The present author did this in 1989 conference proceeding [4], finding that the effects
are small. See also [8]. However, as experimental techniques have improved dramatically,
the meaning of small has changed. Therefore, considering the planned JLab experiment, it is
worthwhile to re-assess the size and uncertainties of the pionic effects.

However, the Hermes experiment [3] presents an interesting puzzle because it observed
a significant negative value of b1 for x = 0.45. At such a value of x, any sea quark effect
such as arising from double-scattering or virtual pions is completely negligible. Furthermore,
the nucleonic contributions are computed to be very small [4–6], so one must consider other
possibilities. We therefore take up the possibility that the deuteron has a six-quark component
that is orthogonal to two nucleons. Such configurations are known to be dominated by the
effects of so-called hidden-color states in which two color-octet baryons combine to form a
color singlet [17]. In particular, a component of the deuteron in which all 6 quarks are in
the same spatial wave function (|6q〉) can be expressed in terms on nucleon-nucleon NN ,
Delta-Delta ∆∆ and hidden color components CC as [17]:

|6q〉 =
√
1/9|N2〉+

√
4/45|∆2〉+

√
4/5|CC〉. (2)

This state has an 80% probability of hidden color and only an 11% probability to be a nucleon-
nucleon configuration. In the following, the state |6q〉 is simply referred to as hidden color
state.

The discovery of the EMC effect caused researchers to consider the effects of such six-quark
states [18] and in a variety of nuclear phenomena [19–21]. Furthermore, the possible discovery
of such a state as a di-baryon resonance has drawn recent interest [22]. Therefore we propose
a model of a hiden-color six-quark components of the s and d-states of the deuteron. We also
note that including a six-quark hidden color component of the deuteron does not lead to a
conflict with the measured asymptotic d to s ratio of the deuteron [23].

Sect. II presents the formalism for computing pionic contributions to b1. Sec. III presents
our simple model for the hidden color s and d states of the deuteron. Sec. IV compares the
effects of pions and hidden color with the existing Hermes data and makes predictions for the
upcoming JLab experiment. The sum rule of Close & Kumano [24] that

∫
dx b1(x) = 0 is

discussed in Sec. V and summary remarks are presented in Sec. VI.
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are obtained with the Reid ’93 potential [31]. Note the double node structure, a consequence
of the tensor nature of the operator, that can be understood by examining Eq. (17) and the
functions IabL(q). For small values of y, fabL(y) ∝ (−y), but for larger values of y = qz, the
integrand changes sign. A node in the functions IabL(q) causes another sign change at still
larger values of y. Indeed, we may use Eq. (17) to obtain a sum rule:

∫ ∞

−∞
dy

fabL(y)

y
= 2

∫ ∞

0
dy

fabL(y)

y
= 0, (21)

with the 0 resulting from the feature
∫
d3qf(q2)(q2 − 3q2z) = 0. This sum rule has been used

as a numerical check on the integrals. No general result for
∫
dy f(y) can be obtained because

of the factor y appearing in front of the integral in Eq. (17).

III. HIDDEN-COLOR SIX-QUARK STATES

We investigate the possible relevance of hidden-color six-quark states. For this purpose, it is
sufficient to use the simplest of many possible models. Thus we assume a deuteron component
consisting of six non-relativistic quarks in an S-state. As stated above, such a state has only
a probability of 1/9 to be a nucleon-nucleon component, and is to a reasonable approximation
a hidden color state, so we use the terminology six-quark, hidden color state. Then we obtain
the corresponding d state by promoting any one of the quarks to a d3/2-state. We define these
states by combining 5 s-state quarks into a spin 1/2 component, which couples with the either
the s1/2 of d3/2 single-quark state to make a total angular momentum of 1. We therefore write
the wave functions of these states for a deuteron of Jz = H as

ψj,l,H(p) =
√
Nlfl(p)

∑

ms,mj

Yjlmj〈jmj,
1

2
ms|1H〉, (22)

where l, j = s1/2 or d3/2, Nl is a normalization constant chosen so that∫
d3pψ̄j,l,H(p)γ+ψj,l,H(p) = 1 and Yjlmj is a spinor spherical harmonic. The matrix element

for transition between the l = 0 and l = 2 states is given by the light-cone distribution:

FH(x6q) =
1
2

∫
d3pψ̄1/2,0,H(p)γ+ψ3/2,2,H(p)δ

(
p cos θ+E(p)

M6q
− x6q

)
, (23)

where E(p) =
√
p2 +m2 with m as the quark mass, and M6q is the mass of the six-quark bag,

x6q is the momentum fraction of the six-quark bag carried by a single quark and x6qM6q =
xM [18]. Note that p cos θ is the third (z) component of the momentum, so that the plus
component of the quark momentum is E(p) + p cos θ. We take M6q = 2M (its lowest possible
value) to make a conservative estimate.

The term of interest b1(x) is given by

b6q1 (x) =
1

2
(2) (F0(x)− F1(x))P6q, (24)
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a probability of 1/9 to be a nucleon-nucleon component, and is to a reasonable approximation
a hidden color state, so we use the terminology six-quark, hidden color state. Then we obtain
the corresponding d state by promoting any one of the quarks to a d3/2-state. We define these
states by combining 5 s-state quarks into a spin 1/2 component, which couples with the either
the s1/2 of d3/2 single-quark state to make a total angular momentum of 1. We therefore write
the wave functions of these states for a deuteron of Jz = H as

ψj,l,H(p) =
√
Nlfl(p)

∑

ms,mj

Yjlmj〈jmj,
1

2
ms|1H〉, (22)

where l, j = s1/2 or d3/2, Nl is a normalization constant chosen so that∫
d3pψ̄j,l,H(p)γ+ψj,l,H(p) = 1 and Yjlmj is a spinor spherical harmonic. The matrix element

for transition between the l = 0 and l = 2 states is given by the light-cone distribution:

FH(x6q) =
1
2

∫
d3pψ̄1/2,0,H(p)γ+ψ3/2,2,H(p)δ

(
p cos θ+E(p)

M6q
− x6q

)
, (23)

where E(p) =
√
p2 +m2 with m as the quark mass, and M6q is the mass of the six-quark bag,

x6q is the momentum fraction of the six-quark bag carried by a single quark and x6qM6q =
xM [18]. Note that p cos θ is the third (z) component of the momentum, so that the plus
component of the quark momentum is E(p) + p cos θ. We take M6q = 2M (its lowest possible
value) to make a conservative estimate.

The term of interest b1(x) is given by

b6q1 (x) =
1

2
(2) (F0(x)− F1(x))P6q, (24)

Harmonic oscillator 
wave functions 

f0(p) = e−p2R2/2, f2(p) = −p2R2e−p2R2/2

E(p) =
√

p2 + m2, m = 338 MeV quark mass, R = 1.2 fm from bag

7

where P6q is the product of the probability amplitudes for the 6-quark states to exist in the
deuteron, and the factor of 2 enters because either state can be in the d-wave. Evaluation of
FH using Eq. (22) leads to the result:

b6q1 (x) = −
√

N0N2
2

3
4π

∫
d3pf0f2(3 cos2 θ − 1)δ

(
p cos θ+E(p)

M − x
)
P6q.

(25)

To proceed further we specify the wave functions to be harmonic oscillator wave functions.
We take f2(p) = −p2R2e−p2R2/2, f0(p) = e−p2R2/2, where R is the radius parameter. R is
chosen as 1.2 fm, which corresponds to the measured radius of the nucleon and the notion
that the bag model stability condition gives the radius of the 6-quark bag to be about 1.4
times the nucleon radius. We use a quark mass of 338 MeV [32]. A spread of values of the
model parameters R,m around the central values of 1.2 fm, 338 MeV will be examined below.

The evaluation of b6q1 (x) proceeds by using d3p = 2πp2dpd cos θ, integrating over cos θ, and
changing variables to u ≡ p2R2. The result is

b6q1 (x) =
6MR√
30π

∫ ∞

umin(x)
du e−u

[
3((x2M2 +m2)R2 + u− 2xMR

√
u+m2R2)− u

]
P6q, (26)

where

umin(x) ≡
(x2M2 −m2)2R2

4x2M2
. (27)

IV. RESULTS

We may now start examining the resulting phenomenology, considering first the pionic
contributions. The quark distribution function of the pion, qπ is needed to evaluate bπ1 as
shown in Eq. (20). Evaluation requires knowledge of this function over a wide range of its
argument and x/y can be very small. However, knowledge of qπ comes from fixed-target
Drell-Yan data at values of x ≥ 0.3 [33, 34]. We display the sensitivity to different versions
of qπ in Fig. 3. We display results for the full and valence distributions of [29], and for the
full and valence distributions of [35] at Q2 = 1.17 GeV2. The sea is important for values of x
less than about 0.1. This is unfortunate because the Drell-Yan data at large x embody little
sensitivity to the sea. However, the computed values of bπ1 are not very different for the two
parameterizations, except for very small values of x. The solid and dashed curves show the
result of using two different valence quark distributions of [29] at Q2 = 0.4 GeV2. For Fit 3
(solid) qπ(x) ∼ x−0.3 while for Fit 4 (dashed) qπ(x) ∼ x0.06 .

We now turn to the determine the contributions due to hidden color, b6q1 provided by
Eq. (26). The value of b6q1 x = 0.452 is relevant because the pionic contribution is negligible,
and the measured value, b1 = −3.8± 0.16× 10−3, differs from zero. We choose P6q = 0.0015
to reproduce the central value using R = 1.2 fm and m = 338 MeV. Such a very, very small
value can not be ruled out by any observations.

The results for b6q1 are shown in Fig. 4. Results using the model parameters R = 1.2 fm,
m = 338 MeV are shown as the solid curves in Figs. 4a and b. The exponential appearing in

P6q= 0.0015 to reproduce Hermes x=0.452  (very small P6q) 
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FIG. 4: (Color online) Computed values of b6q1 from Eq. (26). Sensitivity to parameters is displayed.
(a) Solid (blue) uses R = 1.2 fm, m=338 MeV, long dashed (Red) R is decreased by 10%, dot-
ted(green) R is increased by 10%. (b) Solid (blue) uses R = 1.2 fm, m=338 MeV, long dashed (Red)
m isincreased by 10%, dotted(green), m is decreased by 10%.

between the measurements and the calculations of bπ1 (which are much larger than those of
b6q1 ), given the stated experimental uncertainties and the unquantifiable uncertainty caused by
lack of knowledge of the sea. However, the large-magnitude negative central value measured
at x = 0.452 is two standard deviations away from the value provided by bπ1 but in accord with
the value provided by b6q1 . Thus our result is that one can reproduce the Hermes measurements
by using pion exchange contributions at low values of x and hidden-color configurations at
larger values of x. This is also shown in Fig. 5, where very good agreement between data and
our model can be observed. The contributions of double scattering [10] are far smaller than
the measurements for the values of x displayed in the table and in Fig. 5, and are therefore
neglected here.

The next step is to make predictions for the JLab experiment. Our results for b1 = bπ1 + b6q1
are shown in Fig. 6. For values of x less than about 0.2 the computed values of b1 are
dominated by those of bπ1 . For larger values of x the computed results are not significantly
different from 0. This result combined with the very small large x results for nucleonic [1, 5, 6]
and double-scattering contributions [8–10], makes the case that an observation of a value of
b1 significantly different than zero for values of x greater than about 0.3 would represent a
discovery of some sort of exotic nuclear physics. Our model Eq. (26) leads to an effect that

Vary R

Vary m

Small at low x, where pionic effect is relevant
Valence quarks carry higher momentum
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FIG. 5: Computed values of b1 = bπ1 + b6q1 from Eq. (20) and Eq. (26). The pion structure function
is that of [29], model 1

does contribute at larger values of x. One may roughly think of the prediction for the JLab
experiment as arising from bπ1 for x < 0.2 and from b6q1 for x > 0.2.

V. SUM RULE OF CLOSE & KUMANO [24]

Close & Kumano found a sum rule that the integral of b1(x) vanishes:
∫

dxb1(x) = 0, (28)

TABLE I: Measured values (in 10−2 units) of the tensor structure function b1. Both the statistical
and systematic uncertainties are listed. The numbers in parenthesis refer to the structure function
modes of Ref. [35] .

〈x〉 〈Q2〉 b1 ±δb1
stat ±δb1

sys bπ1 [29] b
π
1 [35] (1) bπ1 [35] (3) b6q1

[GeV2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

0.012 0.51 11.20 5.51 2.77 10.5 15.5 24.1 0.00

0.032 1.06 5.50 2.53 1.84 5.6 6.8 8.9 0.00

0.063 1.65 3.82 1.11 0.60 4.2 3.7 4.1 0.00

0.128 2.33 0.29 0.53 0.44 1.6 1.3 1.3 0.01

0.248 3.11 0.29 0.28 0.24 -0.55 .13 0.12 0.41

0.452 4.69 -0.38 0.16 0.03 -0.02 -0.02 -0.022 -0.38
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FIG. 5: Computed values of b1 = bπ1 + b6q1 from Eq. (20) and Eq. (26). The pion structure function
is that of [29], model 1

does contribute at larger values of x. One may roughly think of the prediction for the JLab
experiment as arising from bπ1 for x < 0.2 and from b6q1 for x > 0.2.

V. SUM RULE OF CLOSE & KUMANO [24]

Close & Kumano found a sum rule that the integral of b1(x) vanishes:
∫

dxb1(x) = 0, (28)

TABLE I: Measured values (in 10−2 units) of the tensor structure function b1. Both the statistical
and systematic uncertainties are listed. The numbers in parenthesis refer to the structure function
modes of Ref. [35] .

〈x〉 〈Q2〉 b1 ±δb1
stat ±δb1

sys bπ1 [29] b
π
1 [35] (1) bπ1 [35] (3) b6q1

[GeV2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

0.012 0.51 11.20 5.51 2.77 10.5 15.5 24.1 0.00

0.032 1.06 5.50 2.53 1.84 5.6 6.8 8.9 0.00

0.063 1.65 3.82 1.11 0.60 4.2 3.7 4.1 0.00

0.128 2.33 0.29 0.53 0.44 1.6 1.3 1.3 0.01

0.248 3.11 0.29 0.28 0.24 -0.55 .13 0.12 0.41

0.452 4.69 -0.38 0.16 0.03 -0.02 -0.02 -0.022 -0.38

Can reproduce data, so far
JLab experiment needed to test

no other known  mechanism contributes at the higher  values of x 
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of q̄-nucleon scattering amplitude. The symmetric qq̄ pairs

at not too large Q2, with a transverse separation !1/!Q2

can be viewed as a meson, the strong color interaction be-

tween quark and antiquark increasing with increasing sepa-

ration.

Now we return to Eq. "12#. The optical theorem relates

the total cross section to the imaginary part of the forward-

scattering amplitude as $%&*D!(1/WD
2 )Im A&*D

(2) ! t!0, with
WD
2 the total center-of-mass energy of the &*-D system,

WD
2 !2WN

2 , WN
2!(p"q)2'2M(#Q2. To simplify Eq.

"12#, we carry out the kz integration. Given the sign of the
exponential, only the singularity in the upper half of the kz
plane contributes. Since the vector meson interacts diffrac-

tively with the nucleon, the double-scattering diagram looks

as shown in Fig. 2. The optical theorem relates the resulting

on-shell amplitude to the differential cross section for vector-

meson photoprodution,

d%

dt
"
t!k2

!
1

16)*
V

!T&*N→NV
! !

t!k2
2

WN
4

, "14#

where
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dt
"
t!k2+#k!

!
2

!
d%

dt
"
t!0

e#ak!!
2

.

We estimate the t dependence from photoproduction data

where a+10.4, 10.0, and 7.3 GeV#2 for , , - , and . vector

mesons, respectively.

Next, we consider the deuteron form factor terms in Eq.

"12#. We can write the deuteron wave function as mixture of
s and d states (m!1)
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where the Y ’s are the spherical harmonics and the 1’s are the
spin-wave functions. Using the orthogonality of the 1 func-
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Subtracting Eq. "16# from Eq. "18# gives
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Combining the results summarized in Eqs. "8#, "12#, "14#,
and "19# the final expression for the function b2

(2)(x ,Q2)

(!2xb1
(2)) emerges as

FIG. 3. Behavior of b2
(2)(x ,Q2) with x using Eq. "20# at Q2

!0.1, 1.0, 4.0, and 10.0 GeV2, with Bonn potential for deuteron.

FIG. 2. Double-scattering diagram, showing production of inter-

mediate vector mesons V via pomeron exchange.
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FIG. 6: (Color online) Computed values of 100 (bπ1 +b6q1 ), for values of Q2 = 1.17, 1.76, 2.12 and 3.25
GeV2 [29] distributions and for [35] (lowest curve at x = 0.15). For the other curves, bπ1 increases
as Q2 increases for small values of x.

provided that the sea is unpolarized, as is the case for the pion contribution discussed here.
This sum rule is interesting because it shows that if b1(x) is significantly different from 0 at
one value of x, it must take on significant values of the opposing sign for other values of x.

A visual inspection of the Fig. 3 shows immediately that the pionic contribution does not
obey this sum rule. This result can be seen analytically by integrating Eq. (20) over x:

∫ 1

0
dxbπ1 (x) =

1

2

∫ 1

0
dx

∫ ∞

x

dy

y
qπ(x/y)δfπ(y) (29)

=
1

2

∫ 2

0
dyδfπ(y)

∫ 1

0
duqπ(u). (30)

The above result is obtained by interchanging the order of the integration over x and y and
changing variables from x to u = x/y. There are two reasons why the product of integrals on
the right does not vanish. The first is displayed above in Eq. (21); the integral of δfπ(y)/y
vanishes, so the integral of δfπ(y) can not vanish. The second is that the integral of the quark
distribution function of the pion is infinite for any of the published structure functions. Thus
the value of the sum rule is infinity.

Given this violation of the sum rule of Close & Kumano, it is interesting to see if the
extant calculations of other mechanisms are consistent with the sum rule. Consider first the
nucleonic contribution [1, 5, 6]. In particular we examine Eq. (15,16) of [5]:

bN1 (x) =
∫ 2

x

dy

y
∆b(y)F1N(x/y) (31)



Close Kumano PR D42, 2377 Sum Rule 
CKSR

• Derived assuming b1 is carried by valence 
quarks

• Analogous to Gottfried sum rule for the 
integral of F2p-F2n which assumed   

• various effects of the sea violate CKSR

• violations may be more interesting than the 
sum  rule

∫
dxb1(x) = 0

ū = d̄ū = d̄



CKSR-pion  effect

!= 0, = ∞!= 0, = ∞

11

0.2 0.3 0.4 0.5 0.6 0.7
x

!0.5

0.5

1.0

1.5

2.0

2.5

100 b1!x"

FIG. 6: (Color online) Computed values of 100 (bπ1 +b6q1 ), for values of Q2 = 1.17, 1.76, 2.12 and 3.25
GeV2 [29] distributions and for [35] (lowest curve at x = 0.15). For the other curves, bπ1 increases
as Q2 increases for small values of x.

provided that the sea is unpolarized, as is the case for the pion contribution discussed here.
This sum rule is interesting because it shows that if b1(x) is significantly different from 0 at
one value of x, it must take on significant values of the opposing sign for other values of x.

A visual inspection of the Fig. 3 shows immediately that the pionic contribution does not
obey this sum rule. This result can be seen analytically by integrating Eq. (20) over x:

∫ 1

0
dxbπ1 (x) =

1

2

∫ 1

0
dx

∫ ∞

x

dy

y
qπ(x/y)δfπ(y) (29)

=
1

2

∫ 2

0
dyδfπ(y)

∫ 1

0
duqπ(u). (30)

The above result is obtained by interchanging the order of the integration over x and y and
changing variables from x to u = x/y. There are two reasons why the product of integrals on
the right does not vanish. The first is displayed above in Eq. (21); the integral of δfπ(y)/y
vanishes, so the integral of δfπ(y) can not vanish. The second is that the integral of the quark
distribution function of the pion is infinite for any of the published structure functions. Thus
the value of the sum rule is infinity.

Given this violation of the sum rule of Close & Kumano, it is interesting to see if the
extant calculations of other mechanisms are consistent with the sum rule. Consider first the
nucleonic contribution [1, 5, 6]. In particular we examine Eq. (15,16) of [5]:

bN1 (x) =
∫ 2

x

dy

y
∆b(y)F1N(x/y) (31)
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CKSR- nucleon

∫
bN1 (x) =

∫ 2

0
dy

∫
d3pFd(p)(3 cos

2 θ − 1)δ(y − p cos θ + E

M
)

∫ 1

0
F1N (u)du

If integrate over all y, get 0×∞
Can’t, so get ∞

CKSR- nucleon

∫
bN1 (x) =

∫ 2

0
dy

∫
d3pFd(p)(3 cos

2 θ − 1)δ(y − p cos θ + E

M
)

∫ 1

0
F1N (u)du

If integrate over all y, get 0×∞
Can’t, so get ∞

CKSR - shadowing - CKSR is not 0
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where P6q is the product of the probability amplitudes for the 6-quark states to exist in the
deuteron, and the factor of 2 enters because either state can be in the d-wave. Evaluation of
FH using Eq. (22) leads to the result:

b6q1 (x) = −
√

N0N2
2

3
4π

∫
d3pf0f2(3 cos2 θ − 1)δ

(
p cos θ+E(p)

M − x
)
P6q.

(25)

To proceed further we specify the wave functions to be harmonic oscillator wave functions.
We take f2(p) = −p2R2e−p2R2/2, f0(p) = e−p2R2/2, where R is the radius parameter. R is
chosen as 1.2 fm, which corresponds to the measured radius of the nucleon and the notion
that the bag model stability condition gives the radius of the 6-quark bag to be about 1.4
times the nucleon radius. We use a quark mass of 338 MeV [32]. A spread of values of the
model parameters R,m around the central values of 1.2 fm, 338 MeV will be examined below.

The evaluation of b6q1 (x) proceeds by using d3p = 2πp2dpd cos θ, integrating over cos θ, and
changing variables to u ≡ p2R2. The result is

b6q1 (x) =
6MR√
30π

∫ ∞

umin(x)
du e−u

[
3((x2M2 +m2)R2 + u− 2xMR

√
u+m2R2)− u

]
P6q, (26)

where

umin(x) ≡
(x2M2 −m2)2R2

4x2M2
. (27)

IV. RESULTS

We may now start examining the resulting phenomenology, considering first the pionic
contributions. The quark distribution function of the pion, qπ is needed to evaluate bπ1 as
shown in Eq. (20). Evaluation requires knowledge of this function over a wide range of its
argument and x/y can be very small. However, knowledge of qπ comes from fixed-target
Drell-Yan data at values of x ≥ 0.3 [33, 34]. We display the sensitivity to different versions
of qπ in Fig. 3. We display results for the full and valence distributions of [29], and for the
full and valence distributions of [35] at Q2 = 1.17 GeV2. The sea is important for values of x
less than about 0.1. This is unfortunate because the Drell-Yan data at large x embody little
sensitivity to the sea. However, the computed values of bπ1 are not very different for the two
parameterizations, except for very small values of x. The solid and dashed curves show the
result of using two different valence quark distributions of [29] at Q2 = 0.4 GeV2. For Fit 3
(solid) qπ(x) ∼ x−0.3 while for Fit 4 (dashed) qπ(x) ∼ x0.06 .

We now turn to the determine the contributions due to hidden color, b6q1 provided by
Eq. (26). The value of b6q1 x = 0.452 is relevant because the pionic contribution is negligible,
and the measured value, b1 = −3.8± 0.16× 10−3, differs from zero. We choose P6q = 0.0015
to reproduce the central value using R = 1.2 fm and m = 338 MeV. Such a very, very small
value can not be ruled out by any observations.

The results for b6q1 are shown in Fig. 4. Results using the model parameters R = 1.2 fm,
m = 338 MeV are shown as the solid curves in Figs. 4a and b. The exponential appearing in
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Integral over all x vanishes



Summary of b1 results
• Pionic effects sizable for x<0.2

• Reproduces HERMES data there

• 6-quark hidden color effects can enter at larger values of x

• Combination reproduces HERMES data

• Predictions made for future JLAB data

• CKSR does not hold except for 6-quark effects

• If CKSR holds,  b1 must be both positive and negative

• Observing such would provide evidence for 6-quark hidden-color 
components of the deuteron


