b₁ Structure Function of the Deuteron

Gerald A. Miller Univ. of Washington

G. A. Miller, in *Electronuclear Physics with Internal Targets*, ed. R. G. Arnold (World Scientific, Singapore, 1989), p.30.

Patricia Solvignon

arXiv:1311.4561v1

Outline

- What is the b₁ Structure Function of the Deuteron?
- Nucleonic contributions negligible
- Pion exchange contributions
- 6 quark, hidden-color contributions
- Double scattering (shadowing) contributions
- Close-Kumano sum rule

b_I structure function DIS

Hoodbhoy, Jaffe, Manohar NPB312, 571

 $\begin{array}{l} \begin{array}{l} \text{Direction of photon= spin quantization axis} \\ d^2\sigma^{(m)} \propto \&^{\mu\nu} W^{(m)}_{\mu\nu} & \text{unpolarized lepton, polarized target} \\ W^{(m)}_{\mu\nu} = \int d^4r \langle T, J = 1, J_z = m | [j^{\mu}(r), j^{\nu}(0)] | T, J = 1, J_z = m \rangle \\ \\ F_{1}(x) = \frac{1}{3} \sum\limits_{m} W^{(m)}_{11} & \text{usual average over target spin directions} \\ \\ \hline b_{1}(x) = W^{(1)}_{11} - W^{(0)}_{11}. & \text{Depends on spin direction of target} \end{array}$

Experimentalist's Definition

$$\sigma_{\text{meas}} = \sigma^{\text{U}} \left[1 - P_B P_z A_{\parallel} + \frac{1}{2} P_{zz} A_{zz} \right].$$

$$P_{zz} = \frac{(n^+ + n^-) - 2n^0}{n^+ + n^- + n^0}, \qquad -2 \le P_{zz} < 1.$$

$$\frac{b_1}{F_1} = -\frac{3}{2}A_{zz}.$$

b₁ structure function: potentially interesting

J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998).

J. L. Forest et al., Phys. Rev. C54, 646 (1996).

constant density surfaces small np separations

m=0

m=l

Hoodbhoy et al: b₁ measures the extent to which a target nucleus deviates from a trivial bound state of nucleons JLab proposal PR12-13-011 K. Silfer et al HERMES PRL 95,242001

HERMES

C. Riedl, Ph. D thesis, DESY-THESIS-2005-027 (2005).

A. Airapetian et al., Phys. Rev. Lett. 95, 242001 (2005).

General remarks q^(m)(x) = <T,J=1,mlOIT,J=1,m> Wigner Eckhart: O is tensor of rank I or 2 Parity q⁽¹⁾=q⁽⁻¹⁾, O can't be rank I and give non-zero b₁

O is a rank 2 tensor, so b₁ measures tensor effects Consequence:

s-wave component of deuteron gives no contribution to b_1 because m is not relevant

Nucleon contributions

00

 $q^{(m)}(x) = \int dy \ q^{N}(x/y) \ f^{(m)}(y)$

Miller 1989

G. A. Miller, in *Electronuclear Physics with Internal Targets*, ed. R. G. Arnold (World Scientific, Singapore, 1989), p.30.

$$f^{(m)}(y) = \int d^4 p \left[1 + \frac{p^3}{\sqrt{p^2 + M^2}}\right] S^{(m)}_{D}(p) \,\delta(y - \frac{p^0 + p^3}{M_D})$$
$$S^{(m)}_{D} = \sum_{s} \langle D, m | b^{\dagger}_{p,s} \delta(-p_0 + M_D - H) b_{p,s} | D, m \rangle$$

$$b_1(x) = \int_{x}^{dy} (F_1^{p}(x/y) + F_1^{n}(x/y)) \Delta f_{sd}(y)$$

 $\Delta f_{sd}(y) = \frac{-4\sqrt{2}}{8\pi} \int d^3p \ u(p)w(p) \ (3\cos^2\theta - 1) \quad \delta \left(\frac{p\cos\theta + p^0}{M} - y\right) \left[1 + \frac{p\cos\theta}{M}\right].$

Result: $b_1=0$ Remark $\int dx b_1(x) \propto \int dy \Delta f_{sd}(y) \propto \int d^3 p \, u(p) w(p) (3 \cos^2 \theta - 1) = 0$ Example of (genesis of) Close-Kumano sum rule Vanishing integral consistent with b_1 being very small

Pionic contribution

$$\Delta_{\pi}q^{(m)}(x) = \int_x^\infty \frac{dy}{y} q^{\pi}(x/y) f_{\pi}^{(m)}(y),$$

$$f_{\pi}^{(m)}(y_A) = \int \frac{d\xi^-}{2\pi} e^{-iy_A P_D^+ \xi^-} \langle D, m | \phi_{\pi}(\xi^-) \phi_{\pi}(0) | D, m \rangle_c,$$

$$f_{\pi}^{(m)}(y) = \frac{-3yg^2}{(2\pi)^3} \int \frac{d^3q}{\left(\mathbf{q}^2 + m_{\pi}^2\right)^2} \frac{G_A^2(\mathbf{q}^2)}{G_A^2(0)} \delta(My - q_z) F_m(\mathbf{q}), \qquad F_m(\mathbf{q}) \equiv \int d^3r \langle D, m | e^{-i\mathbf{q}\cdot\mathbf{r}} \boldsymbol{\sigma}_1 \cdot \mathbf{q} \, \boldsymbol{\sigma}_2 \cdot \mathbf{q} | D, m \rangle$$

$$\delta f_{\pi}(y) \equiv f_{\pi}^{(0)}(y) - f_{\pi}^{(1)}(y) : \sim -y \int \frac{d^3 q}{(\mathbf{q}^2 + m_{\pi}^2)^2} \cdots \delta(My - q_z) (\mathbf{q}^2 - 3q_z^2)$$

$$b_1^{\pi}(x) = \frac{1}{2} \int_x^\infty \frac{dy}{y} q^{\pi}(x/y) \delta f_{\pi}(y).$$

- ~Independent of Deut wave function
- Double node structure -tensor op

$$\int dy \, \frac{f(y)}{y} = 0$$

 γ^* $\delta f_{\pi}(y)$ 0.10 0.05 0.05 0.2 0.4 0.6 0.8 1.0 -0.05

 1.2^{-1}

 γ^*

 π

 π

FIG. 3: Color online. Computed values of b_1^{π} , for different pion structure function at $Q^2 = 1.17$ GeV². Solid- full structure function [29] short-dashed (blue) valence [29], Dot Dashed (Red) full structure function (mode 3) [35],Long dashed (green) (mode 3) [35]

	$\langle x \rangle$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$b_1^{\pi}[29] \ b_1^{\pi}[35] \ (1) \ b_1^{\pi}[35] \ (3)$			
		$[GeV^2]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	[. [.
HEKI'IE	0.012	0.51	11.20	5.51	2.77	10.5	15.5	24.1	
	0.032	1.06	5.50	2.53	1.84	5.6	6.8	8.9	
	0.063	1.65	3.82	1.11	0.60	4.2	3.7	4.1	
	0.128	2.33	0.29	0.53	0.44	1.6	1.3	1.3	٦
Non 0 at	0.248	3.11	0.29	0.28	0.24	-0.55	.13	0.12	
	0.452	4.69	-0.38	0.16	0.03	-0.02	-0.02	-0.022	
high v									

וזוו

Hidden color, 6-quark states

- Maybe deuteron has non-nucleon baryonic components
- 6 quark contribution ~orthogonal to two nucleons
- Dominated by hidden color (two color octets form a color singlet Harvey NPA32, 301
- 6 quarks in same s state wave function:

 $|6q
angle = \sqrt{1/9}|N^2
angle + \sqrt{4/45}|\Delta^2
angle + \sqrt{4/5}|CC
angle.$

Just call this state 6q (mainly hidden color)

Hidden color model-simplest possible

- S-state of deuteron has component with 6 quarks in s -state- S=I,T=0
- D-state has 6-quark component with any one quark in d_{3/2} state

 \mathcal{Y}_{jlm_j} is a spinor spherical harmonic.

$$\psi_{j,l,H}(\mathbf{p}) = \sqrt{N_l} f_l(p) \sum_{m_s,m_j} \mathcal{Y}_{jlm_j} \langle jm_j, \frac{1}{2} m_s | 1H \rangle, \qquad J_z = H$$

$$l, j = s_{1/2} \text{ or } d_{3/2},$$

$$F_H(x_{6q}) = \frac{1}{2} \int d^3 p \bar{\psi}_{1/2,0,H}(\mathbf{p}) \gamma^+ \psi_{3/2,2,H}(\mathbf{p}) \delta \left(\frac{p \cos \theta + E(p)}{M_{6q}} - x_{6q} \right),$$

Harmonic oscillator $f_0(p) = e^{-p^2 R^2/2}, f_2(p) = -p^2 R^2 e^{-p^2 R^2/2}$ $E(p) = \sqrt{p^2 + m^2}$ $m \neq 338$ MeV quark mass $R \neq 1.2$ fm from bag wave functions $b_1^{6q}(x) = -\sqrt{\frac{N_0 N_2}{2}} \frac{3}{4\pi} \int d^3 p f_0 f_2 (3\cos^2\theta - 1) \delta\left(\frac{p\cos\theta + E(p)}{M} - x\right) P_{6q}$

 $P_{6q}=0.0015$ to reproduce Hermes x=0.452 (very small P_{6q})

6 quark model

FIG. 4: (Color online) Computed values of b_1^{6q} from Eq. (26). Sensitivity to parameters is displayed. (a) Solid (blue) uses R = 1.2 fm, m=338 MeV, long dashed (Red) R is decreased by 10%, dotted(green) R is increased by 10%. (b) Solid (blue) uses R = 1.2 fm, m=338 MeV, long dashed (Red) m is increased by 10%, dotted(green), m is decreased by 10%.

Small at low x, where pionic effect is relevant Valence quarks carry higher momentum

pionic and 6q contributions

Can reproduce data, so far JLab experiment needed to test

no other known mechanism contributes at the higher values of x

Shadowing -double scattering Bora, Jaffe PRD57,6906

 $b_2 = 2xb_1$

Small at JLab x

Prediction for JLab

FIG. 6: (Color online) Computed values of $100 (b_1^{\pi} + b_1^{6q})$, for values of $Q^2 = 1.17, 1.76, 2.12$ and 3.25 GeV² [29] distributions and for [35] (lowest curve at x = 0.15). For the other curves, b_1^{π} increases as Q^2 increases for small values of x.

Close Kumano PR D42, 2377 Sum Rule CKSR

$$\int dx b_1(x) = 0$$

- Derived assuming b₁ is carried by valence quarks
- Analogous to Gottfried sum rule for the integral of F_{2p} - F_{2n} which assumed $\bar{u} = \bar{d}$
- various effects of the sea violate CKSR
- violations may be more interesting than the sum rule

CKSR-pion effect

$$\int_{0}^{1} dx b_{1}^{\pi}(x) = \frac{1}{2} \int_{0}^{1} dx \int_{x}^{\infty} \frac{dy}{y} q^{\pi}(x/y) \delta f_{\pi}(y)$$
$$= \frac{1}{2} \int_{0}^{2} dy \delta f_{\pi}(y) \int_{0}^{1} du q^{\pi}(u). \qquad \neq 0, \qquad = \infty$$

CKSR- nucleon

$$\int b_1^N(x) = \int_0^2 dy \int d^3 p F_d(p) (3\cos^2\theta - 1)\delta(y - \frac{p\cos\theta + E}{M}) \int_0^1 F_{1N}(u) du$$

If integrate over **all** y, get $0 \times \infty$ Can't, so get ∞

CKSR - shadowing - CKSR is not 0

CKSR- six quark effect

$$b_1^{6q}(x) = -\sqrt{\frac{N_0 N_2}{2}} \frac{3}{4\pi} \int d^3 p f_0 f_2 (3\cos^2\theta - 1)\delta\left(\frac{p\cos\theta + E(p)}{M} - x\right) P_{6q}.$$

Integral over all x vanishes

Summary of b₁ results

- Pionic effects sizable for x<0.2
- Reproduces HERMES data there
- 6-quark hidden color effects can enter at larger values of x
- Combination reproduces HERMES data
- Predictions made for future JLAB data
- CKSR does not hold except for 6-quark effects
- If CKSR holds, b₁ must be both positive and negative
- Observing such would provide evidence for 6-quark hidden-color components of the deuteron