Beam Single Spin Asymmetries in Electron-Proton Scattering

Pratik Sachdeva
Washington University in St. Louis

Mentors:
Wally Melnitchouk
Jefferson Laboratory Theory Center

Peter Blunden
University of Manitoba

July 23, 2014
Outline

1. Introduction
 - Beam Single Spin Asymmetries (BSSA)
 - Transverse and Normal Polarizations
 - Motivation: Q-weak Collaboration

2. Elastic Scattering
 - Beam Normal SSA
 - Beam Transverse Single Spin Asymmetry
 - Combination of Asymmetries

3. Inelastic Hadronic Intermediate State
 - $M^*_\gamma M_{\gamma\gamma}$ Interference
 - Leptonic and Hadronic Tensors
 - Normal BSSA

4. Conclusion
Introduction

Beam Single Spin Asymmetries (BSSA)

- Polarized electron beam (longitudinal, transverse, normal), but unpolarized target.
Introduction

Beam Single Spin Asymmetries (BSSA)

- Polarized electron beam (longitudinal, transverse, normal), but unpolarized target.
- In general the beam asymmetry, B, is

\[B = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}. \]
Introduction

Beam Single Spin Asymmetries (BSSA)

- Polarized electron beam (longitudinal, transverse, normal), but unpolarized target.

- In general the beam asymmetry, B, is

$$B = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}.$$

- BSSA disappear for one-photon exchange.
What exchanges can cause BSSA?

Consider the scattering amplitude:

\[|M|^{2} = |M_{\gamma}|^{2} + |M_{Z}|^{2} + |M_{\gamma\gamma}|^{2} + \cdots \]

At the Born level, the spin orientation has no effect on \(|M_{\gamma}|^{2} \), so the asymmetry vanishes. Higher order effects result in asymmetries dependent on whether the spin is transversely, normally, or longitudinally polarized.
What exchanges can cause BSSA?

Consider the scattering amplitude:

\[|M|^2 = |M_\gamma + M_Z + M_{\gamma\gamma} + \cdots|^2 = |M_\gamma|^2 + M_\gamma^* M_Z + M_\gamma^* M_{\gamma\gamma} + \cdots \]
What exchanges can cause BSSA?

Consider the scattering amplitude:

\[|M|^2 = |M_\gamma + M_Z + M_{\gamma\gamma} + \cdots|^2 \]

\[= |M_\gamma|^2 + M_\gamma^* M_Z + M_\gamma^* M_{\gamma\gamma} + \cdots \]

- At the Born level, the spin orientation has no effect on \(|M_\gamma|^2\), so the asymmetry vanishes.
What exchanges can cause BSSA?

Consider the scattering amplitude:

$$|\mathcal{M}|^2 = |\mathcal{M}_\gamma + \mathcal{M}_Z + \mathcal{M}_{\gamma\gamma} + \cdots|^2$$

$$= |\mathcal{M}_\gamma|^2 + \mathcal{M}_\gamma^* \mathcal{M}_Z + \mathcal{M}_\gamma^* \mathcal{M}_{\gamma\gamma} + \cdots$$

- At the Born level, the spin orientation has no effect on $|\mathcal{M}_\gamma|^2$, so the asymmetry vanishes.
- Higher order effects result in asymmetries dependent on whether the spin is transversely, normally, or longitudinally polarized.
Transverse and Normal Polarization

- Transverse asymmetry B_t behaves like $\cos \phi_s$ and normal asymmetry B_n behaves like $\sin \phi_s$.

![Electron-Proton Scattering Diagram]

Figure 2. Electron-Proton Scattering
Motivation: Q-weak Collaboration

- Precise measurement of the weak charge of the proton, Q^P_W, using asymmetry produced by longitudinally polarized electrons.
Motivation: Q-weak Collaboration

- Precise measurement of the weak charge of the proton, Q^P_W, using asymmetry produced by longitudinally polarized electrons.
- Transversely polarized electrons: BSSA has azimuthal (ϕ) dependence (Buddhini Waidyawansa, CIPANP 2012 Conference).

![Graph showing asymmetry as a function of octant number with preliminary results indicated.](image-url)
Motivation: Q-weak Collaboration

- Precise measurement of the weak charge of the proton, Q^p_W, using asymmetry produced by longitudinally polarized electrons.
- Transversely polarized electrons: BSSA has azimuthal (ϕ) dependence (Buddhini Waidyawansa, CIPANP 2012 Conference).

Concerned about possible phase offsets due to unconsidered BSSA effects.
Approach

- Elastic Scattering Contribution
Approach

- **Elastic Scattering Contribution**
 - Interference of one- and two-photon exchange.
 - Interference of one-photon and Z exchange.
Approach

- Elastic Scattering Contribution
 - Interference of one- and two-photon exchange.
 - Interference of one-photon and Z exchange.

- Hadronic Inelastic Intermediate State
Approach

- **Elastic Scattering Contribution**
 - Interference of one- and two-photon exchange.
 - Interference of one-photon and Z exchange.

- **Hadronic Inelastic Intermediate State**
 - Pasquini and Vanderhaeghen (*PRC 70*, 2004) showed that inelastic hadronic intermediate states have a larger contribution to the asymmetry than the elastic case.
 - Consider the case of near forward limit.
Elastic scattering for electron-proton scattering,

\[e(p_1) + N(p_2) \rightarrow e(p_3) + N(p_4). \]
Kinematic Variables

Elastic scattering process:

\[e(p_1) + N(p_2) \rightarrow e(p_3) + N(p_4) \]

Using the following notation for kinematic variables:
Kinematic Variables

Elastic scattering process:

\[e(p_1) + N(p_2) \rightarrow e(p_3) + N(p_4) \]

Using the following notation for kinematic variables:

\[P = \frac{p_2 + p_4}{2}, \quad K = \frac{p_1 + p_3}{2}, \quad q = p_1 - p_3, \quad Q^2 = -q^2; \]

\[s = (p_1 + p_2)^2, \quad \tau = \frac{Q^2}{4M^2}, \quad \nu = P \cdot K, \quad \epsilon = \frac{\nu^2 - M^4\tau(1 + \tau)}{\nu^2 + M^4\tau(1 + \tau)}; \]

\[W^2 = (p_2 + q_1)^2, \quad Q_1^2 = -q_1^2, \quad Q_2^2 = -q_2^2, \]

for electron mass \(m_e \) and hadron mass \(M \).
Beam Normal Single Spin Asymmetry: Setup

Using six invariant amplitudes given by Goldberger et al. (Ann. Phys. 2, 1957), we can construct a general elastic lepton-nucleon scattering amplitude:

\[T = T_{\text{non-flip}} + T_{\text{flip}}, \]
Beam Normal Single Spin Asymmetry: Setup

Using six invariant amplitudes given by Goldberger et al. (Ann. Phys. 2, 1957), we can construct a general elastic lepton-nucleon scattering amplitude:

\[T = T^{\text{non-flip}} + T^{\text{flip}}, \]

where

\[T^{\text{non-flip}} = \frac{e^2}{Q^2} \bar{u}_e(p_3)\gamma_\mu u_e(p_1) \cdot \bar{u}_N(p_4) \left(\tilde{G}_M\gamma^\mu - \tilde{F}_2 \frac{P^\mu}{M} + \tilde{F}_3 \frac{K P^\mu}{M^2} \right) u_N(p_2) \]

and

\[T^{\text{flip}} = \frac{e^2}{Q^2} \bar{u}_e(p_3)\gamma_\mu u_e(p_1) \cdot \bar{u}_N(p_4) \left(\tilde{G}_M\gamma^\mu - \tilde{F}_2 \frac{P^\mu}{M} + \tilde{F}_3 \frac{K P^\mu}{M^2} \right) u_N(p_2). \]
Beam Normal Single Spin Asymmetry: Setup

Using six invariant amplitudes given by Goldberger et al. (Ann. Phys. 2, 1957), we can construct a general elastic lepton-nucleon scattering amplitude:

\[T = T^{\text{non-flip}} + T^{\text{flip}}, \]

where

\[
T^{\text{non-flip}} = \frac{e^2}{Q^2} \bar{u}_e(p_3)\gamma_\mu u_e(p_1) \cdot \bar{u}_N(p_4) \left(\tilde{G}_M \gamma_\mu - \tilde{F}_2 \frac{P_\mu}{M} + \tilde{F}_3 \frac{K P_\mu}{M^2} \right) u_N(p_2)
\]

and

\[
T^{\text{flip}} = \frac{e^2}{Q^2} \frac{m_e}{M} \left[\bar{u}_e(p_3)u_e(p_1) \cdot \bar{u}_N(p_4) \left(\tilde{F}_4 + \tilde{F}_5 \frac{K}{M} \right) u_N(p_2) + \tilde{F}_6 \bar{u}_e(p_3)\gamma_5 u_e(p_1) \cdot \bar{u}_N(p_4)\gamma_5 u_N(p_2) \right].
\]
In the two previous equations,

\[\tilde{G}_M, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6 \]

are complex functions of \(\nu \) and \(Q^2 \). In the Born approximation, these reduce to

We can also write

\[\tilde{G}_E = \tilde{G}_M - (1 + \tau) \tilde{F}_2. \]
Beam Normal Single Spin Asymmetry: Setup

In the two previous equations,

\[\tilde{G}_M, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6 \]

are complex functions of \(\nu \) and \(Q^2 \). In the Born approximation, these reduce to

\[
\begin{align*}
\tilde{G}_M^{\text{Born}}(\nu, Q^2) &= G_M(Q^2) \\
\tilde{F}_2^{\text{Born}}(\nu, Q^2) &= F_2(Q^2) \\
\tilde{F}_{3,4,5,6}^{\text{Born}}(\nu, Q^2) &= 0.
\end{align*}
\]
Beam Normal Single Spin Asymmetry: Setup

In the two previous equations,

\[\tilde{G}_M, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4, \tilde{F}_5, \tilde{F}_6 \]

are complex functions of \(\nu \) and \(Q^2 \). In the Born approximation, these reduce to

\[\tilde{G}_M^{\text{Born}}(\nu, Q^2) = G_M(Q^2) \]
\[\tilde{F}_2^{\text{Born}}(\nu, Q^2) = F_2(Q^2) \]
\[\tilde{F}_{3,4,5,6}^{\text{Born}}(\nu, Q^2) = 0. \]

We can also write

\[\tilde{G}_E = \tilde{G}_M - (1 + \tau)\tilde{F}_2. \]
Gorchtein et al. found that for a spin parallel (anti-parallel) to the normal polarization vector

\[S^\mu = (0, \vec{S}_n), \quad \vec{S}_n = (\vec{p}_1 \times \vec{p}_3) / |\vec{p}_1 \times \vec{p}_3| \]

there is a beam normal SSA \(B_n \) due to \(\mathcal{M}_\gamma^* \mathcal{M}_\gamma \). It is equal to
Gorchein et al. found that for a spin parallel (anti-parallel) to the normal polarization vector

\[S^\mu = (0, \vec{S}_n), \quad \vec{S}_n = (\vec{p}_1 \times \vec{p}_3) / |\vec{p}_1 \times \vec{p}_3| \]

there is a beam normal SSA \(B_n \) due to \(\mathcal{M}_\gamma^* \mathcal{M}_{\gamma\gamma} \). It is equal to

\[
B_n = \frac{2m_e}{Q} \sqrt{2\epsilon(1 - \epsilon)} \sqrt{1 + \frac{1}{\tau} \left(G_M^2 + G_E^2\right)^{-1}}
\]

\[
\times \left\{ -\tau G_M \text{Im} \left(\tilde{F}_3 + \frac{1}{1 + \tau M^2} \frac{\nu}{\tilde{M}^2} \tilde{F}_5 \right) - G_E \text{Im} \left(\tilde{F}_4 + \frac{1}{1 + \tau M^2} \frac{\nu}{\tilde{M}^2} \tilde{F}_5 \right) \right\}.
\]
Beam Normal SSA

Figure 3. Transverse Spin Polarization
If we consider a general transverse spin

$$\vec{s} = \cos \phi_s \hat{x} + \sin \phi_s \hat{y},$$

the general beam normal SSA can be written.
Figure 3. Transverse Spin Polarization

If we consider a general transverse spin

\[\vec{s} = \cos \phi_s \hat{x} + \sin \phi_s \hat{y}, \]

the general beam normal SSA can be written

\[B_{n, \text{gen}} = B_n \sin \phi_s. \]
Beam Transverse SSA

We found that a beam transverse SSA exists at the Born level due to $M_{\gamma}^*M_Z$. It is equal to

$$B_t = \frac{G_F m^2}{2 \pi \alpha} Q^2 \left(s - M^2 \right) \sqrt{\epsilon (1 - \epsilon)} \tau_2 \left(\tau + 1 \right) \left[G^2 M + \epsilon \tau G^2 E \right]^{-1} \times \left\{ g_e V G^2 M G \tau \left(\tau + 1 \right) + g_e A \left(G^2 M G \tau (1 + \tau - \nu) + G E G \tau (1 - \tau - \nu) \right) \right\},$$

where G^Z_M and G^Z_E are the weak form factors and G_F is Fermi’s coupling constant.

For a general transverse spin, $B_{t, \text{gen}} = B_t \cos \phi_s$.
Beam Transverse SSA

We found that a beam transverse SSA exists at the Born level due to $M^*_\gamma M_Z$. It is equal to

$$B_t = \frac{G_F m_e}{2\pi\alpha} \frac{Q^2}{(s - M^2)} \sqrt{\frac{\epsilon(1 - \epsilon)}{\tau^2(\tau + 1)}} \left(G^Z_M + \frac{\epsilon}{\tau} G^Z_E \right)^{-1}$$

$$\times \left\{ g^e V G_M G^Z_M \tau (\tau + 1) + g^e A \left(G_M G^Z_A \tau (1 + \tau - \nu) + G_E G^Z_E (1 - \tau - \nu) \right) \right\},$$

where G^Z_M and G^Z_E are the weak form factors and G_F is Fermi’s coupling constant.
Beam Transverse SSA

We found that a beam transverse SSA exists at the Born level due to $\mathcal{M}_\gamma \mathcal{M}_Z$. It is equal to

$$B_t = \frac{G_F m_e}{2\pi \alpha} \frac{Q^2}{(s - M^2)} \sqrt{\frac{\epsilon(1 - \epsilon)}{\tau^2(\tau + 1)}} \left(G_M^2 + \frac{\epsilon}{\tau} G_E^2 \right)^{-1}$$

$$\times \left\{ g_V^e G_M G_Z^Z \tau(\tau + 1) + g_A^e \left(G_M G_A^Z \tau(1 + \tau - \nu) + G_E G_E^Z (1 - \tau - \nu) \right) \right\},$$

where G_M^Z and G_E^Z are the weak form factors and G_F is Fermi’s coupling constant.

For a general transverse spin,

$$B_{t, \text{gen}} = B_t \cos \phi_s.$$
Combination of Asymmetries

The interference between one- and two-photon exchange only produces a normal BSSA. The interference between one-photon and Z exchange only produces a transverse BSSA. The combination of these two asymmetries gives

$$B = B_t \cos \phi_s + B_n \sin \phi_s = \sqrt{B_t^2 + B_n^2} \sin (\phi_s + \delta)$$

where $\delta = \tan^{-1} \left(\frac{B_t}{B_n} \right)$.
Combination of Asymmetries

- The interference between one- and two-photon exchange only produces a normal BSSA.
- The interference between one-photon and Z exchange only produces a transverse BSSA.

\[
B = B_t \cos \phi_s + B_n \sin \phi_s = \sqrt{B_t^2 + B_n^2} \sin (\phi_s + \delta)
\]

where \(\delta = \tan^{-1}\left(\frac{B_t}{B_n}\right)\).
Combination of Asymmetries

- The interference between one- and two-photon exchange only produces a normal BSSA.
- The interference between one-photon and Z exchange only produces a transverse BSSA.

The combination of these two asymmetries gives

$$B = B_t \cos \phi_s + B_n \sin \phi_s$$

$$= \sqrt{B_t^2 + B_n^2} \sin (\phi_s + \delta)$$

where $\delta = \tan^{-1} \left(\frac{B_t}{B_n} \right)$.
In Q-weak, B_n was measured as

$$B_n \approx -5.350 \text{ ppm.}$$
In Q-weak, B_n was measured as

$$B_n \approx -5.350 \text{ ppm}.$$

Using Q-weak kinematics, $Q^2 = 0.025 \text{ GeV}$, $E_1 = 1.125 \text{ GeV}$ (electron beam energy), we find

$$\delta \approx \tan^{-1}(B_t / B_n) \approx 1.116 \times 10^{-11} \times 5.350 \times 10^{-6} = 2.086 \times 10^{-11}.$$

This is too small to affect the Q-weak measurements.
Combination of Asymmetries: Q-weak Kinematics

In Q-weak, \(B_n \) was measured as

\[B_n \approx -5.350 \ \text{ppm}. \]

Using Q-weak kinematics, \(Q^2 = 0.025 \ \text{GeV}, \ E_1 = 1.125 \ \text{GeV} \) (electron beam energy), we find

\[
|\delta| = \left| \tan^{-1} \left(\frac{B_t}{B_n} \right) \right| \approx \left| \frac{B_t}{B_n} \right| \approx \frac{1.116 \times 10^{-11}}{5.350 \times 10^{-6}} = 2.086 \times 10^{-6}.
\]
In Q-weak, B_n was measured as

$$B_n \approx -5.350 \text{ ppm}.$$

Using Q-weak kinematics, $Q^2 = 0.025 \text{ GeV}$, $E_1 = 1.125 \text{ GeV}$ (electron beam energy), we find

$$|\delta| = \left| \tan^{-1} \left(\frac{B_t}{B_n} \right) \right| \approx \left| \frac{B_t}{B_n} \right| \approx \frac{1.116 \times 10^{-11}}{5.350 \times 10^{-6}} = 2.086 \times 10^{-6}.$$

→ This is too small to affect the Q-weak measurements.
Order of Magnitude Estimates

- Beam Normal SSA:

 $$B_n \sim \frac{\alpha m_e}{M} \sim 5 \times 10^{-6} \rightarrow 5 \text{ ppm}$$
Order of Magnitude Estimates

- **Beam Normal SSA:**

 \[B_n \sim \frac{\alpha m_e}{M} \sim 5 \times 10^{-6} \rightarrow 5 \text{ ppm} \]

- **\(A_{PV} \) (from longitudinal polarization):**

 \[A_{PV} \sim \frac{Q^2}{M_Z^2} \sim Q^2 \times 10^{-4} \]
Order of Magnitude Estimates

- **Beam Normal SSA:**

 \[B_n \sim \frac{\alpha m_e}{M} \sim 5 \times 10^{-6} \rightarrow 5 \text{ ppm} \]

- **\(A_{PV} \) (from longitudinal polarization):**

 \[A_{PV} \sim \frac{Q^2}{M^2_Z} \sim Q^2 \times 10^{-4} \]

- **Beam Transverse SSA:**

 \[B_t \sim \frac{Q^2}{M^2_Z} \frac{m_e}{M} \sim Q^2 \times \left(5 \times 10^{-8} \right) \]
Order of Magnitude Estimates

- Beam Normal SSA:
 \[B_n \sim \frac{\alpha m_e}{M} \sim 5 \times 10^{-6} \rightarrow 5 \text{ ppm} \]

- \(A_{PV} \) (from longitudinal polarization):
 \[A_{PV} \sim \frac{Q^2}{M_Z^2} \sim Q^2 \times 10^{-4} \]

- Beam Transverse SSA:
 \[B_t \sim \frac{Q^2}{M_Z^2} \frac{m_e}{M} \sim Q^2 \times \left(5 \times 10^{-8} \right) \]

- What factors contribute to \(B_n \)?
Inelastic Hadronic Intermediate State

Scattering process:

\[e(p_1) + N(p_2) \rightarrow e(p_3) + N(p_4) \]

with intermediate leptonic momentum \(k \) and intermediate hadronic momentum \(W = p_2 + q_1 \).
One- and Two-Photon Interference

- We consider the contribution to the normal BSSA from $\mathcal{M}_\gamma \mathcal{M}_{\gamma \gamma}$.
One- and Two-Photon Interference

- We consider the contribution to the normal BSSA from $\bar{M}_\gamma^* M_{\gamma\gamma}$.
- For polarized beam, spinor relation becomes

$$\bar{u}_e(k)u_e(k) = (1 + \gamma_5 \not{s})(\not{k} + m_e).$$
One- and Two-Photon Interference

- We consider the contribution to the normal BSSA from $M_\gamma^* M_\gamma$.
- For polarized beam, spinor relation becomes
 $$\bar{u}_e(k) u_e(k) = (1 + \gamma_5 \gamma)(k + m_e).$$
- The BSSA comes from the absorptive part of the two-photon exchange amplitude (Pasquini & Vanderhaeghen PRC 70, 2004):
 $$B_n = \frac{2 \text{Im} \left(\sum_{\text{spins}} M_\gamma^* \cdot \text{Abs} M_\gamma \right)}{\sum_{\text{spins}} |M_\gamma|^2}.$$
Leptonic and Hadronic Tensors

We can write this as

\[B_n = \frac{e^6}{(2\pi)^3 Q^2} \left(\sum_{\text{spins}} |M_\gamma|^2 \right)^{-1} \int \frac{d^3 \vec{k}}{E_k} \frac{1}{Q_1^2 Q_2^2} \text{Im} \{ L_{\alpha\mu\nu} H^{\alpha\mu\nu} \}, \]
Leptonic and Hadronic Tensors

We can write this as

\[B_n = \frac{e^6}{(2\pi)^3 Q^2} \left(\sum_{\text{spins}} |\mathcal{M}_\gamma|^2 \right)^{-1} \int \frac{d^3 \vec{k}}{E_k} \frac{1}{Q_1^2 Q_2^2} \text{Im} \left\{ L_{\alpha\mu\nu} H^{\alpha\mu\nu} \right\}, \]

where

\[L_{\alpha\mu\nu} = \text{Tr} \left[\frac{1}{2} (1 + \gamma_5 \gamma^5) (p_1^\prime + m_e) \gamma_\alpha (p_1^\prime - q_1 + m_e) \gamma_\mu (p_1^\prime - q_1^\prime + m_e) \gamma_\nu \right]. \]
Leptonic and Hadronic Tensors

We can write this as

\[B_n = \frac{e^6}{(2\pi)^3 Q^2} \left(\sum_{\text{spins}} |M_{\gamma}|^2 \right)^{-1} \int \frac{d^3 \vec{k}}{E_k} \frac{1}{Q_1^2 Q_2^2} \text{Im} \left\{ L_{\alpha\mu\nu} H^{\alpha\mu\nu} \right\}, \]

where

\[L_{\alpha\mu\nu} = \text{Tr} \left[\frac{1}{2} \left(1 + \gamma_5 \frac{s}{p} \right) (p_1 + m_e) \gamma_\alpha (p_1 - q + m_e) \gamma_\mu (p_1 - q_1 + m_e) \gamma_\nu \right]. \]

and we take the forward limit on the hadronic tensor:

\[H^{\alpha\mu\nu} = 2p_2^\alpha W^{\mu\nu} \]
Leptonic and Hadronic Tensors

We can write this as

\[B_n = \frac{e^6}{(2\pi)^3 Q^2} \left(\sum_{\text{spins}} |M_\gamma|^2 \right)^{-1} \int \frac{d^3 \vec{k}}{E_k} \frac{1}{Q_1^2 Q_2^2} \text{Im} \left\{ L_{\alpha\mu\nu} H_{\alpha\mu\nu} \right\}, \]

where

\[L_{\alpha\mu\nu} = \text{Tr} \left[\frac{1}{2} (1 + \gamma_5 \gamma) (p_1 + m_e) \gamma_\alpha (p_1 - q + m_e) \gamma_\mu (p_1 - q_1 + m_e) \gamma_\nu \right]. \]

and we take the forward limit on the hadronic tensor:

\[H_{\alpha\mu\nu} = 2 p_2^\alpha W^{\mu\nu} \]

\[W^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q_1^\mu q_1^\nu}{q_1^2} \right) W_1 + \frac{1}{M^2} \left(p_2^\mu - \frac{p_2 \cdot q_1}{q_1^2} q_1^\mu \right) \left(p_2^\nu - \frac{p_2 \cdot q_1}{q_1^2} q_1^\nu \right) W_2. \]
Finally, we can write the asymmetry as
Finally, we can write the asymmetry as

\[B_n = -\frac{1}{(2\pi)^3} \frac{e^2 Q^2}{D(s, Q^2)} \frac{1}{8E_1 E_3 M} \int_0^{2\pi} \int_0^s \int_0^{Q_{1,\text{max}}} d\phi_k dW^2 dQ_1^2 \]

\[\times \frac{\text{Im} \{ L_{\alpha\mu\nu} H^{\alpha\mu\nu} \}}{Q_1^2 | \vec{k} | (1 - \cos \theta \cos \theta_k - \sin \theta \sin \theta_k \cos \phi_k)} \]

where \(E_1 \) and \(E_3 \) are the energies of the incoming and outgoing leptons, \(\theta_k \) is the angle between \(\vec{p}_1 \) and \(\vec{k} \), and \(\phi_k \) is the azimuthal angle.
Finally, we can write the asymmetry as

\[B_n = -\frac{1}{(2\pi)^3} \frac{e^2 Q^2}{D(s, Q^2)} \frac{1}{8E_1 E_3 M} \int_0^{2\pi} d\phi_k \int_{M^2}^s dW^2 \int_0^{Q_{1,\text{max}}^2} dQ_1^2 \times \frac{\text{Im} \left\{ L_{\alpha\mu\nu} H^{\alpha\mu\nu} \right\}}{Q_1^2 |\vec{k}| (1 - \cos \theta \cos \theta_k - \sin \theta \sin \theta_k \cos \phi_k)} \]

where \(E_1 \) and \(E_3 \) are the energies of the incoming and outgoing leptons, \(\theta_k \) is the angle between \(\vec{p}_1 \) and \(\vec{k} \), \(\phi_k \) is the azimuthal angle, and

\[D(s, Q^2) = \frac{8Q^4}{1 - \epsilon} \left\{ G_M^2 + \frac{\epsilon}{\tau} G_E^2 \right\}, \]
Once again, the beam single spin asymmetry is given by:

\[
B_n = -\frac{1}{(2\pi)^3} \frac{e^2 Q^2}{D(s, Q^2)} \frac{1}{8E_1 E_3 M} \int_0^{2\pi} d\phi_k \int_M^s dW^2 \int_0^{Q_{1,\text{max}}} dQ_1^2 \times \frac{\text{Im} \{L_{\alpha\mu\nu} H^{\alpha\mu\nu}\}}{Q_1^2 |\vec{k}| (1 - \cos \theta \cos \theta_k - \sin \theta \sin \theta_k \cos \phi_k)}
\]
Once again,

\[B_n = -\frac{1}{(2\pi)^3} \frac{e^2 Q^2}{D(s, Q^2)} \frac{1}{8E_1E_3M} \int_0^{2\pi} d\phi_k \int_s^{s M^2} dW^2 \int_0^{Q_{1,\text{max}}^2} dQ_1^2 \]

\[\times \frac{\text{Im} \{ L_{\alpha\mu\nu} H^{\alpha\mu\nu} \}}{Q_1^2 |\vec{k}| (1 - \cos \theta \cos \theta_k - \sin \theta \sin \theta_k \cos \phi_k)} \]

The tensor contraction is

\[\text{Im} L_{\alpha\mu\nu} H^{\alpha\mu\nu} = \frac{8m_e}{M^2 Q_1^2} \left[2W_1 M^2 Q_1^2 (\epsilon^{p_1 p_2 q s} + \epsilon^{p_2 q q_1 s}) \right. \]

\[+ W_2 \epsilon^{p_2 q q_1 s} \left((M^2 - Q_1^2 - W^2)(p_1 \cdot p_2) - M^2 Q_1^2 \right) \right]. \]
Once again,

\[
B_n = -\frac{1}{(2\pi)^3} \frac{e^2 Q^2}{D(s, Q^2)} \frac{1}{8E_1 E_3 M} \int_0^{2\pi} d\phi_k \int_0^s dW^2 \int_0^{Q_{1,\text{max}}} dQ_1^2 \int \frac{\text{Im} \{L_{\alpha\mu\nu} H^{\alpha\mu\nu}\}}{Q_1^2 |\vec{k}| (1 - \cos \theta \cos \theta_k - \sin \theta \sin \theta_k \cos \phi_k)} \]

The tensor contraction is

\[
\text{Im} L_{\alpha\mu\nu} H^{\alpha\mu\nu} = \frac{8m_e}{M^2 Q_1^2} \left[2W_1 M^2 Q_1^2 (\epsilon^{p_1 p_2 q s} + \epsilon^{p_2 q q_1 s}) + W_2 \epsilon^{p_2 q q_1 s} \left((M^2 - Q_1^2 - W^2)(p_1 \cdot p_2) - M^2 Q_1^2 \right) \right].
\]

→ Currently evaluating for Q-weak kinematics.
Beam single spin asymmetries result from the difference in cross sections produced by the beam polarization in electron-proton scattering experiments.
Conclusion

1. Beam single spin asymmetries result from the difference in cross sections produced by the beam polarization in electron-proton scattering experiments.

2. The interference between one- and two-photon exchange amplitudes produces a beam normal single spin asymmetry.

3. The interference between one-photon and Z exchange amplitudes produces a beam transverse single spin asymmetry.

4. The combination of these two asymmetries produces a small phase shift that may be detectable in the future.

5. The inelastic hadronic intermediate state produces an important contribution to the BSSA (soon to be quantified).

6. The framework developed here could potentially be used to compute other beam or target SSA at near-forward angles.
Beam single spin asymmetries result from the difference in cross sections produced by the beam polarization in electron-proton scattering experiments.

The interference between one- and two-photon exchange amplitudes produces a beam normal single spin asymmetry.

The interference between one-photon and Z exchange amplitudes produces a beam transverse single spin asymmetry.
Conclusion

1. Beam single spin asymmetries result from the difference in cross sections produced by the beam polarization in electron-proton scattering experiments.

2. The interference between one- and two-photon exchange amplitudes produces a beam normal single spin asymmetry.

3. The interference between one-photon and Z exchange amplitudes produces a beam transverse single spin asymmetry.

4. The combination of these two asymmetries produces a small phase shift that may be detectable in the future.
Conclusion

1. Beam single spin asymmetries result from the difference in cross sections produced by the beam polarization in electron-proton scattering experiments.

2. The interference between one- and two-photon exchange amplitudes produces a beam normal single spin asymmetry.

3. The interference between one-photon and Z exchange amplitudes produces a beam transverse single spin asymmetry.

4. The combination of these two asymmetries produces a small phase shift that may be detectable in the future.

5. The inelastic hadronic intermediate state produces an important contribution to the BSSA (soon to be quantified).
Conclusion

1. Beam single spin asymmetries result from the difference in cross sections produced by the beam polarization in electron-proton scattering experiments.

2. The interference between one- and two-photon exchange amplitudes produces a beam normal single spin asymmetry.

3. The interference between one-photon and Z exchange amplitudes produces a beam transverse single spin asymmetry.

4. The combination of these two asymmetries produces a small phase shift that may be detectable in the future.

5. The inelastic hadronic intermediate state produces an important contribution to the BSSA (soon to be quantified).

6. The framework developed here could potentially be used to compute other beam or target SSA at near-forward angles.
References

I would like to thank my mentor, Dr. Wally Melnitchouk, for his guidance, instruction, and patience. I would also like to thank Dr. Peter Blunden for his aid in completing the calculations for this project.
Questions?