Baryon Spectroscopy at BESIII

Medina Ablikim

(for the BESIII Collaboration)

Institute of High Energy Physics, Beijing

October 28, 2015, Jefferson Lab

Outline

- Status of BEPCII/BESIII
- Recent results of baryon spectroscopy from BESIII
 - \checkmark Two hyperons in $\psi(3686) \rightarrow K^{-}\Lambda \quad \overline{\Xi}^{+}$
 - ✓ Exited strange baryons in $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^+ \pi^-$
 - ✓ Two new excited baryon states in $\psi(3686)$ →p $p \pi^0$
 - \checkmark N(1535) in $\psi(3686) \rightarrow p p \eta$
- Summary and perspective

Beijing Electron Positron Collider (BEPCII)

Beam energy: 1.0 -2.3 GeV Linac 2004: started BEPCII upgrate **BESIII** construction 2008 : test run **BESIII** 2009-now: BESIII physics run detector e Ring

The BEPCII Collider

BEMS (beam energy measurement system): *based on Compton backscattering*

The BESIII detector

Solenoid Magnet: 1 T Super conducting

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

BESIII Collaboration

Guangxi Normal Univ., Guangxi Univ. Suzhou Univ., Hangzhou Normal Univ.

Lanzhou Univ., Henan Sci. and Tech. Univ.

from 55 institutions in 12 countries

6

Physics Topics at BESIII

- Hadron spectroscopy
 - search for the new forms of hadrons
 - meson spectroscopy
 - baryon spectroscopy

Int. J. Mod. Phys. A 24 (2009)

- Study of the production and decay mechanism of charmonium states : J/ψ, ψ(2S), η_c(1S), χ_{c{0,1,2}}, η_c(2S), h_c(1P₁), ψ(3770) etc Calibrate QCD New states above open charm threshold: XYZ
- Precision measurement of R values, hadronic FF, ...
- Charm physics, charmed baryon
- Rare decays, new physics

7

Baryon Spectroscopy

- Baryon spectroscopy is an important field to understand the internal structure of hadrons.
- The established baryons are described by three-quark (qqq) configurations.
- Non-relativistic three-quark model of baryon:
 - quite successful in interpreting low-lying baryon resonances.
 - provide an explicit classification for light baryons in terms of group symmetry.
 - tend to predict far more excited states than are found experimentally ("miss resonance problem").
- Theoretically, this could be due to a wrong choice of the degrees of freedom describing internal structure of baryons.
- Experimentally, the situation is very complicated due to the large number of broad and overlapping states that are observed.

Baryon Spectroscopy

Charmonium decays can give novel insights into baryons and give complementary information to other experiments

BESIII Data Samples

World largest samples J/ψ , $\psi(2S)$, $\psi(3770)$, Y(4260), ... produced directly from e⁺e⁻ collision

Theoretically: Quark model predicts over 30 Ξ* states,
 Experimentally: 11 Ξ* states observed to date, few of them are well established with spin parity determined

		0 11	Status as seen in				
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
$\Xi(1318)$	1/2 +	****					Decays weakly
$\Xi(1530)$	3/2 +	****	****				
$\Xi(1620)$		*	*				
$\Xi(1690)$		***		***	**		
$\Xi(1820)$	3/2 -	***	**	***	**	**	
$\Xi(1950)$		***	**	**		*	
$\Xi(2030)$		***		**	***		
$\Xi(2120)$		*		*			
$\Xi(2250)$		**					3-body decays
$\Xi(2370)$		**					3-body decays
$\Xi(2500)$		*		*	*		3-body decays

Most observations and measurements from bubble chamber experiment or diffractive Kp interaction.

11

- In 1978, the Ξ(1690) was first observed in the (Σ K) final state in the reaction K⁻p→(Σ K) Kπ at CERN
- Its existence has been confirmed by other experiments, WASA89, Belle, but its spin parity was not well determined.
- > In 2008, BABAR determined spin-parity of $\Xi(1690)$ to be $J^p = \frac{1}{2}$ in $\Lambda_c^+ \rightarrow \Xi^- \pi^+ K^+$
- In 1976, Ξ(1820) was first observed in K⁻Λ mass spectrum in Kp scattering at CERN.
- In 1987, CERN-SPS experiment indicated that $\Xi(1820)$ favors negative parity of J = 3/2 \cdot

- ▶ At present $\Xi(1690)$ and $\Xi(1820)$ are firmly established.
- ➢ Further investigation of their properties is important to the understanding of Ξ* states.
- ➢ Besides from scattering experiments, decays from charmonium states offer a good opportunity to search for additional Ξ* states.
- Our knowledge of charmonium decays into hadrons, especially to hyperons, is limited. The precise measurements of the branching fractions may help to provide a better understanding of the decay mechanism.

- Signal: double Gaussian function.
- bg: a first order Chebychev polynomial
- bg sudied: the ψ(3686) inclusive MC sample, A sidebands and data taken at 3.65 GeV.

an extended unbinned maximum likelihood fit is performed.

 $B(\psi(3686) \rightarrow K^{-}\Lambda \ \overline{\Xi}^{+}) = (3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$

	T(1000) -	$\Box(1000) =$
	$\Xi(1690)$	$\Xi(1820)$
$M(MeV/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(MeV)$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
$Significance(\sigma)$	4.9	6.2
Efficiency(%)	32.8	26.1
$B(10^{-6})$	$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$
$M_{\rm PDG}({\rm MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{\rm PDG}({\rm MeV})$	<30	24^{+15}_{-10}

an extended un-binned maximum likelihood fit is performed to determine the resonance parameters and event yields of the exited hyperons Ξ^*

- Two hyperons $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ are observed in $\psi(3686) \rightarrow K^{-}\Lambda \overline{\Xi}^{+}+c.c$
- Resonance parameters consist with PDG

2. Observation of the decay $\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c.$

PRD 88, 112007 (2013)

data sample: $106 \times 10^6 \psi'$

The candidate events are reconstructed in six modes:

ψ(3686) →

$$\begin{split} &\Lambda \bar{\Sigma}^+ \pi^- (\bar{\Sigma}^+ \to \bar{n}\pi^+) \\ &\bar{\Lambda} \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \to n\pi^-) \\ &\Lambda \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \to \bar{n}\pi^-) \\ &\bar{\Lambda} \bar{\Sigma}^+ \pi^- (\bar{\Sigma}^+ \to n\pi^+) \\ &\Lambda \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \to \bar{p}\pi^0) \\ &\bar{\Lambda} \bar{\Sigma}^+ \pi^- (\bar{\Sigma}^+ \to p\pi^0) \end{split}$$

2. Observation of the decay $\psi(3686) \rightarrow \Lambda \Sigma^{\pm} \pi^{\mp} + c.c.$

- Partial wave analysis (PWA) is performed in order to determine the correct detection efficiency
- **Excited strange baryons around 1.4 to 1.7GeV/c² are observed**

TABLE I. The branching fractions and the values used in the calculation for each decay mode, where the first errors are statistical and the second ones systematic.

$\psi(3686) \rightarrow$	Nabs	$N_{\rm sid}$	NQED	e(%)	$B(\times 10^{-5})$
$\Lambda \bar{\Sigma}^+ \pi^- (\bar{\Sigma}^+ \rightarrow \bar{n} \pi^+)$	1594 ± 48	43 ± 10	64 ± 16	20.25 ± 0.15	$6.91 \pm 0.25 \pm 0.65$
$\bar{\Lambda}\Sigma^-\pi^+(\Sigma^- \rightarrow n\pi^-)$	1637 ± 47	44 ± 10	54 ± 14	20.55 ± 0.15	$7.05 \pm 0.24 \pm 0.61$
$\Lambda \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \rightarrow \bar{n} \pi^-)$	898 ± 35	28 ± 6	25 ± 12	10.03 ± 0.11	7.93 ± 0.36 ± 0.70
$\bar{\Lambda}\Sigma^+\pi^-(\Sigma^+ \rightarrow n\pi^+)$	891 ± 35	29 ± 6	32 ± 11	10.22 ± 0.11	$7.64 \pm 0.35 \pm 0.69$
$\Lambda \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \rightarrow \bar{p} \pi^0)$	458 ± 23	18 ± 5	26 ± 10	5.34 ± 0.078	$7.29 \pm 0.47 \pm 0.72$
$\bar{\Lambda}\Sigma^+\pi^-(\Sigma^+ \rightarrow p \pi^0)$	554 ± 26	13 ± 5	33 ± 11	6.22 ± 0.081	$7.68 \pm 0.67 \pm 0.71$

$$\mathcal{B}(\psi(3686) \rightarrow \Lambda \bar{\Sigma}^+ \pi^- + \text{c.c.})$$

= $(1.40 \pm 0.03 \pm 0.13) \times$

$$\mathcal{B}(\psi(3686) \rightarrow \Lambda \bar{\Sigma}^- \pi^+ + \text{c.c.})$$

 $= (1.54 \pm 0.04 \pm 0.13) \times 10^{-4}$

- ▶ In 2000, BESII started baryon resonance research program with the study of N(1535) and N(1650) in the decay of $J/\psi \rightarrow p p \eta$ by PWA.
- > In 2006, BESII observed a new exited nucleon, N(2065), in the decay $J/\psi \rightarrow p \ n \pi^- + c.c.$, and subsequently confirmed in $J/\psi \rightarrow p \ p \pi^0$.
- > BESII also studied $\psi(3686) \rightarrow p_p \bar{p} \gamma \gamma$, where both $p \bar{p} \pi^0$ and $p \bar{p} \eta$ were observed, and $\psi(3686) \rightarrow p \bar{p} \eta$ for the first time. In both decays, there was weak evidence for a $p \bar{p}$ threshold mass enhancement, but no PWA was performed.
- → Using 24.5×10⁶ ψ (3686) events, CLEO-c collaboration reported the analysis of ψ (3686)→γp p , p p π^0 , p p η , in which N(1535) and a p p enhancement were investigated.

These results show that J/ψ and $\psi(3686)$ are ideal place for studying excited states N*

data sample: $106 \times 10^6 \psi'$

PRL 110, 022001 (2013)

- Proton and anti-proton are identified using dE/dx and TOF informations
- At least two photos are selected
- To better understand the components of this decay, PWA is pursued.
- ➤ Dominated by two-body decays:
 ψ(3686)→ X π⁰, X → p p̄
 ψ(3686)→ p N*(p̄ N*)
 N*(N*)→ p π⁰ (p̄ π⁰)
- All N* resonances up to 2.2 GeV with spin up to 5/2 listed in PDG are considered.

B(ψ (3686) \rightarrow p \bar{p} π^{0}) = (1.65±0.03±0.15)×10⁻⁴

Resonance	Ν	$\epsilon(\%)$	B.F.($\times 10^{-5}$)
N(940)	$1870^{+90+487}_{-90-327}$	27.5 ± 0.4	$6.42^{+0.20+1.78}_{-0.20-1.28}$
N(1440)	$1060^{+90+459}_{-90-227}$	27.9 ± 0.4	$3.58^{+0.25+1.59}_{-0.25-0.84}$
N(1520)	190^{+14+64}_{-14-48}	28.0 ± 0.4	$0.64^{+0.05+0.22}_{-0.05-0.17}$
N(1535)	$673^{+45}_{-45}{}^{+263}_{-256}$	25.8 ± 0.4	$2.47^{+0.28+0.99}_{-0.28-0.97}$
N(1650)	$1080^{+77+382}_{-77-467}$	27.2 ± 0.4	$3.76^{+0.28+1.37}_{-0.28-1.66}$
N(1720)	$510^{+27}_{-27}{}^{+50}_{-197}$	26.9 ± 0.4	$1.79^{+0.10+0.24}_{-0.10-0.71}$
N(2300)	$948^{+68}_{-68}^{+394}_{-213}$	34.2 ± 0.4	$2.62^{+0.28+1.12}_{-0.28-0.64}$
N(2570)	$795^{+45}_{-45}{}^{+127}_{-83}$	35.3 ± 0.4	$2.13^{+0.08+0.40}_{-0.08-0.30}$
Total	4515 ± 93	25.8 ± 0.4	$16.5 \pm 0.3 \pm 1.5$

4. Study N(1535) in $\psi(3686) \rightarrow p p\eta$ decay

PRD 88, 032010 (2013)

data sample: $106 \times 10^6 \psi'$ 60 (b) (a) The decay topology is <mark>01</mark> \checkmark Events/(25MeV/c³) quite simple, $p p \gamma \gamma$. M²(30 20 24 2.6 1.6 M(py) **M²(pη)** N(1535) **Two clusters corresponding** 45 \checkmark (d) to the py mass threshold 35 Events/(25MeV/c²) Events/(25MeV/c²) 30 enhancement are visible. 25 20 20 15 F 1.6 1.8 M(pŋ) M(p D 23

4. Study N(1535) in $\psi(3686) \rightarrow p$ p η decay

- **PWA is performed, the dominant contributions is from N(1535)**
- \checkmark The best solution indicates that N(1535) combined with an interfering PHSP is sufficient to describe the data

Mass and width of N(1535)

• $M = 1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$ ► $\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}/c^2$

PDG value:

- M = 1525 to 1545 MeV/ c^2
- \sim $\Gamma = 125$ to 175 MeV/ c^2

Branching fraction:

• $B(\psi' \rightarrow N(1535)\overline{p}) \times B(N(1535) \rightarrow p\eta) + c.c.$ $= (5.2 \pm 0.3^{+3.2}_{-1.2} \times 10^{-5})$

 $B(\psi(2S) \rightarrow p\bar{p}\eta) = (6.4 \pm 0.2 \pm 0.6) \times 10^{-5}$

Summary and perspective

- **BESIII collected 0.5×10⁹** ψ (2S) and 1.3×10⁹ J/ ψ events.
- Baryon states are presented:
 - > $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ hyperons in $\psi(3686) \rightarrow K^{-}\Lambda \overline{\Xi}^{+}+c.c.$
 - > excited strange baryons Λ^* and Σ^* in $\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{\pm} \pi^{\mp}$
 - > excited baryon states N(2300) and N(2570) in ψ (3686) \rightarrow p \overline{p} π^0
 - > N(1535) in $\psi(3686) \rightarrow p p\eta$
- Charmonium decays have proven to be a good lab for studying not only excited nucleon states, but also excited hyperons.
- Provide complementary information to other experiments.
- Expect more results from full data sample.

Thank You!

26