New Results on QCD Threshold Resummation

Felix Ringer

Institute for Theoretical Physics
University of Tübingen

Alberto Accardi, Daniele Anderle, Daniel de Florian, Patriz Hinderer,
Asmita Mukherjee, George Sterman, Werner Vogelsang

JLab, 12.01.15
Biography

Jan 2012–present PhD, Institute for Theoretical Physics, University of Tübingen, Germany.
Thesis title: “Threshold Resummation and Higher Order Effects in Perturbative QCD”
Supervisor: Prof. Werner Vogelsang
Expected to finish in February 2015

Oct 2009–Dec 2011 Completing diploma studies in physics, University of Tübingen, Germany.
Thesis title: “Contributions of the Weak Gauge Bosons to Spin-Dependent Hard QCD Processes”
Supervisor: Prof. Werner Vogelsang

St. John’s College, Cambridge
Scholarship from DAAD (German Academic Exchange Service)

Oct 2005 Starting diploma studies in physics, University of Tübingen, Germany.
Hadronic QCD Hard Scattering

- Di-Hadron Production
- Single-Inclusive Jet Production

Heavy Gauge Boson Production

- Lepton p_T distribution
- Single-Spin Asymmetries at RHIC

Resummation and Hadron Mass Corrections for Color Singlet Processes

- (Semi-)Inclusive Deep-Inelastic Scattering
- Semi-Inclusive e^+e^- Annihilation
- Double Longitudinal Spin Asymmetries
Outline

• Resummation and HMC for color singlet processes
 • QCD Hard Scattering
 • Heavy Gauge Boson Production
 • Conclusions

Publications:

Anderle, FR, Vogelsang - PRD `13
Anderle, FR, Vogelsang - PRD `13
Accardi, Anderle, FR - PRD `15
Define: \[Q^2 \equiv -q^2 = -(k - k')^2 \]

\[x_B = \frac{Q^2}{2P \cdot q} \quad \text{and} \quad y \equiv \frac{P \cdot q}{P \cdot k} \]

Factorized cross section:
\[
\frac{d^2\sigma}{dx_B dy} = \frac{4\pi\alpha^2}{Q^2} \left[\frac{1 + (1 - y)^2}{2y} \mathcal{F}_T(x_B, Q^2) + \frac{1 - y}{y} \mathcal{F}_L(x_B, Q^2) \right]
\]

universal PDF
\[
\mathcal{F}_i(x_B, Q^2) = \sum_f \int_{x_B}^1 \frac{dx}{x} f \left(\frac{x_B}{x}, \mu^2 \right) C^i_f \left(x, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right)
\]

with structure functions \(i = T, L \)

(up to power corrections \(1/Q^2 \))
\[\mathcal{F}_i(x_B, Q^2) = \sum_f \int_{x_B}^1 \frac{dx}{x} f \left(\frac{x_B}{x}, \mu^2 \right) C^i_f \left(x, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) \]

\[C^i_f = C^i_f(0) + \frac{\alpha_s(\mu^2)}{2\pi} C^i_f(1) + \mathcal{O}(\alpha_s^2) \]

at NLO:

large corrections for \(x \to 1 \)

\[C^{1, (1)}_{q, \text{th}}(x) = C_F \left[\left(1 + x^2 \right) \left(\frac{\ln(1-x)}{1-x} \right) + \frac{3}{2} \frac{1}{(1-x)} + \left(\frac{9}{2} + \frac{\pi^2}{3} \right) \delta(1-x) \right] \]

spoils perturbative convergence for \(x \to 1 \)
even if \(\alpha_s \ll 1 \)

\[\int_0^1 dz \ h(z) \ [g(z)]_+ = \int_0^1 dz \ [h(z) - h(1)] \ g(z) \]
Threshold Logarithms

\[\gamma^*(Q^2) \]

\[k^{th \ order:} \]

\[\alpha_s^k \left(\frac{\ln^n(1-x)}{1-x} \right)_+, \quad \text{with } n \leq 2k - 1 \]

- Partonic threshold \(x \to 1 \) : soft gluon radiation from the LO process \(\gamma^* q \to q \)
- Origin: suppression of real gluon emission while virtual corrections are allowed
- Logarithms may spoil perturbative series, unless taken into account to all orders

Threshold resummation

\[\text{Sterman '81; Catani, Trentadue '89} \]
Mellin Transform Space

• Structure function

\[F_1^N(Q^2) = \int dx_B x_B^{N-1} F_1(x_B, Q^2) \]

\[= \left(\int_0^1 dx x^{N-1} C_f^1(x, Q^2/\mu^2, \alpha_s(\mu^2)) \right) \left(\int_0^1 dy y^{N-1} f(y, \mu^2) \right) \]

• Threshold logarithms

\[\alpha_s^k \left(\frac{\ln^{2k-1}(1-x)}{1-x} \right) \rightarrow \alpha_s^k \ln^{2k} N \]

large logarithms in \(N \)
Accuracy of Resummation

\[\mathcal{O}(\alpha_s^k) : C_{kn} \times \alpha_s^k \ln^n \bar{N}, \quad \text{where } n \leq 2k \]

<table>
<thead>
<tr>
<th>Fixed Order</th>
<th>Resummation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>NLO</td>
<td>(\alpha_s L^2)</td>
</tr>
<tr>
<td>NNLO</td>
<td>(\alpha_s^2 L^4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N^k LO</td>
<td>(\alpha_s^k L^{2k})</td>
</tr>
<tr>
<td>LL</td>
<td>NLL</td>
</tr>
</tbody>
</table>
Resummed result

Resummation relies on factorization of

- QCD matrix elements for n-gluon emission in the soft limit
- phase space in Mellin space

in Mellin space: exponentiation of eikonal diagrams

\[C_{q,\text{res}}^{1,N}(Q^2/\mu^2, \alpha_s(\mu^2)) = e_q^2 H_q(Q^2/\mu^2, \alpha_s(\mu^2)) \Delta_q^N(Q^2/\mu^2, \alpha_s(\mu^2)) J_q^N(Q^2/\mu^2, \alpha_s(\mu^2)) \]

where

\[\log \Delta_q^N = \int_0^1 dx \frac{x^N - 1}{1 - x} \int_{Q^2}^{(1-x)^2 Q^2} \frac{dk^2}{k_{\perp}^2} A_q(\alpha_s(k_{\perp}^2)) \]

\[\log J_q^N = \int_0^1 dx \frac{x^N - 1}{1 - x} \left\{ \int_{(1-x)^2 Q^2}^{(1-x)Q^2} \frac{dk^2}{k_{\perp}^2} A_q(\alpha_s(k_{\perp}^2)) + \frac{1}{2} B_q(\alpha_s((1-x)Q^2)) \right\} \]

calculable perturbatively

\[\text{Sterman `81; Gatheral `83; Frenkel, Taylor `84} \]
Matching and Minimal Prescription

• Matching procedure (avoiding double counting)

\[d\sigma^{\text{match}} = \left(d\sigma^\text{resum} - d\sigma^\text{resum}_{\mathcal{O}(\alpha_s)} \right) + d\sigma^\text{NLO} \]

• Inverse Transformation

\[\mathcal{F}_{1,\text{res}}(x_B, Q^2) = \int_{C_N} \frac{dN}{2\pi i} \ x_B^{-N} C_{q,\text{res}}^{1,N}(Q^2/\mu^2, \alpha_s(\mu^2)) f^N(\mu^2) \]

Choosing the contour to the left of the Landau pole

Catani, Mangano, Nason, Trentadue `96
Combining Resummation and TMC

• Target Mass Corrections Accardi, Qiu ’09

\[2F_1^{\text{TMC}}(x_B, Q^2) = \sum_f \int_{\xi}^{\xi/x_B} \frac{dx}{x} f(x, \mu^2) c_f^1 \left(\frac{\xi}{x}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) \]

with the Nachtmann variable \[\xi = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}} \]

• Combination with resummation Accardi, Anderle, FR ’15

\[2F_1^{\text{TMC}}(x_B, Q^2) = \int_{\xi}^{\xi_{\text{th}}} \frac{dx}{x} c_f^1 \left(\frac{\xi}{x} \right) f(x) + \int_{\xi_{\text{th}}}^{\xi/x_B} \frac{dx}{x} c_f^1 \left(\frac{\xi}{x} \right) f(x) \]

with \[\xi_{\text{th}} = \frac{2}{1 + \sqrt{1 + 4m_N^2/Q^2}} \]

Taking moments in \(\xi : \)
\[\left(\int_0^1 dy y^{N-1} c_f^1(y) \right) \left(\int_0^{\xi_{\text{th}}} dx x^{N-1} f(x) \right) \]

as before truncated moments of the PDF
Relevance for the extraction of PDFs

TMC
Higher Twist
+ Resummation

data/ theory
using CJ12 PDFs
Semi-Inclusive e^+e^- Annihilation

Cross section including HMC

$$\frac{d^2\sigma^h}{dx_E d\cos\theta} = \frac{\pi\alpha^2}{Q^2} N_c \left[\frac{1 + \cos^2 \theta}{2} \hat{F}_1^h(x_E, Q^2) + \sin^2 \theta \hat{F}_L^h(x_E, Q^2) \right]$$

Fragmentation Function

$$\hat{F}_i^h(x_E, Q^2) = \sum_f \int_{x_E}^1 \frac{d\hat{z}}{\hat{z}} D_f^i \left(\frac{x_E}{\hat{z}}, \mu^2 \right) \hat{C}_f \left(\hat{z}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right)$$

Similar threshold logarithms as for DIS

(``crossed resummation´´ Sterman,Vogelsang `06)
Kaons

BELLE and BaBar data/ theory using DSS '08 FFs
Semi-Inclusive DIS

• Coefficient function

\[F^h_q(x, z, Q^2) = \sum_{f,f'} \int_x^1 \frac{d\hat{x}}{\hat{x}} \int_z^1 \frac{d\hat{z}}{\hat{z}} f \left(\frac{x}{\hat{x}}, \frac{\mu^2}{\hat{\mu}^2} \right) D^h_{f'} \left(\frac{z}{\hat{z}}, \frac{Q^2}{\hat{\mu}^2}, \alpha_s(\hat{\mu}^2) \right) C^{i}_{f,f'} \left(\hat{x}, \hat{z}, \frac{Q^2}{\hat{\mu}^2}, \alpha_s(\hat{\mu}^2) \right) \]

\[\alpha_s^k \left(\frac{\ln^m(1 - \hat{x})}{1 - \hat{x}} \right) \left(\frac{\ln^n(1 - \hat{z})}{1 - \hat{z}} \right) \]

• Double Mellin moments

\[C^{T,\text{res}}_{qq}(N, M, \alpha_s(Q^2)) \]

\[\propto \exp \left[\int_0^{Q^2} \frac{dk^2_{\perp}}{k^2_{\perp}} A_q(\alpha_s(k^2_{\perp})) \left\{ \int_0^{1} \frac{d\xi}{\xi} \left[e^{-N \xi - M \frac{k^2_{\perp}}{\xi Q^2}} - 1 \right] + \ln N + \ln M \right\} \right] \]

(no HMCs yet)
Hadron Multiplicities for Pions

\[\frac{d\sigma_{\text{SIDIS}}}{dz} / \sigma_{\text{DIS}} \]

- Resummed
- Prel. Compass Data
- NLO

\[\sqrt{s} = 17.35 \text{ GeV} \]

\[\frac{d\sigma_{\text{SIDIS}}}{dz} / \sigma_{\text{DIS}} \]

- Resummed
- Prel. Hermes Data
- NLO

\[\sqrt{s} = 7.69 \text{ GeV} \]

using MSTW PDFs and DSS `08 FFs
Spin Asymmetries for (SI)DIS

SIDIS:

\[
A_1^h(x, z, Q^2) \approx \frac{g_1^h(x, z, Q^2)}{F_1^h(x, z, Q^2)}
\]

\[\bar{\ell} p \rightarrow \ell h X \quad \text{SIDIS, proton target}\]

\[\bar{\ell} p \rightarrow \ell X \quad \text{DIS, neutron target}\]

JLab, 12 GeV upgrade ...

using DSSV, MSTW PDFs and DSS ’08 FFs
Outline

- Resummation and HMC for color singlet processes
- QCD Hard Scattering
- Heavy Gauge Boson Production
- Conclusions

Publications:
- de Florian, Hinderer, Mukherjee, FR, Vogelsang - PRL ’14
- Hinderer, FR, Sterman, Vogelsang - PRD ’15
Di-Hadron Production

• "Full QCD extension" of Drell-Yan

• Existing data from various experiments not very well described by NLO Owens '02
 data from fixed target: NA24, E711, E706
 collider regime: CCOR, RHIC (planned)

• Previous NLL results from Almeida, Sterman, Vogelsang '09

• Starting point for extension toward NNLL for other processes

\[M^2 = (P_\pi + P_\pi')^2 \]
Threshold Resummation toward NNLL

After taking Mellin and Fourier double moments

\[
\tilde{\omega}_{ab\to cd}^{\text{resum}} \left(N, \Delta \eta, \alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}}, \frac{\mu_F}{\tilde{m}} \right) = \xi_R \left(\alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}} \right) \xi_F^{abcd} \left(\alpha_s(\mu_R), \frac{\mu_F}{\tilde{m}} \right) \\
\times \Delta_a^{N+1} \left(\alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}}, \frac{\mu_F}{\tilde{m}} \right) \Delta_b^{N+1} \left(\alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}}, \frac{\mu_F}{\tilde{m}} \right) \Delta_c^{N+2} \left(\alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}}, \frac{\mu_F}{\tilde{m}} \right) \Delta_d^{N+2} \left(\alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}}, \frac{\mu_F}{\tilde{m}} \right) \\
\times \text{Tr} \left\{ H (\Delta \eta, \alpha_s(\mu_R)) S_N^\Delta \left(\Delta \eta, \alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}} \right) S \left(\alpha_s(\tilde{m}/\tilde{N}), \Delta \eta \right) S_N \left(\Delta \eta, \alpha_s(\mu_R), \frac{\mu_R}{\tilde{m}} \right) \right\}_{ab\to cd}
\]

Refactorization near threshold

Kidonakis, Oderda, Sterman `98
Bonciani, Catani, Mangano, Nason `98
Banfi, Salam, Zanderighi
Dokshitzer, Marchesini
Almeida, Sterman, Vogelsang `09

Figure adapted from
de Florian, Pfeuffer, Schäfer, Vogelsang `13
• Hard-Scattering Matrix: derived from virtual corrections

\[
H^{(1)} = \begin{pmatrix}
\mathcal{R} \left\{ \frac{1}{2N_c^2} \left[\frac{s^2 + u^2}{t^2} \left(-4C_F L(t)^2 + 2X_1(s, t, u)L(t) + 2Y \right) + \frac{s^2}{t^2} \left(C_A - 4C_F \right) Z(s, t, u) - \frac{u^2}{t^2} \left(2C_A - 4C_F \right) Z(u, t, s) \right] \right\} \\
\frac{1}{2N_c^2} \left[\frac{s^2 + u^2}{t^2} X_2(s, t, u)L(t) - \frac{s^2}{t^2} \frac{C_F}{2C_A} Z(s, t, u) + \frac{u^2}{t^2} \frac{C_F}{2C_A} Z(u, t, s) \right]
\end{pmatrix}
\]

with e.g.

\[
X_1(s, t, u) = 6C_F - 4\pi b_0 + 8C_F[L(s) - L(u)] - 2C_A[2L(s) - L(t) - L(u)]
\]

and

\[
L(t) = \log \frac{-t}{s}, \quad L(u) = \log \frac{-u}{s}, \quad L(s) = -i\pi
\]

• Soft Matrix: derived from real emission diagrams in the eikonal approximation

\[
S^{(1)} = \frac{C_F}{2} \begin{pmatrix}
\text{Li}_2 \left(-\frac{u}{t} \right) + \left(2 - N_c^2 \right) \text{Li}_2 \left(-\frac{t}{u} \right) - 2N_c \text{Li}_2 \left(-\frac{t}{u} \right) - 2N_c \text{Li}_2 \left(-\frac{t}{u} \right) - 4N_c^2 \text{Li}_2 \left(-\frac{u}{t} \right) & 0
\end{pmatrix}
\]

\[qq' \rightarrow qq'\]

\[
(H^{(1)})_{12} = (H^{(1)})^{*}_{21}
\]

\[
\begin{pmatrix}
0 \\
2 \times 2
\end{pmatrix}
\]

see also Kelley, Schwartz `11; Broggio et al. `14
Introduction

Perturbative QCD Resummation

Conclusions

Perturbative QCD

Threshold Resummation

Hadronic Production

Conclusions

W±

QCD Resummation for SIDIS

Phenomenological Results

Annihilation

Conclusions

e+e-

QCD Resummation for SIDIS

Hadron multiplicities

Longitudinal spin asymmetries

Conclusions

QCD Resummation for SIDIS

Annihilation

Longitudinal spin asymmetries

Conclusions

Approximate NNLO results

Mellin code and NNLL

Conclusions

Color Singlet Processes

QCD Hard Scattering

Heavy Gauge Boson Production

Conclusions

CTEQ6 NLO PDFs, DSS `14 FFs

CCOR
Scale dependence

CTEQ6 NLO PDFs, DSS `14 FFs
Single-Inclusive Jet Production

• Large theoretical uncertainties especially at high p_T
• PDFs and α_s are constrained by collider jet data
• High p_T jets are a promising observable for the search of BSM physics at the LHC
• Analytical results obtained in the "Narrow Jet Approximation"

\[A \log R + B + O(R^2) \]

• First results based on NLL; Preliminary results toward NNLL

Jäger, Stratmann, Vogelsang ’04; Mukherjee, Vogelsang ’13

$\sqrt{s} = 8\text{TeV}$ anti-k_T $R=0.7$ $L = 10.71\text{fb}^{-1}$

- Data/Theory
- Theo. Uncertainty
- Exp. Uncertainty

CT10 CMS Preliminary
Approximate NNLO-NLL results (planned to be) used by PDF groups, `\texttt{fastNLO}`... For example, the latest NNPDF3.0 set \cite{Ball:2014uwa} using MSTW-nnlo PDFs.
Outline

- Resummation and HMC for color singlet processes
- QCD Hard Scattering
- Heavy Gauge Boson Production
- Conclusions

Publications: FR, Vogelsang - to be submitted
Heavy Gauge Boson Production

• New analytical results at NLO

\[q\bar{q}^\prime \rightarrow \ell^\pm X, \quad qg \rightarrow \ell^\pm X \]

• Structure

\[1 - v = \frac{p_T^\ell}{\sqrt{s}} e^{-\hat{\eta}} \quad \nu w = \frac{p_T^\ell}{\sqrt{s}} e^{+\hat{\eta}} \]

\[
\frac{d\sigma^{\text{NLO}}}{dv dw} = \frac{\alpha_s}{2\pi} \left\{ \frac{f_{\text{LO}}(v)}{(s - M_W^2)^2 + \Gamma^2 M_W^2} \left[A \left(\frac{\ln(1 - w)}{1 - w} \right)_+ + B(v) \frac{1}{(1 - w)_+} \right. \right.
\]

\[
+ C(v) \delta(1 - w) \left. \right] + \left. \frac{\ln \left(\frac{(ws - M_W^2)^2 + \Gamma^2 M_W^2}{M_W^4 + \Gamma^2 M_W^2} \right)}{(ws - M_W^2)^2 + \Gamma^2 M_W^2} \right. + \ldots \right\} \]
• Analytical results help to understand the structure around $p_T^\ell \sim M_W/2$

• Polarized results are being used for including results on SSA from RHIC into the DSSV global analysis of polarized PDFs
Outline

- Resummation and HMC for color singlet processes
- QCD Hard Scattering
- Heavy Gauge Boson Production
- Conclusions
Conclusions

- Resummation and HMC for color-singlet processes. Future extension to NNLO, NNLL for data coming from JLab at 12 GeV
- More work necessary concerning HMCs
- Threshold resummation toward NNLL for di-hadron and Single-Inclusive Jet Production
- Possible extensions to processes such as di-jet, single-inclusive hadron production, photons etc.
- W, Z boson production for the (un-)polarized cross section
- RHIC data will be included in the DSSV PDF set