

Hadron Mass Corrections in semi-inclusive deep-inelastic scattering

Juan Guerrero Hampton University & Jefferson Lab

Theory Center Seminar. May 13th, 2015

arXiv: 1505.02739 J. G., J. Ethier, A. Accardi, S. Casper., W. Melnitchouk

- Introduction
- Kinematics
- Cross sections at finite Q²
- Phenomenological implications
- Conclusion and Outlook

Introduction

Hard scattering reactions: Picture of the nucleon

(partons)

3

Examples:

- Deep inelatic scattering (DIS): $e^-p \longrightarrow e^-X$
- Semi inclusive Deep inelatic scattering (SIDIS): $e^{-p} \rightarrow e^{-hX}$
- Drell Yan (DY): $h_A h_B \longrightarrow e^- e^+ X$

 e^-e^+ annihilation: e^-e^+ \rightarrow hX

Introduction: Light cone vectors

Light cone + direction n^{μ}

Light cone – direction \overline{n}^{μ}

$$n^2 = \overline{n}^2 = 0 \qquad n \cdot \overline{n} = 1$$

Components of a vector a^{μ} $a^{+} = a \cdot n$ $a^{-} = a \cdot \overline{n}$

Choosing:

$$n^{\mu} = (1/\sqrt{2}, \vec{0}_{\perp}, -1/\sqrt{2})$$
$$\overline{n}^{\mu} = (1/\sqrt{2}, \vec{0}_{\perp}, 1/\sqrt{2})$$

We can write

$$a^{\pm} = (a_0 \pm a_3)/\sqrt{2}$$

Introduction: DIS

DIS Diagram

Theoretical Framework:

- > Operator Product Expasion (OPE).
- Collinear factorization (CF)

To be studied: massive case

Introduction: DIS

DIS Diagram

Theoretical Framework:

- > Operator Product Expasion (OPE).
- Collinear factorization (CF)

To be studied: massive case

DIS Kinematic invariants

Nucleon Mass

Virtuality

$$m_N^2 = p^2 \qquad Q^2 = -q^2$$

Bjorken-x

Final state invariant

$$x_B = \frac{Q^2}{2p \cdot q} \qquad \begin{array}{c} \text{mass} \\ W^2 = (p+q)^2 \end{array}$$

Introduction: DIS

DIS Diagram

Nachtmann scaling variable $\xi = -\frac{q^+}{2} = ---- 2x_B$

$$-\frac{1}{p^{+}} - \frac{1}{1 + \sqrt{1 + 4x_{B}^{2}M^{2}/Q^{2}}}$$

Bjorken Limit $Q^2 \rightarrow \infty$ $\xi \rightarrow x_B$

Theoretical Framework:

Operator Product Expasion (OPE).

Collinear factorization (CF) To be studied: OPE CF

massive case

DIS Kinematic invariants

Nucleon Mass

Virtuality

$$m_N^2 = p^2 \qquad Q^2 = -q^2$$

Bjorken-x Final state invariant

$$x_B = rac{Q^2}{2p \cdot q}$$
 mass $W^2 = (p+q)^2$

Introduction: SIDIS

SIDIS Diagram

Theoretical Framework:> Operator Product Expasion (OPE).

Collinear factorization (CF)

DIS variables

Introduction: SIDIS

SIDIS Diagram

Theoretical Framework:Operator Product Expasion (OPE).

Collinear factorization (CF)

DIS variables + <u>hadronic variables</u>

Fragmentation invariant

Fragmentation variable

$$z_h = \frac{p_h \cdot p}{q \cdot p}$$

 $\zeta_h = \frac{p_h}{q^-}$

Juan Guerrero, Hampton U. & JLab

Introduction: SIDIS

Advantage vs. DIS:

Disadvantage vs. DIS:

- > Quark flavor decomposition (π vs. K) > Needs to understand quark fragmentation
- Quark tranverse angular momentum
 (P_{hT})
- Experimentally harder:
 - Rates are lower in coincidence experiments

<u>Polarized SIDIS</u>: flavor assymetry?

Need to identify the hadron.

Introduction: Why Hadron Mass Corrections (HMC's)?

Jlab experiments

- > Usually Low Q²(~1 GeV²)
- I/Q² corrections have to be controlled

≡ HMC's!!!

O(

Juan Guerrero, Hampton U. & JLab

Introduction: HMC's for charged pion production (unpolarized SIDIS)

Accardi, Hobbs, Melnitchouk JHEP 0911, 084 (2009)

Introduction: Polarized HMC's (Project)

arXiv: 1505.02739

Hadron mass corrections in semi-inclusive deep-inelastic scattering

J. V. Guerrero^{1,2}, J. J. Ethier^{2,3}, A. Accardi^{1,2}, S. W. Casper^{2,4}, W. Melnitchouk²
¹Hampton University, Hampton, Virginia 23668, USA
²Jefferson Lab, Newport News, Virginia 23606, USA
³College of William and Mary, Williamsburg, Virginia 23185, USA
⁴Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Starting from the ref. JHEP 0911, 084 (2009) we:

Review all the kinematics

Derive the cross section for the unpolarised case and extend to the polarized case

Estimate the size of the hadron mass corrections at kinematics relevant for current and future experiments

SIDIS Diagram

(p,q) frame

Hadron momentum

$$p_{h}^{\mu} = \frac{\xi m_{h\perp}^{2}}{\zeta_{h} Q^{2}} p^{+} \overline{n}^{\mu} + \frac{\zeta_{h} Q^{2}}{2\xi p^{+}} n^{\mu} + p_{h\perp}^{\mu}$$

Fragmentation Variable

$$\zeta_h = \frac{p_h^-}{q^-} = \frac{z_h}{2} \frac{\xi}{x_B} \left(1 + \sqrt{1 - \frac{4x_B^2 M^2 m_{h\perp}^2}{z_h^2 Q^4}} \right)$$

with

$$m_{h\perp}^2 = m_h^2 + p_{h\perp}^2; \quad \frac{\zeta_h \longrightarrow z_h}{Q^2 \to \infty}$$

Theory Center Seminar (05/13/2015)

SIDIS Diagram

Momentum and baryon number conservation

•Limits on $z_h z_h^{\min} \le z_h \le z_h^{\max}$ $z_h^{\min} = 2x_B \frac{Mm_h}{Q^2}$ $(z_h^{\max} = 1 - 2x_B \frac{M(M_b - M)}{Q^2})$

Target rest frame
$$z_h = rac{E_h}{
u}$$
 $x_B = rac{Q^2}{2M
u}$

Energy + Baryon number $E_P + E_{\gamma} = E_h + E_b + E_s$ conservation $E_s > 0$ $E_b \ge M_b$

 \sim

 $z_h^{\max} = 1 - 2x_B \frac{M(M_b - M)}{Q^2}$

•<u>*π*-production</u>: $M_b = M$ \longrightarrow $z_h^{\max} = 1$

•K-production: $M_b = M_\Lambda$ \longrightarrow $z_h^{\text{max}} = 1 - 2x_B \frac{M(M_\Lambda - M)}{Q^2}$

SIDIS: Current vs. Target Fragmentation

SIDIS Fragmentation (in pQCD)

$$z_e = \frac{2p_h \cdot q}{q^2}$$

Frag. Variable

$$\zeta_{h} = \frac{z_{e}}{2} \left(1 + \sqrt{1 + \frac{4m_{h\perp}^{2}}{z_{e}^{2} Q^{2}}} \right)$$

SIDIS: Current vs. Target Fragmentation

Alternative Frag. Invariant

$$z_e = \frac{2p_h \cdot q}{q^2} = \frac{p_h^z}{q^z}$$
Breit frame

SIDIS: Current vs. Target Fragmentation

SIDIS Fragmentation (Frag.)

Alternative Frag. Invariant

Breit frame

19

Frag. Variable

$$\zeta_{h} = \frac{z_{e}}{2} \left(1 + \sqrt{1 + \frac{4m_{h\perp}^{2}}{z_{e}^{2} Q^{2}}} \right)$$

In the Current region:

$$\zeta_h > \zeta_h(z_e = 0) = \frac{m_{h\perp}}{Q}$$

•Bjorken Limit $\zeta_h \to z_h \to z_e$ $\zeta_h^{(0)} \to 0$

Theory Center Seminar (05/13/2015)

Quarks momenta (LO)

"Collinear" Momenta

Initial and scattered quarks are off-shell

Virtualities \tilde{k}^2 and \tilde{k}'^2 will be fixed later

Partonic analog to Bjorken
$$\hat{x} = -\frac{q^2}{2\widetilde{k} \cdot q} = \frac{\xi}{x} \frac{1}{1 - \xi^2 \widetilde{k}^2 / x^2 Q^2}$$
 variable

Four-momentum and baryon number conservation: $\implies \hat{x}_{\min} \leq \hat{x} \leq \hat{x}_{\max}$

$$\frac{1}{\hat{x}_{\min}} = \frac{1}{x_B} - \frac{2Mm_h + \tilde{k}^2}{Q^2} \qquad \begin{array}{c} \text{collinear spectators} \\ \text{minimun mass} \end{array}$$
$$\frac{1}{\hat{x}_{\max}} = 1 + \frac{m_h^2}{\zeta_h Q^2} - \frac{\tilde{k}^2}{Q^2} \left(1 - \frac{\xi m_h^2}{x\zeta_h Q^2}\right) \qquad \begin{array}{c} \text{Mininum current jet} \\ \text{invariant mass} \end{array}$$

Combining:

- These two limits
- $\cdot x_B \le x_B^{max}$

Next step: make a choice of initial and scattered parton virtualities. Initial parton:

- · Virtuality independent of x
- For light, bound state initial partons

 $\widetilde{k}^2 \ge x(\zeta_h - 1)Q^2/\xi$

Spin averaged Cross section

Spin averaged Cross section

New scaling variables

$$\xi_h = \xi (1 + \frac{m_h^2}{\zeta_h Q^2}) \qquad \qquad \zeta_h = \frac{z_h}{2} \frac{\xi}{x_B} \left(1 + \sqrt{1 - \frac{4x_B^2 M^2 m_{h\perp}^2}{z_h^2 Q^4}} \right)$$

Ratio longitudinal to transverse photon flux

$$\varepsilon = \frac{1 - y - y^2 \gamma^2 / 4}{1 - y + y^2 (1 + \frac{1}{2}\gamma^2) / 2}$$

Spin dependent Cross section

Spin dependent Cross section

$$\Delta \sigma_h \equiv \frac{d\sigma_h^{\uparrow\uparrow-\downarrow\uparrow}}{dx_B \, dQ^2 \, dz_h} = \frac{4\pi\alpha^2}{Q^4} \frac{y^2 \sqrt{1-\varepsilon^2}}{1-\varepsilon} J_h \sum_q e_q^2 \Delta q(\xi_h, Q^2) D_q^h(\zeta_h, Q^2)$$
Polarised PDF

<u>Bjorken Limit</u>: $Q^2 \to \infty$

 $\xi_h \to x_B \qquad \zeta_h \to z_h \qquad J_h \to 1$

Massless cross sections

$$\sigma_h^{(0)} \equiv \sigma_h(\xi_h \to x_B, \zeta_h \to z_h)$$
$$\Delta \sigma_h^{(0)} \equiv \Delta \sigma_h(\xi_h \to x_B, \zeta_h \to z_h)$$

Unpolarised PDF's $q(x) = \frac{1}{2} \int dk^- d^2 k_\perp \left[\gamma^+ \Phi_q(p, S, k) \right]_{k^+ = xp^+}$ $= \frac{1}{4\pi} \int dw^- e^{ixp^+w^-} \langle N | \overline{\psi}_q(0) \gamma^+ \psi_q(w^-n) | N \rangle$

Polarized PDF's $\Delta q(x) = \frac{1}{2} \int dk^{-} d^{2}k_{\perp} \left[\gamma^{5}\gamma^{+}\Phi_{q}(p, S, k)\right]_{k^{+}=xp^{+}}$

$$= \frac{1}{4\pi} \int dw^{-} e^{ixp^{+}w^{-}} \langle N | \overline{\psi}_{q}(0) \gamma^{5} \gamma^{+} \psi_{q}(w^{-}n) | N \rangle$$

Fragmentation Functions

$$D_{q}^{h}(z) = \frac{z}{4} \int dk'^{+} d^{2}k'_{\perp} \left[\gamma^{-}\Delta_{q}^{h}(k', p_{h})\right]_{k'^{-}=p_{h}^{-}/z}$$
$$= \frac{z}{8\pi} \sum_{Y'} \int dw^{+} e^{i(p_{h}^{-}/z)w^{+}} \langle 0|\psi_{q}(w^{+})|h, Y'\rangle \langle h, Y'|\overline{\psi}_{q}(0)\gamma^{-}|0\rangle$$

Phenomenological implications

Pions vs. Kaons

Unpolarised

Polarised

Kaons mass effects much larger

Theory Center Seminar (05/13/2015)

Phenomenological implications

Q² dependence of the HMC's for $(\pi^+ + \pi^-)$

Phenomenological implications

Dependence on the parton virtuality

Thin lines: Albino et all. Nucl.Phys B803, 42 (2008) $\widetilde{k}'^2 = 0$

Mass corrections for specific experiments

Jlab 11 GeV

(Experiments: E12-09-007, E12-13-007, E12-06-109)

Juan Guerrero, Hampton U. & JLab

Theory Center Seminar (05/13/2015)

Mass corrections for specific experiments

Polarization assymetry

$$A_1^h = \frac{A_{\parallel}^n}{D}$$

1 L

Parallel
assymetry
$$A^h_{\parallel} = \frac{\Delta \sigma_h}{2\sigma_h}$$
 γ -depolarization factor $D = \frac{1 - (1 - y)\varepsilon}{1 + \varepsilon R}$

At LO:

$$A_{1}^{h} = \frac{\sqrt{1-\varepsilon^{2}}}{D} \frac{\sum_{q} e_{q}^{2} \Delta q(\xi_{h}, Q^{2}) D_{q}^{h}(\zeta_{h}, Q^{2})}{\sum_{q} e_{q}^{2} q(\xi_{h}, Q^{2}) D_{q}^{h}(\zeta_{h}, Q^{2})}$$

Mass corrections for specific experiments

Jlab 11 GeV

(Experiment: E12-06-109)

Conclusion and outlook

٠

٠

٠

٠

HMC's at LO are captured by new scalling variables ξ_h and ζ_h .

- Matching "internal" and external kinematics requires a massive fragmenting parton with $\widetilde{k}'^2 \geq m_h^2/\zeta_h$
- x_{B} and z_{h} mixed in the new scaling variables ξ_{h} and ζ_{h}
- We have quantified HMC's effects numerically: stronger for large as well very small values of z_h , stronger effects at large x_B and Low Q^2 (as DIS).
- More dramatic effects for Kaons compared to pions.
- Jefferson Lab experiments: corrections up to ~40 %- 50 % even at moderately large Q^2 .
- Future development: prove factorization at NLO in the prescence of massive fragmenting partons with non-zero virtuality.

Thank you!

Theory Center Seminar (05/13/2015)

Backup slides

Jacobian

Backup slides

PDF's

Backup slides

Fragmentation function

