Lepton-Hadron Processes BEYOND NLO

Newport News, 05.18.2015
Accardi, Anderle, de Florian, Ringer, Rotstein, Stratmann, Vogelsang

Outline

- HMC + Threshold Resummation
- TOWARDS A Global NNLO FF Fit
- New CHANNELS IN SIDIS NNLO FL
- CONClUSIONS \& OUTLOOK

HMC + Threshold Resummation

Accardi, Anderle,Ringer(Phys. Rev. D 91, 034008 (2015))

We consider two corrections on standard pQCD calculation of SIA and DIS:

- Threshold resummation
- Hadron Mass Correction

Both corrections become relevant only in some kinematical phase space regions

Deep Inelastic Scattering

$$
l(k) p(P) \rightarrow l\left(k^{\prime}\right) X
$$

Defined kinematic variables:

$$
\begin{aligned}
Q^{2} & \equiv-q^{2}=-\left(k-k^{\prime}\right)^{2} \quad \text { Virtual Photon Energy } \\
y & \equiv \frac{P \cdot q}{P \cdot k} \quad \propto \text { to lepton scattered angle } \\
x & \equiv \frac{Q^{2}}{2 P \cdot q}
\end{aligned}
$$

In a standard pQCD calculation of DIS cross section one is able to write

$$
\frac{d^{2} \sigma}{d x d y}=\frac{4 \pi \alpha^{2}}{Q^{2}}\left[\frac{1+(1-y)^{2}}{2 y} \mathcal{F}_{T}\left(x, Q^{2}\right)+\frac{1-y}{y} \mathcal{F}_{L}\left(x, Q^{2}\right)\right]
$$

Furmanski, Petronzio; Catani; Kretzer;...

$$
\mathcal{F}_{i}\left(x, Q^{2}\right)=\sum_{f} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} f\left(\frac{x}{\hat{x}}, \mu^{2}\right) \mathcal{C}_{f}^{i}\left(\hat{x}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)
$$

Factorization of long (soft) and short (hard) behavior in the STRUCTURE FUNCTIONS

Theoretically-calculated coefficient functions

\qquad

While the PDFs are UNIVERSAL do not depend on the specific process, the coefficient functions can be calculated perturbatively for each process

$$
\mathcal{C}_{f}^{i}=C_{f}^{i,(0)}+\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} C_{f}^{i,(1)}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

LO:

NLO:

2

ELECTRON-POSITRON ANNHILATION

Defined kinematic varibles variables:

$$
\begin{aligned}
q^{2} & =Q^{2} \quad \text { Virtual Photon Energy } \\
x_{E} & \equiv \frac{2 P_{h} \cdot q}{Q^{2}}=\frac{2 E_{h}}{\sqrt{s}} \quad \text { (c.m.s) }
\end{aligned}
$$

SIA cross section analogous to DIS case.
We treat FFs (parton to hadron) analogously to PDFs (hadron to parton):

$$
\frac{d^{2} \sigma^{h}}{d x_{E} d \cos \theta}=\frac{\pi \alpha^{2}}{Q^{2}} N_{C}\left[\frac{1+\cos ^{2} \theta}{2} \hat{\mathcal{F}}_{T}^{h}\left(x_{E}, Q^{2}\right)+\sin ^{2} \theta \hat{\mathcal{F}}_{L}^{h}\left(x_{E}, Q^{2}\right)\right]
$$

Nason, Webber; Furmanski, Petronzio

NLO Coefficient Function (SIA)

2

large corrections near threshold $\quad \hat{z} \rightarrow 1$

$$
\hat{C}_{q}^{T,(1)} \sim e_{q}^{2} C_{F}\left[2\left(\frac{\log (1-\hat{z})}{1-\hat{z}}\right)_{+}-\frac{3}{2} \frac{1}{(1-\hat{z})_{+}}+\left(\frac{2 \pi^{2}}{3}-\frac{9}{2}\right) \delta(1-\hat{z})\right]
$$

$\overline{\mathrm{MS}}$ scheme
Altarelli et al.; Furmanski, Petronzio; Nason, Webber...

$$
\int_{0}^{1} d z f(z)\left(\frac{\ln (1-z)}{1-z}\right)_{+} \equiv \int_{0}^{1} d z(f(z)-f(1)) \frac{\ln (1-z)}{1-z}
$$

Threshold Logarithms

N^{k} LO Threshold Logarithms coming from emission of k soft gluon

$$
\alpha_{s}^{k}\left(\frac{\ln ^{2 k-1}(1-x)}{1-x}\right)_{+}
$$

$x \rightarrow 1$ partonic threshold: final state gluon radiation from the basic process $\gamma^{*} \rightarrow q \bar{q}$

$$
\begin{array}{ll}
\text {-soft } & \frac{k_{0}}{P_{0}^{h}} \equiv 1-x \\
\text {-collinear } & k_{T} \sim k_{0} \theta \ll(1-x) Q
\end{array}
$$

The Exponentiation

The Resummation of the Threshold Logs occurs via the exponentiation of the "single emission"

Resummation relies on the factorisation of

- the matrix element for n-gluon emission in the eikonal approximation (soft gluon approx.)
- the phase space when the Mellin transform is taken

$$
\delta\left(1-k_{0}-\sum_{i=1}^{n} k_{i}\right)=\frac{1}{2 \pi i} \int_{C} d N e^{N\left(1-k_{0}-\sum_{i=1}^{n} k_{i}\right)}
$$

Resummation can be derived in Mellin space

$$
\begin{aligned}
\tilde{\mathcal{F}}_{i}^{h}\left(N, Q^{2}\right) & =\int_{0}^{1} d x_{E} x_{E}^{N-1} \mathcal{F}_{i}^{h}\left(x, Q^{2}\right) \\
& =\sum_{f} \tilde{D}_{f}^{h, N} \times \tilde{\mathcal{C}}_{f}^{i}\left(N, Q^{2}\right)
\end{aligned}
$$

where for $N \rightarrow \infty$ (corresponds to $x \rightarrow 1$)

$$
\tilde{C}_{q}^{T,(1)} \sim e_{q}^{2} C_{F}\left[\log \bar{N}^{2}+\frac{3}{2} \log \bar{N}+\left(\frac{5}{6} \pi^{2}-\frac{9}{2}\right)\right]
$$

$$
\bar{N}=N e^{\gamma_{E}}
$$

ACCURACY OF RESUMMATION

$$
\mathcal{O}\left(\alpha_{s}^{k}\right): \quad C_{k n} \times \alpha_{s}^{k} \ln ^{n} \bar{N}, \quad \text { where } n \leq 2 k \quad L=\ln (\bar{N})
$$

Fixed Order

LO 1

NLO

$$
\alpha_{s} L^{2}
$$

$$
\alpha_{s} L
$$

$$
\alpha_{s}
$$

NNLO

$$
\alpha_{s}^{2} L^{4}
$$

$$
\alpha_{s}^{2} L^{3}
$$

$$
\alpha_{s}^{2} L^{2}
$$

$$
\alpha_{s}^{2} L
$$

$$
\alpha_{s}^{2}
$$

NkLO
$\alpha_{s}^{k} L^{2 k}$
$\alpha_{s}^{k} L^{2 k-1} \quad \alpha_{s}^{k} L^{2 k-2}$
$\alpha_{s}^{k} L^{2 k-3} \quad \alpha_{s}^{k} L^{2 k-4}$

In Mellin Space

ACCURACY OF RESUMMATION

$$
\mathcal{O}\left(\alpha_{s}^{k}\right): \quad C_{k n} \times \alpha_{s}^{k} \ln ^{n} \bar{N}, \quad \text { where } n \leq 2 k \quad L=\ln (\bar{N})
$$

Fixed Order

LO
NLO
NNLO
...
NkLO

LL

$$
\begin{array}{c|c}
\alpha_{s}^{2} L & \alpha_{s}^{2} \\
\ldots & \cdots \\
\hline \alpha_{s}^{k} L^{2 k-3} & \alpha_{s}^{k} L^{2 k-4}
\end{array}
$$

NLL

THRESHOLD RESUMMATION

For both DIS and SIA

in Mellin space: exponentiation of the one-loop results

$$
\mathcal{C}_{q}^{T, r e s} \propto \exp \left[\int_{0}^{1} d \xi \frac{\xi^{N}-1}{1-\xi} \times\left\{\int_{Q^{2}}^{(1-\xi) Q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} A_{q}\left(\alpha_{s}\left(k_{\perp}^{2}\right)\right)+\frac{1}{2} B_{q}\left(\alpha_{s}\left((1-\xi) Q^{2}\right)\right)\right\}\right]
$$

where $\quad A^{(1)}=C_{F}, \quad A^{(2)}=\frac{1}{2} C_{F} K=\frac{1}{2} C_{F}\left[C_{A}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5}{9} N_{f}\right]$

$$
B^{(1)}=-\frac{3}{2} C_{F} .
$$

Threshold Resummation acts for DIS and SIA in the same exact way and is relevant for the same Phase Space region:

DIS:	$x \rightarrow 1$
SIA:	$x_{E} \rightarrow 1$

Studying The Kinematics (SIA)

we study the kinematics in the $\gamma-h$ frame

$$
\begin{aligned}
& q=q^{+} \bar{n}+\frac{Q^{2}}{2 q^{+}} n \\
& P_{h}=P_{h}^{+} \bar{n}+\frac{m_{h}^{2}}{2 p_{h}^{+}} n \\
& k=k^{+} \bar{n}+\frac{k^{2}+k_{T}^{2}}{2 k^{+}} n+\mathbf{k}_{T}
\end{aligned}
$$

where the light-cone vectors

$$
\begin{aligned}
& n^{\mu}=\frac{1}{\sqrt{2}}(1,0,0,-1) \\
& \bar{n}^{\mu}=\frac{1}{\sqrt{2}}(1,0,0,1) \\
& n^{2}=\bar{n}^{2}=0 \quad n \cdot \bar{n}=1 \\
& a^{+}=a \cdot n \quad a^{-}=a \cdot \bar{n}
\end{aligned}
$$

The boson fractional momentum in respect to the hadron is not anymore $x_{E}=\frac{2 q \cdot P_{h}}{q^{2}}$ but

$$
P_{h}^{+} / q^{+}=\xi_{E}=\frac{1}{2} x_{E}\left(1+\sqrt{1-\frac{4}{x_{E}^{2}} \frac{m_{h}^{2}}{Q^{2}}}\right)
$$

and analogously for DIS

$$
\xi=\frac{2 x_{B}}{1+\sqrt{1+4 x_{B}^{2} m_{N}^{2} / Q^{2}}}
$$

$$
x_{B}=\frac{Q^{2}}{2 q \cdot P_{h}}
$$

One should use those variables when calculating structure functions, since they represent the right physical fractional momentum variables

$$
\begin{array}{r}
\mathcal{F}_{i}\left(x_{E}, Q^{2}\right) \rightarrow \mathcal{F}_{i}\left(\xi_{E}, Q^{2}\right) \\
\mathcal{F}_{i}\left(x_{B}, Q^{2}\right) \rightarrow \mathcal{F}_{i}\left(\xi, Q^{2}\right)
\end{array}
$$

The hadron mass acts kinematically on the two processes in a very different way

RESUMMATION AND HMC INTERPLAY (DIS)

Taking into account momentum conservation law and some simple algebra

we find that the partonic momentum fraction \hat{x} is limited as

$$
\xi \leq \hat{x}=\frac{k^{+}}{P_{h}^{+}} \leq \xi / x_{B}
$$

In the definition of the structure functions the integration limits need to be modified

$$
\mathcal{F}_{i}\left(\xi, Q^{2}\right)=\sum_{f} \int_{\xi}^{\xi / x_{B}} \frac{d \hat{x}}{\hat{x}} f(\hat{x}) \mathcal{C}_{f}^{i}\left(\frac{\xi}{\hat{x}}, Q^{2}\right)
$$

Accardi and Qiu(JHEP 0807:090,2008)

This effects also Threshold Resummation correction

In order to be able to perform the Mellin Transform properly be able to use the resumption formula, we have to define

$$
\begin{aligned}
\mathcal{F}_{1}^{\mathrm{TMC}, N} & =\int_{0}^{1} d \xi \xi^{N-1} \int_{\xi}^{\xi_{\text {th }}} \frac{d x}{x} \mathcal{C}_{f}^{1}\left(\frac{\xi}{x}\right) f(x) \\
& =\int_{0}^{1} d \xi \xi^{N-1} \int_{0}^{1} d y \int_{0}^{\xi_{\text {th }}} d x \mathcal{C}_{f}^{1}(y) f(x) \delta(x y-\xi) \\
& =\left(\int_{0}^{1} d y y^{N-1} \mathcal{C}_{f}^{1}(y)\right)\left(\int_{0}^{\xi_{\text {th }}} d x x^{N-1} f(x)\right) \\
& =\mathcal{C}_{f}^{1, N} f_{\xi_{\text {th }}}^{N}
\end{aligned}
$$

Truncated-Moments of PDF

Integration support

threshold logs excluded from integration

While integrating near the blue dots, the big threshold logs are encountered

For DIS the TMC and Threshold Resummation do not act independently

RESU+TMC+HT

JLab (E94-110)
JLab (E00-116)
HERA

- SLAC
- EMC
F.Aaron et al. (HI and ZEUS Collaboration), JHEP IOOI, 109 (2010), hep-ex/09II. 0884.
L.Whitlow, E. Riordan, S. Dasu, S. Rock, and A. Bodek, Phys.Lett. B282, 475 (1992).
J.Aubert et al. (European Muon Collaboration), Nucl.Phys. B259, 189 (1985)
Y. Liang et al. (Jefferson Lab Hall C E94-IIO Collaboration) (2004), nucl-ex/04I0027. S. Malace et al. (Jefferson Lab EOO-II5

Collaboration),Phys.Rev. C80, 035207 (2009),nucl-ex/ 0905.2374
with CJ PDF Owens, Accardi, Melnitchouk (Phys.Rev. D87, 0940I2 (2013))

Resummation and HMC INTERPLAY (SIA)

Following the same type of reasoning, we end up with no modification of the integration limits where the Threshold Logs become important

No interplay between the two effects is found since they act independently on two different kinematical regions

BELLE AND BABAR DATA

BELLE Kinematics
$\sqrt{s}=10.5 \mathrm{GeV}$
$-1<\cos \theta<1$

Belle collaboration arXiv: I 30I.6|83

For Kaons one has to take into account HMC

Belle collaboration arXiv: I 30 I.6I83; BaBar collaboration arXiv: I 306.2895

For Kaons one as to take into account HMC

Belle collaboration arXiv: I 30 I.6 I83; BaBar collaboration arXiv: I 306.2895

Outline

- HMC + Threshold Resummation
- TOWARDS A Global NNLO FF Fit
- New CHANNELS IN SIDIS NNLO FL
- CONClUSIONS \& OUTLOOK

TOWARDS A Global NNLO FF Fit

Anderle, Ringer,Stratmann
Ingredients needed to achieve the goal:
DATA SETS:
SI- $\mathrm{e}^{+} \mathrm{e}^{-}$
old: TPC(Phys. Rev.Lett 61, 1263 (1998)), SLD (Phys. Rev. D59,052001 (1999)), ALEPH(Phys. Lett. B357, 487 (1995)), DELPHI(Eur.Phys.J. C5,585 (1998),Eur. Phys. J.C6, IS (1999)) OPAL(Eur. Phys. J. C 166,407 (2000),Eur. Phys. J.C7, 369 (1999)), TASSO (z. Phys.C42, 189 (1989))

SIDIS
old: EMC(z. Phys. C52, 361 (1991)), JLAB(Phys. Rev. Lett. 98, 022001)

SI- p(anti-)p

old: CDF(Phys. Rev. Lett. 61, 1819 (1988)), UAI (Nucl. Phys. B335,261 (1990)), UA2(z. Phys. C27, 329 (1985))

TOWARDS A Global NNLO FF FiT

Anderle, Ringer,Stratmann
Ingredients needed to achieve the goal:
DATA SETS:

SIDIS
new: HERMES(Ph.D. thesis, Erlangen Univ, Germany, September 2005),
Compass(Pos Dis 2013,202 (2013)), JLAB@I2GeV

SI- p(anti-)p

new: Phenix(Phys. Rev. D 76,051106 (2007)), Alice(Phys. Lett. B 717,162 (2012).), Brahms(Phys. Rev. Lett. 98, 252001 (2007)), Star(Phys. Rev. Lett. 97, 152302 (2006))

TOWARDS A Global NNLO FF Fit

Anderle, Ringer,Stratmann
Ingredients needed to achieve the goal: NNLO EVOLUTION KERNELS:

Splitting functions

NNLO-Non Singlet: Mitov, Moch,Vogt(Phys.Lett. B638 (2006) 61-67)
NNLO-Singlet: Moch,Vogt(Phys.Lett. 6659 (2008) 290-296)
NNLO-Singlet:Almasy, Mitov, Moch,Vogt(Nucl.Phys. 8854 (2012)) 133-152)

Both computed in x-Space and in Mellin Space

TOWARDS A Global NNLO FF Fit

Anderle, Ringer,Stratmann
Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

Rijken, van Neerven
(Phys.Lett.B386(I996)422, Nucl.Phys.B488(I997)233,Phys.Lett.B392(I997)207)
Mitov, Moch (Nucl.Phys.B75I (2006) 18-52)
Blümlein, Ravindran (Nucl.Phys.B749 (2006) I-24)
SIDIS \longrightarrow NOT COMPUTEDYET but work in progress
$\gamma q^{\prime} \rightarrow q \bar{q} q^{\prime} \quad$ Anderle, de Florian, Rotstein, Vogelsang
$\gamma g \rightarrow q \bar{q} q^{\prime}$

SI- p(anti-)p \longrightarrow NOT COMPUTEDYET

TOWARDS A Global NNLO FF FiT

Anderle, Ringer,Stratmann
Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SIDIS \longrightarrow Soft gluon Resummed results (can be expanded @ NNLO) Anderle,Ringer,Vogelsang (Phys.Rev. D87 (2013) 094021, Phys.Rev. D87 (2013) 3, 034014)

SI- $\mathrm{p}($ anti- $) \mathrm{p} \longrightarrow$ Soft gluon Resummed results (can be expanded @ NNLO)
Work in progress for ${\frac{d \sigma}{d p_{T} d \eta}}^{(N N L L)}$ Hinderer, Ringer, Sterman, Vogelsang

TOWARDS A Global NNLO FF Fit

Anderle, Ringer,Stratmann Ingredients needed to achieve the goal: NNLO COEFFICINT FUNCTIONS:

To include the last processes we need a

NNLO Mellin Space Fitting Program

The Time-Like Evolution

In the factorisation procedure, the absorption of collinear singularities by fragmentation functions (FF)(in case of massless partons) leads to scaling violation and the appearance of a factorisation scale μ_{F}

The scale dependance of FF is governed by the Time-Like DGLAP

$$
\frac{\partial}{\partial \ln \mu_{F}^{2}} D_{i}^{h}\left(x, \mu_{F}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d y}{y} P_{j i}\left(y, \alpha_{s}\left(\mu_{F}^{2}\right)\right) D_{j}^{h}\left(\frac{x}{y}, \mu_{F}^{2}\right)
$$

Time-Like Splitting function perturbatively calculable

$$
P_{j i}\left(y, \alpha_{s}\right)=\sum_{k=0} a_{s}^{k+1} P_{j i}^{(k)}(y)
$$

Usually rewritten into $2 n_{f}-1$ equations (charge conjugation and flavour symmetry)

NON-SINGLET

$$
D_{\mathrm{NS} ; v}^{h}=\sum_{i=1}^{n_{f}}\left(D_{q_{i}}^{h}-D_{\bar{q}_{i}}^{h}\right)
$$

$$
D_{\mathrm{NS} ; \pm}^{h}=\left(D_{q_{i}}^{h} \pm D_{\bar{q}_{i}}^{h}\right)-\left(D_{q_{j}}^{h} \pm D_{\bar{q}_{j}}^{h}\right)
$$

$$
\frac{\partial}{\partial \ln \mu_{F}^{2}} D_{\mathrm{NS} ; \pm, v}^{h}\left(x, \mu_{F}^{2}\right)=P^{ \pm, \mathrm{v}}\left(x, \mu_{F}^{2}\right) \otimes D_{\mathrm{NS} ; \pm, v}^{h}\left(x, \mu_{F}^{2}\right)
$$

and two coupled

$$
\begin{aligned}
& \text { SINGLET } \quad D_{\Sigma}^{h}=\sum_{i=1}^{n_{f}}\left(D_{q_{i}}^{h}+D_{\bar{q}_{i}}^{h}\right) \\
& D_{g}^{h} \\
& \frac{\partial}{\partial \ln \mu_{F}^{2}}\binom{D_{\Sigma}^{h}\left(x, \mu_{F}^{2}\right)}{D_{g}^{h}\left(x, \mu_{F}^{2}\right)}=\left(\begin{array}{cc}
P^{\mathrm{qq}} & 2 n_{f} P^{\mathrm{gq}} \\
\frac{1}{2 n_{f}} P^{\mathrm{qg}} & P^{\mathrm{gg}}
\end{array}\right) \otimes\binom{D_{\Sigma}^{h}\left(x, \mu_{F}^{2}\right)}{D_{g}^{h}\left(x, \mu_{F}^{2}\right)}
\end{aligned}
$$

The splitting functions are accordingly separated in the singlet and non-singlet sectors NON-SINGLET

$$
\begin{aligned}
& P_{\mathrm{ns}}^{ \pm}=P_{\mathrm{qq}}^{\mathrm{v}} \pm P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}} \\
& P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{qq}}^{\mathrm{v}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{s}}\right) \equiv P_{\mathrm{ns}}^{-}+P_{\mathrm{ns}}^{\mathrm{s}}
\end{aligned}
$$

SINGLET

$$
\begin{aligned}
& P_{\mathrm{qq}}=P_{\mathrm{ns}}^{+}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}+P_{\overline{\mathrm{qq}}}^{\mathrm{s}}\right) \equiv P_{\mathrm{ns}}^{+}+P_{\mathrm{ps}} \\
& P_{\mathrm{gq}} \equiv P_{\mathrm{gq}_{i}}=P_{\mathrm{g} \overline{\mathrm{q}}_{i}} \\
& P_{\mathrm{qg}} \equiv n_{f} P_{\mathrm{q}_{i} \mathrm{~g}}=n_{f} P_{\overline{\mathrm{q}}_{i} \mathrm{~g}}
\end{aligned}
$$

The splitting functions are accordingly separated in the singlet and non-singlet sectors

$$
\begin{aligned}
& P_{\mathrm{ns}}^{ \pm}=P_{\mathrm{qq}}^{\mathrm{v}} \pm P_{\mathrm{q} \bar{q}}^{\sim} \\
& P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{qq}}^{\mathrm{v}}-P_{\mathrm{qq}}^{\mathrm{N}}+n_{f}\left(P_{\mathrm{qq}}^{\mathbb{C}}-P_{\mathrm{qq}}^{\mathscr{q}}\right) \equiv P_{\mathrm{ns}}^{-}+P_{\mathrm{Rs}}^{\mathrm{s}}
\end{aligned}
$$

$$
\text { @LO } \quad P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{ns}}^{ \pm}
$$

SINGLET

$$
\begin{aligned}
& P_{\mathrm{qq}}=P_{\mathrm{ns}}^{+}+n_{f}\left(\mathrm{P}_{\mathrm{qq}}+\mathrm{P}_{\mathrm{qq}}\right) \equiv P_{\mathrm{ns}}^{+}+P_{\mathrm{ss}}^{\prime} \\
& P_{\mathrm{gq}} \equiv P_{\mathrm{gq}_{i}}=P_{\mathrm{g}_{i}} \\
& P_{\mathrm{qg}} \equiv n_{f} P_{\mathrm{q}_{i} \mathrm{~g}}=n_{f} P_{\overline{\mathrm{q}}_{i} \mathrm{~g}}
\end{aligned}
$$

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET $\quad P_{\mathrm{ns}}^{ \pm}=P_{\mathrm{qq}}^{\mathrm{v}} \pm P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}$

$$
P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{qq}}^{\mathrm{v}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}+n_{f}\left(P_{q \mathrm{P}}^{\mathrm{s}}<P_{\mathrm{qq}}^{\mathrm{s}}\right) \equiv P_{\mathrm{ns}}^{-}+P_{\mathrm{rs}}^{\mathrm{s}}
$$

$$
\begin{aligned}
& P_{\mathrm{qq}}^{\mathrm{S}}=P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{S}} \\
& P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{ns}}^{-}
\end{aligned}
$$

SINGLET

$$
\begin{aligned}
& P_{\mathrm{qq}}=P_{\mathrm{ns}}^{+}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}+P_{\overline{\mathrm{qq}}}^{\mathrm{s}}\right) \equiv P_{\mathrm{ns}}^{+}+P_{\mathrm{ps}} \\
& P_{\mathrm{gq}} \equiv P_{\mathrm{gq}_{i}}=P_{\mathrm{g} \overline{\mathrm{q}}_{i}} \\
& P_{\mathrm{qg}} \equiv n_{f} P_{\mathrm{q}_{i} \mathrm{~g}}=n_{f} P_{\overline{\mathrm{q}}_{i} \mathrm{~g}}
\end{aligned}
$$

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET $\quad P_{\mathrm{ns}}^{ \pm}=P_{\mathrm{qq}}^{\mathrm{v}} \pm P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}$

$$
P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{qq}}^{\mathrm{v}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{s}}\right) \equiv P_{\mathrm{ns}}^{-}+P_{\mathrm{ns}}^{\mathrm{s}}
$$

@NNLO
Responsable for s, \bar{s} asymmetry

$$
[s-\bar{s}]\left(x, Q^{2}\right) \neq 0
$$

German,Catani, de Florian,Vogelsang (arXiv:hep-ph/0406338)

SINGLET

$$
\begin{aligned}
& P_{\mathrm{qq}}=P_{\mathrm{ns}}^{+}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}+P_{\overline{\mathrm{qq}}}^{\mathrm{s}}\right) \equiv P_{\mathrm{ns}}^{+}+P_{\mathrm{ps}} \\
& P_{\mathrm{gq}} \equiv P_{\mathrm{gq}_{i}}=P_{\mathrm{g} \overline{\mathrm{q}}_{i}} \\
& P_{\mathrm{qg}} \equiv n_{f} P_{\mathrm{q}_{i} \mathrm{~g}}=n_{f} P_{\overline{\mathrm{q}}_{i} \mathrm{~g}}
\end{aligned}
$$

THE SOLUTION

We can solve the integro-differential DGLAP equation analytically in Mellin space at each fixed order since it becomes an Ordinary Differential Equation

$$
\begin{aligned}
& \frac{\partial \boldsymbol{q}\left(N, a_{\mathrm{s}}\right)}{\partial a_{\mathrm{s}}}=\left\{\beta_{\mathrm{N}_{\mathrm{m} \mathrm{LO}}}\left(a_{\mathrm{s}}\right)\right\}^{-1} \boldsymbol{P}_{\mathrm{N}_{\mathrm{m} \mathrm{LO}}}\left(N, a_{\mathrm{s}}\right) \boldsymbol{q}\left(N, a_{\mathrm{s}}\right) \\
&=-\frac{1}{\beta_{0} a_{\mathrm{s}}}\left[\boldsymbol{P}^{(0)}(N)+a_{\mathrm{s}}\left(\boldsymbol{P}^{(1)}(N)-b_{1} \boldsymbol{P}^{(0)}(N)\right)\right. \\
&\left.+a_{\mathrm{s}}^{2}\left(\boldsymbol{P}^{(2)}(N)-b_{1} \boldsymbol{P}^{(1)}(N)+\left(b_{1}^{2}-b_{2}\right) \boldsymbol{P}^{(0)}(N)\right)+\ldots\right] \boldsymbol{q}\left(N, a_{\mathrm{s}}\right) \\
& f\left(N, \alpha_{s}\right)=\int_{0}^{1} d y y^{N-1} f\left(y, \alpha_{s}\right) \quad N \in \mathbb{C}
\end{aligned}
$$

where here $\mathbf{P}\left(N, \alpha_{S}\right)$ and $\mathbf{q}\left(N, \alpha_{S}\right)$ are the Mellin-Transform of either singlet or non-singlet splitting function and FF respectively
the general solution can be expressed in terms of the evolution matrices U (constructed from the splitting functions) as a simple multiplication

$$
\begin{aligned}
\boldsymbol{q}\left(N, a_{\mathrm{s}}\right) & =\boldsymbol{U}\left(N, a_{\mathrm{s}}\right) \boldsymbol{L}\left(N, a_{\mathrm{s}}, a_{0}\right) \boldsymbol{U}^{-1}\left(N, a_{0}\right) \boldsymbol{q}\left(N, a_{0}\right) \\
& =\left[1+\sum_{k=1}^{\infty} a_{\mathrm{s}}^{k} \boldsymbol{U}_{k}(N)\right] \boldsymbol{L}\left(a_{\mathrm{s}}, a_{0}, N\right)\left[1+\sum_{k=1}^{\infty} a_{0}^{k} \boldsymbol{U}_{k}(N)\right]^{-1} \boldsymbol{q}\left(a_{0}, N\right)
\end{aligned}
$$

where L is defined by the LO solution

$$
\boldsymbol{q}_{\mathrm{LO}}\left(N, a_{\mathrm{s}}, N\right)=\left(\frac{a_{\mathrm{s}}}{a_{0}}\right)^{-\boldsymbol{R}_{0}(N)} \boldsymbol{q}\left(N, a_{0}\right) \equiv \boldsymbol{L}\left(N, a_{\mathrm{s}}, a_{0}\right) \boldsymbol{q}\left(N, a_{0}\right)
$$

$$
\boldsymbol{R}_{0} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{(0)}
$$

TRUNCATED AND ITERATED SOLUTION

Since both $\beta_{\mathrm{N}^{m} \mathrm{LO}}$ and $\boldsymbol{P}_{\mathrm{N}^{m} \mathrm{LO}}$ have an expansion in powers of α_{s} there are different ways of defining the N^{m} LO solution

$$
\begin{aligned}
\boldsymbol{q}_{\mathrm{N}^{3} \mathrm{LO}}\left(a_{\mathrm{s}}\right)= & {\left[\boldsymbol{L}+a_{\mathrm{s}} \boldsymbol{U}_{1} \boldsymbol{L}-a_{0} \boldsymbol{L} \boldsymbol{U}_{1}\right.} \\
& +a_{\mathrm{s}}^{2} \boldsymbol{U}_{2} \boldsymbol{L}-a_{\mathrm{s}} a_{0} \boldsymbol{U}_{1} \boldsymbol{L} \boldsymbol{U}_{1}+a_{0}^{2} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}\right) \\
& +a_{\mathrm{s}}^{3} \boldsymbol{U}_{3} \boldsymbol{L}-a_{\mathrm{s}}^{2} a_{0} \boldsymbol{U}_{2} \boldsymbol{L} \boldsymbol{U}_{1}+a_{\mathrm{s}} a_{0}^{2} \boldsymbol{U}_{1} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}\right) \\
& \left.-a_{0}^{3} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{3}-\boldsymbol{U}_{1} \boldsymbol{U}_{2}-\boldsymbol{U}_{1} \boldsymbol{U}_{2}+\boldsymbol{U}_{3}\right)\right] \boldsymbol{q}\left(a_{0}\right)
\end{aligned}
$$

TRUNCATED AND ITERATED SOLUTION

TRUNCATED: Keep only terms up to α_{s}^{m} in the solution

$$
\begin{aligned}
\boldsymbol{q}_{\mathrm{N}^{3} \mathrm{LO}}\left(a_{\mathrm{s}}\right)= & {\left[\boldsymbol{L}+a_{\mathrm{s}} \boldsymbol{U}_{1} \boldsymbol{L}-a_{0} \boldsymbol{L} \boldsymbol{U}_{1}\right.} \\
& +a_{\mathrm{s}}^{2} \boldsymbol{U}_{2} \boldsymbol{L}-a_{\mathrm{s}} a_{0} \boldsymbol{U}_{1} \boldsymbol{L} \boldsymbol{U}_{1}+a_{0}^{2} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}\right) \\
& +a_{\mathrm{s}}^{3} \boldsymbol{U}_{3} \boldsymbol{L}-a_{\mathrm{s}}^{2} a_{0} \boldsymbol{U}_{2} \boldsymbol{L} \boldsymbol{U}_{1}+a_{\mathrm{s}} a_{0}^{2} \boldsymbol{U}_{1} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}\right) \\
& \left.-a_{0}^{3} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{3}-\boldsymbol{U}_{1} \boldsymbol{U}_{2}-\boldsymbol{U}_{1} \boldsymbol{U}_{2}+\boldsymbol{U}_{3}\right)\right] \boldsymbol{q}\left(a_{0}\right)
\end{aligned}
$$

- It solves the equation exactly only up to terms of order $\mathrm{n}>\mathrm{m}$

TRUNCATED AND ITERATED SOLUTION

ITERATED: Keep the all the m -terms generated from $\beta_{\mathrm{N}^{\mathrm{m}} \mathrm{LO}}$ and $\boldsymbol{P}_{\mathrm{N}^{\mathrm{m}} \mathrm{LO}}$

$$
\begin{aligned}
\boldsymbol{q}_{\mathrm{N}^{3} \mathrm{LO}}\left(a_{\mathrm{s}}\right)= & {\left[\boldsymbol{L}+a_{\mathrm{s}} \boldsymbol{U}_{1} \boldsymbol{L}-a_{0} \boldsymbol{L} \boldsymbol{U}_{1}\right.} \\
& +a_{\mathrm{s}}^{2} \boldsymbol{U}_{2} \boldsymbol{L}-a_{\mathrm{s}} a_{0} \boldsymbol{U}_{1} \boldsymbol{L} \boldsymbol{U}_{1}+a_{0}^{2} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}\right) \\
& +a_{\mathrm{s}}^{3} \boldsymbol{U}_{3} \boldsymbol{L}-a_{\mathrm{s}}^{2} a_{0} \boldsymbol{U}_{2} \boldsymbol{L} \boldsymbol{U}_{1}+a_{\mathrm{s}} a_{0}^{2} \boldsymbol{U}_{1} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}\right) \\
& \left.-a_{0}^{3} \boldsymbol{L}\left(\boldsymbol{U}_{1}^{3}-\boldsymbol{U}_{1} \boldsymbol{U}_{2}-\boldsymbol{U}_{1} \boldsymbol{U}_{2}+\boldsymbol{U}_{3}\right)\right] \boldsymbol{q}\left(a_{0}\right)
\end{aligned}
$$

- It corresponds to the solution done in x-Space
- It introduces more higher order scheme-dependent terms

Truncated and ITERATED SOlUTION

ITERATED-TRUNCATED $=$ theoretical uncertainty of order $\mathcal{O}\left(\alpha_{s}{ }^{m+1}\right)$

THE NNLO EvOLUTION CODE "PEGASUS_FF"

Existing NNLO Evolution CODES:

X-SPACE APFEL(time-like version C/C++, Fortran77, Python)
Bertonel,Carrazza, Rojo (CERN-PH-TH/20I3-209)

Mellin SPACE MELA(Fortran77)

Bertonel,Carrazza, Nocera (CERN-PH-TH-2014-265)

Newly born:
Mellin SPACE Pegasus_FF (Fortran77) \longrightarrow based on Pegasus(Fortran77)
Anderle, Ringer, Stratmann
Vogt (Comput.Phys.Commun. I70:65-92,2005)

"PEGASUS_FF": HEAVY FLAVOURS

Parametrization of light patrons FF @ μ_{0}

$$
\begin{aligned}
& D_{i}^{h}\left(z, Q_{0}\right)=\frac{N_{i} z^{\alpha_{i}}(1-z)^{\beta_{i}}\left[1+\gamma_{i}(1-z)^{\delta_{i}}\right]}{B\left[2+\alpha_{i}, \beta_{i}+1\right]+\gamma_{i} B\left[2+\alpha_{i}, \beta_{i}+\delta_{i}+1\right]} \\
& \quad \text { So that } \quad N_{i}=\int_{0}^{1} z D_{i}^{h} d z
\end{aligned}
$$

"Pegasus_FF" OPTIONS

FIXED FLAVOUR SCHEME: the evolution is done for a fixed number of flavours for which the initial-scale functional form corresponds to the above one

NON PERTURBATIVE INPUT: at $\mu>m_{q}$ the evolution is set to evolve with $n_{f}+1$ for flavours and for the q-heavy quark FF the same functional form as for the light quark is set at $\mu=m_{q}$
VARIABLE FLAVOUR SCHEME: at $\mu>m_{q}$ the evolution is set for $n_{f}+1$ flavours and the q-heavy quark FF is fixed by matching-conditions at $\mu=m_{q}$

"PEGASUS_FF": HEAVY FLAVOURS

MATCHING CONDITION: computed by imposing the equality between the massive calculation and the massless (MS-bar) calculated cross section @ $\mu_{f}=m_{q}$

COMPUTED ONLY up to NLO: Cacciari, Nason, Oleari (JHEP 0510:034,2005)

$$
\begin{aligned}
& D_{h / \bar{h}}^{(n)}(x, \mu)=\int_{x}^{1} \frac{d y}{y} D_{g}(x / y, \mu) \times \frac{\alpha_{\mathrm{S}}}{2 \pi} C_{\mathrm{F}} \frac{1+(1-y)^{2}}{y}\left[\log \frac{\mu^{2}}{m^{2}}-1-2 \log y\right] \\
& D_{g}^{(n)}(x, \mu)=D_{g}^{\left(n_{\mathrm{L}}\right)}(x, \mu)\left(1-\frac{T_{\mathrm{F}} \alpha_{\mathrm{S}}}{3 \pi} \log \frac{\mu^{2}}{m^{2}}\right) \\
& D_{i / \bar{i}}^{(n)}(x, \mu)=D_{i / \bar{i}}^{\left(n_{\mathrm{L}}\right)}(x, \mu) \quad \text { for } i=q_{1}, \ldots, q_{n_{\mathrm{L}}} \\
& n_{L}=n_{f}+1
\end{aligned}
$$

TOWARDS A Global NNLO FF Fit

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

Rijken, van Neerven
(Phys.Lett.B386(I996)422, Nucl.Phys.B488(I997)233,Phys.Lett.B392(I997)207)
Mitov, Moch (Nucl.Phys.B75I (2006) 18-52)
Blümlein, Ravindran (Nucl.Phys.B749 (2006) I-24)
SIDIS \longrightarrow NOT COMPUTEDYET but work in progress
$\gamma q^{\prime} \rightarrow q \bar{q} q^{\prime} \quad$ Anderle, de Florian, Rotstein, Vogelsang
$\gamma g \rightarrow q \bar{q} q^{\prime}$

SI- p(anti-)p NOT COMPUTEDYET

TOWARDS A Global NNLO FF Fit

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

Rijken, van Neerven
(Phys.Lett.B386(I996)422, Nucl.Phys.B488(I997)233,Phys.Lett.B392(1997)207)
Mellin-Space
Mitov, Moch (Nucl.Phys.B75I (2006) 18-52)
Blümlein, Ravindran (Nucl.Phys.B749 (2006) I-24)
@ NNLO Harmonic PolyLogs(HPL) appear in the coefficient functions

Calculation of Mellin moments non trivial

Towards a Global NNLO FF Fit

@NLO the moments of the coefficient functions contain at worst SINGLE HARMONIC SUMS, which can be consistently continued in the complex plane

$$
\begin{aligned}
S_{k}(N) & =(-1)^{k-1} \frac{1}{(k-1)!} \psi^{(k-1)}(N+1)+c_{k}^{+} \\
S_{-k}(N) & =(-1)^{k-1+N} \frac{1}{(k-1)!} \beta^{(k-1)}(N+1)-c_{k}^{-}
\end{aligned}
$$

$\psi(z)$ first derivative of Euler Gamma Function

$$
\begin{aligned}
\beta(z) & =\frac{1}{2}\left[\psi\left(\frac{z+1}{2}\right)-\psi\left(\frac{z}{2}\right)\right] \\
c_{1}^{+} & =\gamma_{E} \\
c_{k}^{+} & =\zeta(k), \quad k \geq 2 \\
c_{1}^{-} & =\log (2) \\
c_{k}^{+} & =\left(1-\frac{1}{2^{k-1}}\right) \zeta(k), \quad k \geq 2
\end{aligned}
$$

TOWARDS A Global NNLO FF Fit

$@ N N L O \longrightarrow$ MULTIPLE HARMONIC SUMS from MT-HPLs

$$
S_{k_{1}, \ldots, k_{m}}(N)=\sum_{n_{1}=1}^{N} \frac{\left[\operatorname{sign}\left(k_{1}\right)\right]^{n_{1}}}{n_{1}^{k_{1} \mid}} \sum_{n_{2}=1}^{n_{1}} \frac{\left[\operatorname{sign}\left(k_{2}\right)\right]^{n_{2}}}{n_{2}^{\left|k_{2}\right|}} \ldots \sum_{n_{m}=1}^{n_{m-1}} \frac{\left[\operatorname{sign}\left(k_{m}\right)\right]^{n_{m}}}{n_{m}^{k_{m} \mid}}
$$

ANALITICAL CONTINUATIONS: provided by Blümlein,Kurth(Phys.Rev.D60 (1999) 014018) also as FORTRAN77 routines Blümlein(Comput. Phys. Commun. 133 (2000) 76))

TOWARDS A Global NNLO FF FIT

We have checked the Mellin moments calculation and the consistency between Mitov, Moch and Blümlein, Ravindran notation

NUMERICALLY and ANALITICALLY: making use of

- "HPL"-Mathematica package, D. Maître(Comput.Phys.Commun. 174 (2006) 222-240)
- "MT"-Mathematica package, Hoeschele,Hoff, Pak,Steinhauser, Ueda(arXiv:1307.6925)

NNLO E+E- WITH "PEGASUS_FF"

Multiplicity $R_{e^{+} e^{-}}^{h} \equiv \frac{1}{\sigma^{\operatorname{tot}}} \frac{d^{2} \sigma^{h}}{d x_{E} d \cos \theta}$
using input parameter for FF of Kretzer (Phys.Rev. D62 (2000) 05400I) and truncated-solution

NNLO E+E- WITH "PEGASUS_FF"
 $e+e-\mu$ scale dependance

Multiplicity $R_{e^{+} e^{-}}^{h} \equiv \frac{1}{\sigma^{\text {tot }}} \frac{d^{2} \sigma^{h}}{d x_{E} d \cos \theta}$
using input parameter for FF of Kretzer (Phys.Rev. D62 (2000) 05400I) and truncated-solution

NNLO E+E-WITH"PEGASUS_FF"

e+e- NLO and NNLO K-factors

Multiplicity $R_{e^{+} e^{-}}^{h} \equiv \frac{1}{\sigma^{\operatorname{tot}}} \frac{d^{2} \sigma^{h}}{d x_{E} d \cos \theta}$
using input parameter for FF of Kretzer (Phys.Rev. D62 (2000) 05400) and truncated-solution

Outline

- HMC + Threshold Resummation
- TOWARDS A Global NNLO FF Fit
- New CHANNELS IN SIDIS NNLO FL
- CONClUSIONS \& OUTLOOK

Semi-Inclusive Dis

$$
\ell(k) p(P) \rightarrow \ell\left(k^{\prime}\right) h\left(P_{h}\right) X
$$

Important for JLABI2 and EIC

Define the usual variables:

$$
\begin{aligned}
Q^{2} & \equiv-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
y & \equiv \frac{P \cdot q}{P \cdot k} \\
x & \equiv \frac{Q^{2}}{2 P \cdot q} \\
z & \equiv \frac{P \cdot P_{h}}{P \cdot q}
\end{aligned}
$$

SIDIS $\quad \frac{d^{3} \sigma^{h}}{d x d y d z}=\frac{4 \pi \alpha^{2}}{Q^{2}}\left[\frac{1+(1-y)^{2}}{2 y} \mathcal{F}_{T}^{h}\left(x, z, Q^{2}\right)+\frac{1-y}{y} \mathcal{F}_{L}^{h}\left(x, z, Q^{2}\right)\right]$

$$
\mathcal{F}_{i}^{h}\left(x, z, Q^{2}\right)=\sum_{f, f^{\prime}} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \int_{z}^{1} \frac{d \hat{z}}{\hat{z}} f\left(\frac{x}{\hat{x}}, \mu^{2}\right) D_{f^{\prime}}^{h}\left(\frac{z}{\hat{z}}, \mu^{2}\right) \mathcal{C}_{f^{\prime} f}^{i}\left(\hat{x}, \hat{z}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)
$$

hard-scattering coefficient function:

$$
\mathcal{C}_{f^{\prime} f}^{i}=C_{f^{\prime} f}^{i,(0)}+\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} C_{f^{\prime} f}^{i,(1)}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

TOWARDS NNLO FL

$$
C_{q q}^{T,(0)}(\hat{x}, \hat{z})=e_{q}^{2} \delta(1-\hat{x}) \delta(1-\hat{z})
$$

$$
C_{q q}^{L,(0)}(\hat{x}, \hat{z})=0
$$

NLO:

2
$+2$

For the Longitudinal Structure Function at NLO, the quark scattering and the gluonfusion are Tree-Level diagrams

The New Channels of NNLO FL

Tree Level diagrams at NNLO:

QUARK INITIATED $\quad \gamma q \rightarrow q^{\prime} \bar{q}^{\prime} q \quad q \neq q^{\prime}$

The New Channels of NNLO FL

Tree Level diagrams at NNLO:
GLUON INITIATED $\quad \gamma g \rightarrow q \bar{q} g \quad q \neq q^{\prime}$

The Calculation

It is a BRUTE-FORCE calculation:
PHASE SPACE 2 to 3

$$
\begin{aligned}
\int \mathrm{dPS}_{3}^{\mathrm{DI}}= & \frac{1}{(4 \pi)^{n}} \frac{\left(s-Q^{2}\right)^{n-3}}{\Gamma(n-3)}(1-x)^{n-3} \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\pi} \mathrm{d} \phi(\sin \theta)^{n-3}(\sin \phi)^{n-4} \\
& \times \int_{0}^{1} \mathrm{~d} y \int_{0}^{1} \mathrm{~d} z y^{(n / 2)-2}(1-y)^{n-3}\{z(1-z)\}^{(n / 2)-2}
\end{aligned}
$$

- Angular part solvable using know integrals of type: Beenakker,Kuif,van Neerven, Smith (Phys.Rev. D40 (1989) 54-82)

$$
\int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\pi} \mathrm{d} \phi \frac{(\sin \theta)^{n-3}(\sin \phi)^{n-4}}{(a+b \cos \theta)^{i}(A+B \cos \theta+C \cos \phi \sin \theta)^{j}}
$$

- z-Integration remaining can be solved analytically with many tricks

[^0]$32 \mathrm{a} \mathrm{as}^{2} \mathrm{CAEr} \mathrm{r}^{2} \times(1+\mathrm{x}) \log [\mathrm{x}] \log [1+\mathrm{x}]+$
$\frac{1}{32 x^{3} z^{5}} \mathrm{an}^{2} \operatorname{caEr} \mathrm{z}^{2}\left(\pi x^{3 / 2}\left(15 z^{9 / 2}+15 x^{4} z^{9 / 2}+128 x^{1 / 2} z^{2} \sqrt{x z^{5}}+16 \sqrt{x} z \sqrt{x z^{5}}\left(5-15 z+7 z^{2}\right)-30 x z^{1 / 2}\left(11-24 z+11 z^{2}\right)-30 x^{3} z^{7 / 2}\left(11-24 z+11 z^{2}\right)-16 x^{5 / 2} z \sqrt{x z^{5}}\left(-13+15 z+17 z^{2}\right)+16 x^{3 / 2} \sqrt{x z^{5}}\left(15-45 z+64 z^{2}-45 z^{3}+13 z^{4}\right)-5 x^{2} z^{5 / 2}\left(125-368 z^{2}+468 z^{2}-368 z^{3}+125 z^{4}\right)\right)+\right.$
$\left.4(-1+x) x^{2}\left(-15 z^{4}-15 z^{5}+240 \sqrt{x z} \sqrt{x z^{5}}-800 z \sqrt{x z} \sqrt{x z^{5}}+256 z^{2} \sqrt{x z} \sqrt{x z^{5}}+1168 z^{3} \sqrt{x z} \sqrt{x z^{5}}-128 x^{3} z^{4}(1+z)+x z(1+z)\left(735 z^{2}+1020 z^{3}-225 z^{4}+64 \sqrt{x z} \sqrt{x z^{5}}\right)+x^{2} z\left(49 z^{3}+305 z^{4}+128 \sqrt{x z} \sqrt{x z^{5}}+128 z \sqrt{x z} \sqrt{x z^{5}}\right)\right)\right) \log (z]-$

Preliminary Plot

SIDIS F_{L}

CONCLUSIONS \& OUTLOOK

- We have presented a framework for combined HMC with Resummation. Future extension to SIDIS
- Work in progress for e+e- only FF NNLO fit and extension to a global fit
- Future resummed FF fit including $\log (\mathrm{N}) / \mathrm{N}$
- Work in progress for NNLO SIDIS

THANKS FOR

YOUR ATTENTION

ANY QUESTIONS?

JEFFERSON LAB

[^0]:

 $\frac{1}{\left(1+x^{2}+x(2-4 z)\right)^{3 / 2}} 16 \mathrm{aas}^{2} \operatorname{cF} E \mathrm{Er}^{2} \times\left(-1-3 x^{2}(1-2 z)^{2}+6 \mathrm{z}-6 \mathrm{z}^{2}+\mathrm{x}^{3}(-1+2 z)+x\left(-3+16 z-30 \mathrm{z}^{2}+20 z^{3}\right)\right) \log [2] \log [x]+$

 $\frac{1}{\left(1+x^{2}+x(2-4 z)\right)^{3 / 2}} 8$ as $^{2} \operatorname{CFEFIr}^{2} \times\left(2+x^{3}(2-4 z)-12 z+12 z^{2}+\sqrt{1+2 x+x^{2}-4 x z}-2 \times(-1+2 z)\left(3-10 z+10 z^{2}+\sqrt{1+2 x+x^{2}-4 x z}\right)+x^{2}\left(6-24 z+24 z^{2}+\sqrt{1+2 x+x^{2}-4 x z}\right)\right) \log [x] \log [z]+$

 $\int \sqrt{x^{z}}$
 $\frac{1}{\left(1+x^{2}+x(2-4 z)\right)^{3 / 2}} 16 \mathrm{a} \mathrm{as}^{2} \operatorname{cFg} \operatorname{EIEII} x\left(1+x^{3}(1-2 z)+2 z\left(-1+\sqrt{1+2 x+x^{2}-4 x z}\right)+z^{2}\left(2+4 \sqrt{1+2 x+x^{2}-4 x z}\right)+x^{2}\left(3+2 z\left(-6+\sqrt{1+2 x+x^{2}-4 x z}\right)+4 z^{2}\left(3+\sqrt{1+2 x+x^{2}-4 x z}\right)\right)-x(-1+2 z)\left(3+z\left(-6+4 \sqrt{1+2 x+x^{2}-4 x z}\right)+z^{2}\left(6+8 \sqrt{1+2 x+x^{2}-4 x z}\right)\right)\right) \log [2] \log [x]-$

 $\frac{1}{\left(1+x^{2}+x(2-4 z)\right)^{3 / 2}} 16 \operatorname{anas}^{2} \operatorname{CF} \operatorname{EI} \operatorname{ETI} x\left(-1-2 z^{2}+x^{3}(-1+2 z)-\sqrt{1+2 x+x^{2}-4 x z}+2 z\left(1+\sqrt{1+2 x+x^{2}-4 x z}\right)+x^{2}(-1+2 z)\left(3-6 z+\sqrt{1+2 x+x^{2}-4 x z}\right)+x(-1+2 z)\left(3+6 z^{2}+2 \sqrt{1+2 x+x^{2}-4 x z}-2 z\left(3+2 \sqrt{1+2 x+x^{2}-4 x z}\right)\right)\right) \log [1-z] \log [z]+$

