

Lepton-Hadron Processes beyond NLO

Newport News, 05.18.2015

Accardi, Anderle, de Florian, Ringer, Rotstein, Stratmann, Vogelsang

Speaker: Daniele Paolo ANDERLE

- MAC + THRESHOLD RESUMMATION
- TOWARDS A GLOBAL NNLO FF FIT
- ${\mbox{'}}$ New Channels in SIDIS NNLO F_L

2

CONCLUSIONS & OUTLOOK

JEFFERSON LAB

Eberhard Karls Universität Tübingen

CONCLUSIONS & OUTLOOK

JNIVERSITÄ

HMC + THRESHOLD RESUMMATION

Accardi, Anderle, Ringer (Phys. Rev. D 91, 034008 (2015))

We consider two corrections on standard pQCD calculation of SIA and DIS:

- Threshold resummation
- Hadron Mass Correction

Both corrections become relevant only in some kinematical phase space regions

3

DEEP INELASTIC SCATTERING

 $l(k)p(P) \to l(k')X$

JEFFERSON LAB

Defined kinematic variables:

 $Q^2 \equiv -q^2 = -(k-k')^2$ Virtual Photon Energy

 $y \equiv \frac{P \cdot q}{P \cdot k}$ \propto to lepton scattered angle

Eberhard Karls Universität Tübingen In a standard pQCD calculation of DIS cross section one is able to write

$$\frac{d^2\sigma}{dxdy} = \frac{4\pi\alpha^2}{Q^2} \left[\frac{1+(1-y)^2}{2y} \,\mathcal{F}_T(x,Q^2) + \frac{1-y}{y} \,\mathcal{F}_L(x,Q^2) \right]$$

Furmanski, Petronzio; Catani; Kretzer;...

$$\mathcal{F}_i(x,Q^2) = \sum_f \int_x^1 \frac{d\hat{x}}{\hat{x}} f\left(\frac{x}{\hat{x}},\mu^2\right) \mathcal{C}_f^i\left(\hat{x},\frac{Q^2}{\mu^2},\alpha_s(\mu^2)\right)$$

5

Factorization of long (soft) and short (hard) behavior in the STRUCTURE FUNCTIONS

Eberhard Karls Universität Tübingen

While the PDFs are UNIVERSAL do not depend on the specific process, the coefficient functions can be calculated perturbatively for each process

$$\mathcal{C}_{f}^{i} = C_{f}^{i,(0)} + \frac{\alpha_{s}(\mu^{2})}{2\pi} C_{f}^{i,(1)} + \mathcal{O}(\alpha_{s}^{2}),$$

6

JEFFERSON LAB

Eberhard Karls Universität Tübingen

JEFFERSON LAB

Electron-Positron Annhilation

7

Defined kinematic variables:

 $q^2=Q^2~~$ Virtual Photon Energy

$$x_E \equiv \frac{2P_h \cdot q}{Q^2} = \frac{2E_h}{\sqrt{s}} \quad \text{(c.m.s)}$$

Eberhard Karls Universität Tübingen SIA cross section analogous to DIS case.

We treat FFs (parton to hadron) analogously to PDFs (hadron to parton):

$$\frac{d^2\sigma^h}{dx_E d\cos\theta} = \frac{\pi\alpha^2}{Q^2} N_C \left[\frac{1+\cos^2\theta}{2}\hat{\mathcal{F}}_T^h(x_E,Q^2) + \sin^2\theta\,\hat{\mathcal{F}}_L^h(x_E,Q^2)\right]$$

Nason, Webber; Furmanski, Petronzio

NLO COEFFICIENT FUNCTION (SIA)

TOWARS A GLOBAL NNLO FIT

large corrections near threshold $\hat{z} \rightarrow 1$

$$\hat{C}_q^{T,(1)} \sim e_q^2 C_F \left[2 \left(\frac{\log\left(1 - \hat{z}\right)}{1 - \hat{z}} \right)_+ - \frac{3}{2} \frac{1}{\left(1 - \hat{z}\right)}_+ + \left(\frac{2\pi^2}{3} - \frac{9}{2} \right) \delta(1 - \hat{z}) \right]$$

$$\overline{\text{MS scheme}}$$

Altarelli et al.; Furmanski, Petronzio; Nason, Webber...

$$\int_0^1 dz \, f(z) \, \left(\frac{\ln(1-z)}{1-z}\right)_+ \, \equiv \, \int_0^1 dz \, (f(z) - f(1)) \, \frac{\ln(1-z)}{1-z}$$

Eberhard Karls Universität Tübingen

JEFFERSON LAB

THRESHOLD LOGARITHMS

JEFFERSON LAB

N^kLO Threshold Logarithms

coming from emission of k soft gluon

spoils perturbative convergence even for $\alpha_s \ll 1$

 $x \to 1$ partonic threshold: final state gluon radiation from the basic process $\gamma^* \to q \bar{q}$

-soft
$$\frac{k_0}{P_0^h} \equiv 1 - x$$

10

-collinear $k_T \sim k_0 \theta \ll (1-x)Q$

berhard Karls Universität Tübingen

The Exponentiation

The Resummation of the Threshold Logs occurs via the exponentiation of the "single emission"

Resummation relies on the factorisation of

EFFERSON LAB

• the matrix element for n-gluon emission in the eikonal approximation (soft gluon approx.)

H

• the phase space when the Mellin transform is taken

$$\delta\left(1 - k_0 - \sum_{i=1}^n k_i\right) = \frac{1}{2\pi i} \int_C dN e^{N(1 - k_0 - \sum_{i=1}^n k_i)}$$

UNIVERSITAT

UNIVERSITÄT

Resummation can be derived in Mellin space

$$\begin{split} \tilde{\mathcal{F}}_i^h(N,Q^2) &= \int_0^1 dx_E \, x_E^{N-1} \, \mathcal{F}_i^h(x,Q^2) \\ &= \sum_f \tilde{D}_f^{h,N} \times \tilde{\mathcal{C}}_f^i(N,Q^2) \end{split}$$

where for $N \to \infty$ (corresponds to $x \to 1$)

$$\tilde{C}_{q}^{T,(1)} \sim e_{q}^{2} C_{F} \left[\log \bar{N}^{2} + \frac{3}{2} \log \bar{N} + \left(\frac{5}{6} \pi^{2} - \frac{9}{2} \right) \right]$$

 $\bar{N} = N e^{\gamma_E}$

JEFFERSON LAB

ACCURACY OF RESUMMATION

 $\mathcal{O}(\alpha_s^k): \qquad C_{kn} \times \alpha_s^k \ln^n \bar{N}, \quad \text{where } n \le 2k \qquad L = \ln(\bar{N})$

In Mellin Space

ACCURACY OF RESUMMATION

 $\mathcal{O}(\alpha_s^k): \qquad C_{kn} \times \alpha_s^k \ln^n \bar{N}, \quad \text{where } n \le 2k \qquad L = \ln(\bar{N})$

JEFFERSON LAB

berhard Karls Universität Tübingen

THRESHOLD RESUMMATION

For both DIS and SIA

in Mellin space: exponentiation of the one-loop results

$$\mathcal{C}_{q}^{T,res} \propto ~ \exp\left[\int_{0}^{1} d\xi \frac{\xi^{N}-1}{1-\xi} \times \left\{\int_{Q^{2}}^{(1-\xi)Q^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A_{q}(lpha_{s}(k_{\perp}^{2})) + \frac{1}{2}B_{q}\left(lpha_{s}((1-\xi)Q^{2})
ight)
ight\}
ight]$$

where
$$A^{(1)} = C_F$$
, $A^{(2)} = \frac{1}{2}C_F K = \frac{1}{2}C_F \left[C_A \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5}{9}N_f\right]$
 $B^{(1)} = -\frac{3}{2}C_F$.

Catani, Trentadue; Stermann

Threshold Resummation acts for DIS and SIA in the same exact way and is relevant for the same Phase Space region:

JEFFERSON LAB

Eberhard Karls Universität Tübingen

STUDYING THE KINEMATICS (SIA)

we study the kinematics in the $\gamma - h$ frame

$$q = q^{+}\bar{n} + \frac{Q^{2}}{2q^{+}}n$$

$$P_{h} = P_{h}^{+}\bar{n} + \frac{\frac{m_{h}^{2}}{2p_{h}^{+}}n}{2p_{h}^{+}}n$$

$$k = k^{+}\bar{n} + \frac{k^{2} + k_{T}^{2}}{2k^{+}}n + \mathbf{k}_{T}$$

we work in collinear factorization

$$z = \frac{P_h^+}{k^+}, \qquad \mathbf{k}_T = 0$$

where the light-cone vectors

$$n^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, -1)$$
$$\bar{n}^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, 1)$$
$$n^{2} = \bar{n}^{2} = 0 \quad n \cdot \bar{n} = 1$$
$$a^{+} = a \cdot n \quad a^{-} = a \cdot \bar{n}$$

berhard Karls Universität Tübingen

The boson fractional momentum in respect to the hadron is not anymore

but

$$P_h^+/q^+ = \xi_E = \frac{1}{2} x_E \left(1 + \sqrt{1 - \frac{4}{x_E^2} \frac{m_h^2}{Q^2}} \right)$$

and analogously for DIS

$$\xi = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}}$$

<i>m</i> – –	Q^2
$x_B =$	$2q \cdot P_h$

One should use those variables when calculating structure functions, since they represent the right physical fractional momentum variables

$$\begin{aligned} \mathcal{F}_i(x_E, Q^2) &\to \mathcal{F}_i(\xi_E, Q^2) \\ \mathcal{F}_i(x_B, Q^2) &\to \mathcal{F}_i(\xi, Q^2) \end{aligned} \qquad \text{Albino et al.} \end{aligned}$$

Eberhard Karls Universität Tübingen

The hadron mass acts kinematically on the two processes in a very different way

Eberhard Karls Universität Tübingen

RESUMMATION AND HMC INTERPLAY (DIS)

Taking into account momentum conservation law and some simple algebra

TOWARS A GLOBAL NNLO FIT

we find that the partonic momentum fraction \hat{x} is limited as

$$\xi \le \hat{x} = \frac{k^+}{P_h^+} \le \xi/x_B$$

19

EFFERSON LAB

berhard Karls Universität Tübingen In the definition of the structure functions the integration limits need to be modified

$$\mathcal{F}_i(\xi, Q^2) = \sum_f \int_{\boldsymbol{\xi}}^{\boldsymbol{\xi}/\boldsymbol{x}_B} \frac{d\hat{x}}{\hat{x}} f(\hat{x}) \, \mathcal{C}_f^i\!\left(\frac{\boldsymbol{\xi}}{\hat{x}}, Q^2\right)$$

Accardi and Qiu(JHEP 0807:090,2008)

This effects also Threshold Resummation correction

In order to be able to perform the Mellin Transform properly be able to use the resumption formula, we have to define

$$\mathcal{F}_{1}^{\text{TMC},N} = \int_{0}^{1} d\xi \,\xi^{N-1} \int_{\xi}^{\xi_{\text{th}}} \frac{dx}{x} \mathcal{C}_{f}^{1}\left(\frac{\xi}{x}\right) f(x)$$

$$= \int_{0}^{1} d\xi \,\xi^{N-1} \int_{0}^{1} dy \int_{0}^{\xi_{\text{th}}} dx \,\mathcal{C}_{f}^{1}(y) \,f(x) \,\delta(xy-\xi)$$

$$= \left(\int_{0}^{1} dy \,y^{N-1} \mathcal{C}_{f}^{1}(y)\right) \left(\int_{0}^{\xi_{\text{th}}} dx \,x^{N-1} f(x)\right)$$

$$= \mathcal{C}_{f}^{1,N} \,f_{\xi_{\text{th}}}^{N}$$

Truncated-Moments of PDF

JEFFERSON LAB

JEFFERSON LAB

UNIVERSITÄT

Integration support

For DIS the TMC and Threshold Resummation do not act independently

JEFFERSON LAB

eberhard Karls Universität Tübingen

- JLab (E94–110)
- **JLab (E00–116)**
- HERA
- SLAC
- ▲ EMC

F.Aaron et al. (H1 and ZEUS Collaboration), JHEP 1001, 109 (2010), hep-ex/0911.0884.
L.Whitlow, E. Riordan, S. Dasu, S. Rock, and A. Bodek, Phys.Lett. B282, 475 (1992).
J.Aubert et al. (European Muon Collaboration), Nucl.Phys. B259, 189 (1985)
Y. Liang et al. (Jefferson Lab Hall C E94-110 Collaboration) (2004), nucl-ex/0410027.
S. Malace et al. (Jefferson Lab E00-115 Collaboration), Phys.Rev. C80, 035207 (2009), nucl-ex/ 0905.2374

with CJ PDF Owens, Accardi, Melnitchouk (Phys.Rev. D87, 094012 (2013))

RESUMMATION AND HMC INTERPLAY (SIA)

Following the same type of reasoning, we end up with no modification of the integration limits where the Threshold Logs become important

No interplay between the two effects is found since they act independently on two different kinematical regions

26

JEFFERSON LAB

berhard Karls Universität Tübingen

BELLE AND BABAR DATA

Belle collaboration arXiv: 1301.6183

Eberhard Karls Universitä: Tübingen

JEFFERSON LAB

UNIVERSITÄT

Tübingen

For Kaons one has to take into account HMC

Belle collaboration arXiv: 1301.6183; BaBar collaboration arXiv: 1306.2895

JEFFERSON LAB

UNIVERSITÄT

Tübingen

For Kaons one as to take into account HMC

Belle collaboration arXiv: 1301.6183; BaBar collaboration arXiv: 1306.2895

JEFFERSON LAB

CONCLUSIONS & OUTLOOK

- MAC + THRESHOLD RESUMMATION
- TOWARDS A GLOBAL NNLO FF FIT
- ${\mbox{'}}$ New Channels in SIDIS NNLO F_L
- CONCLUSIONS & OUTLOOK

<u>Universität</u>

Tübingen

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

TOWARS A GLOBAL NNLO FIT

Ingredients needed to achieve the goal:

DATA SETS:

SI-e ⁺ e ⁻	old: TPC(Phys. Rev. Lett 61, 1263 (1998)), SLD(Phys. Rev. D59,052001 (1999)), ALEPH(Phys. Lett. B357, 487 (1995)), DELPHI(Eur. Phys. J. C5, 585 (1998),Eur. Phys. J.C6, 19 (1999)) OPAL(Eur. Phys. J. C16, 407 (2000),Eur. Phys. J.C7, 369 (1999)), TASSO(Z. Phys.C42, 189 (1989))
SIDIS	 old: EMC(Z. Phys. C52, 361 (1991)), JLAB(Phys. Rev. Lett. 98, 022001)
SI- p(anti-)p	old: CDF(Phys. Rev. Lett. 61,1819 (1988)), UAI (Nucl. Phys. B335,261 (1990)), UA2(Z. Phys. C27, 329 (1985))

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

32

Ingredients needed to achieve the goal:

DATA SETS:

SI-e⁺e⁻

new: BaBar(Phys. Rev. D 88, 032011 (2013)), Belle(Phys. Rev. Lett. 111, 062002 (2013))

SIDIS new: HERMES(Ph.D. thesis, Erlangen Univ., Germany, September 2005), Compass(PoS DIS 2013, 202 (2013)), JLAB@I2GeV

new: Phenix (Phys. Rev. D 76,051106 (2007)), Alice (Phys. Lett. B 717, 162 (2012).), Brahms (Phys. Rev. Lett. 98, 252001 (2007)), Star (Phys. Rev. Lett. 97, 152302 (2006))

JEFFERSON LAB

berhard Karls Universitä: Tübingen

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO EVOLUTION KERNELS:

Splitting functions NNLO-Non Singlet: Mitov, Moch, Vogt(Phys.Lett. B638 (2006) 61-67) NNLO-Singlet: Moch, Vogt(Phys.Lett.B659 (2008) 290-296)

NNLO-Singlet: Almasy, Mitov, Moch, Vogt (Nucl. Phys. B854 (2012)) 133-152)

Both computed in x-Space and in Mellin Space

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SI-e⁺e⁻

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

SIDIS \longrightarrow NOT COMPUTED YET but work in progress $\gamma q' \rightarrow q \bar{q} q'$ $\gamma q' \rightarrow q \bar{q} q'$ Anderle, de Florian, Rotstein, Vogelsang

SI- p(anti-)p ->> NOT COMPUTED YET

Universität

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SIDIS Soft gluon Resummed results (can be expanded @ NNLO) Anderle,Ringer,Vogelsang (Phys.Rev. D87 (2013) 094021, Phys.Rev. D87 (2013) 3,034014)

SI- p(anti-)p \longrightarrow Soft gluon Resummed results (can be expanded @ NNLO) Work in progress for $\frac{d\sigma}{dp_T d\eta}^{(NNLL)}$ Hinderer, Ringer, Sterman, Vogelsang

TOWARDS A GLOBAL NNLO FF FIT

Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

To include the last processes we need a

NNLO Mellin Space Fitting Program

JEFFERSON LAB

Eberhard Karls Universität Tübingen

TOWARS A GLOBAL NNLO FIT

In the factorisation procedure, the absorption of collinear singularities by fragmentation functions (FF)(in case of massless partons) leads to scaling violation and the appearance of a factorisation scale μ_F

The scale dependance of FF is governed by the Time-Like DGLAP

$$\frac{\partial}{\partial \ln \mu_F^2} D_i^h(x, \mu_F^2) = \sum_j \int_x^1 \frac{dy}{y} P_{ji}\left(y, \alpha_s(\mu_F^2)\right) D_j^h\left(\frac{x}{y}, \mu_F^2\right)$$

37

Time-Like Splitting function perturbatively calculable

JEFFERSON LAB

 $P_{ji}(y, \alpha_s) = \sum_{k=0}^{k} a_s^{k+1} P_{ji}^{(k)}(y)$

Eberhard Karls Universität Tübingen **NON-SINGLET**

UNIVERSITÄT

Tübingen

Usually rewritten into $2n_f - 1$ equations (charge conjugation and flavour symmetry)

$$D_{\text{NS};v}^{h} = \sum_{i=1}^{n_{f}} (D_{q_{i}}^{h} - D_{\bar{q}_{i}}^{h})$$
$$D_{\text{NS};\pm}^{h} = (D_{q_{i}}^{h} \pm D_{\bar{q}_{i}}^{h}) - (D_{q_{j}}^{h} \pm D_{\bar{q}_{j}}^{h})$$

$$\frac{\partial}{\partial \ln \mu_F^2} D^h_{\mathrm{NS};\pm,v}(x,\mu_F^2) = P^{\pm,\mathrm{v}}(x,\mu_F^2) \otimes D^h_{\mathrm{NS};\pm,v}(x,\mu_F^2)$$

and two coupled

 $D_{\Sigma}^{h} = \sum_{i=1}^{n_{f}} \left(D_{q_{i}}^{h} + D_{\bar{q}_{i}}^{h} \right)$ D_{g}^{h} SINGLET

$$\frac{\partial}{\partial \ln \mu_F^2} \left(\begin{array}{c} D_{\Sigma}^h(x,\mu_F^2) \\ D_g^h(x,\mu_F^2) \end{array} \right) = \left(\begin{array}{cc} P^{qq} & 2n_f P^{gq} \\ \frac{1}{2n_f} P^{qg} & P^{gg} \end{array} \right) \otimes \left(\begin{array}{c} D_{\Sigma}^h(x,\mu_F^2) \\ D_g^h(x,\mu_F^2) \end{array} \right)$$

 \mathbf{n}

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET

$$P_{\rm ns}^{\pm} = P_{\rm qq}^{\,\rm v} \pm P_{\rm q\bar{q}}^{\,\rm v}$$
$$P_{\rm ns}^{\,\rm v} = P_{\rm qq}^{\,\rm v} - P_{\rm q\bar{q}}^{\,\rm v} + n_f (P_{\rm qq}^{\,\rm s} - P_{\rm q\bar{q}}^{\,\rm s}) \equiv P_{\rm ns}^{\,\rm -} + P_{\rm ns}^{\,\rm s}$$

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

JEFFERSON LAB

UNIVERSITÄT

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET $P_{ns}^{\pm} = P_{qq}^{v} \pm P_{q\bar{q}}^{v}$ $P_{ns}^{v} = P_{qq}^{v} - P_{q\bar{q}}^{v} + n_{f}(P_{qq} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$

$$\textcircled{OLO} \qquad P_{\rm ns}^{\rm v} = P_{\rm ns}^{\pm}$$

SINGLET

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{qq}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

40

eberhard Karls Universität Tübingen

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET
$$P_{ns}^{\pm} = P_{qq}^{\nu} \pm P_{q\bar{q}}^{\nu}$$

 $P_{ns}^{\nu} = P_{qq}^{\nu} - P_{q\bar{q}}^{\nu} + n_f (P_{qq}^{s} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$
 $P_{qq}^{S} = P_{q\bar{q}}^{S}$
 $P_{ns}^{V} = P_{ns}^{-}$

SINGLET

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

41

Eberhard Karls Universität Tübingen

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET $P_{ns}^{\pm} = P_{qq}^{v} \pm P_{q\bar{q}}^{v}$ $P_{ns}^{v} = P_{qq}^{v} - P_{q\bar{q}}^{v} + n_{f}(P_{qq}^{s} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$ @NNLO Responsable for s, \bar{s} asymmetry $[s - \bar{s}](x, Q^{2}) \neq 0$ German, Catani, de Florian, Vogelsang (arXiv:hep-ph/0406338)

SINGLET

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

Eberhard Karls Universität Tübingen

JEFFERSON LAB

UNIVERSITA

The Solution

We can solve the integro-differential DGLAP equation analytically in Mellin space at each fixed order since it becomes an Ordinary Differential Equation

$$\begin{aligned} \frac{\partial \boldsymbol{q}(N, a_{\rm s})}{\partial a_{\rm s}} &= \{\beta_{\rm N^mLO}(a_{\rm s})\}^{-1} \boldsymbol{P}_{\rm N^mLO}(N, a_{\rm s}) \, \boldsymbol{q}(N, a_{\rm s}) \\ &= -\frac{1}{\beta_0 a_{\rm s}} \left[\boldsymbol{P}^{(0)}(N) + a_{\rm s} \left(\boldsymbol{P}^{(1)}(N) - b_1 \boldsymbol{P}^{(0)}(N) \right) \\ &+ a_{\rm s}^2 \left(\boldsymbol{P}^{(2)}(N) - b_1 \boldsymbol{P}^{(1)}(N) + (b_1^2 - b_2) \boldsymbol{P}^{(0)}(N) \right) + \dots \right] \, \boldsymbol{q}(N, a_{\rm s}) \\ &f(N, \alpha_s) = \int_0^1 dy \, y^{N-1} f(y, \alpha_s) \qquad N \in \mathbb{C} \end{aligned}$$

where here $P(N, \alpha_S)$ and $q(N, \alpha_S)$ are the Mellin-Transform of either singlet or non-singlet splitting function and FF respectively

Universität

Tübingen

the general solution can be expressed in terms of the evolution matrices U (constructed from the splitting functions) as a simple multiplication

$$q(N, a_{s}) = U(N, a_{s}) L(N, a_{s}, a_{0}) U^{-1}(N, a_{0}) q(N, a_{0})$$

= $\left[1 + \sum_{k=1}^{\infty} a_{s}^{k} U_{k}(N)\right] L(a_{s}, a_{0}, N) \left[1 + \sum_{k=1}^{\infty} a_{0}^{k} U_{k}(N)\right]^{-1} q(a_{0}, N)$

where *L* is defined by the LO solution

$$\boldsymbol{q}_{\mathrm{LO}}(N, a_{\mathrm{s}}, N) = \left(\frac{a_{\mathrm{s}}}{a_{0}}\right)^{-\boldsymbol{R}_{0}(N)} \boldsymbol{q}(N, a_{0}) \equiv \boldsymbol{L}(N, a_{\mathrm{s}}, a_{0}) \boldsymbol{q}(N, a_{0})$$
$$\boldsymbol{R}_{0} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{(0)}$$

JEFFERSON LAB

SOLUTION

Since both β_{N^mLO} and P_{N^mLO} have an expansion in powers of α_s there are different ways of defining the N^mLO solution

TOWARS A GLOBAL NNLO FIT

$$\begin{split} \boldsymbol{q}_{\mathrm{N^{3}LO}}(a_{\mathrm{s}}) &= \left[\, \boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\, \boldsymbol{U}_{1}^{2} - \, \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\, \boldsymbol{U}_{1}^{2} - \, \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\, \boldsymbol{U}_{1}^{3} - \, \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \, \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \, \boldsymbol{U}_{3} \right) \, \right] \, \boldsymbol{q}(a_{0}) \end{split}$$

Universität

JEFFERSON LAB

TRUNCATED AND ITERATED SOLUTION

TRUNCATED: Keep only terms up to α_s^m in the solution

$$\begin{split} \boldsymbol{q}_{\mathrm{N}^{3}\mathrm{LO}}(a_{\mathrm{s}}) &= \begin{bmatrix} \boldsymbol{L} + a_{\mathrm{s}}\,\boldsymbol{U}_{1}\,\boldsymbol{L} - a_{0}\,\boldsymbol{L}\,\boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2}\,\boldsymbol{U}_{2}\,\boldsymbol{L} - a_{\mathrm{s}}a_{0}\,\boldsymbol{U}_{1}\,\boldsymbol{L}\,\boldsymbol{U}_{1} + a_{0}^{2}\,\boldsymbol{L}\left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2}\right) \\ &+ a_{\mathrm{s}}^{3}\,\boldsymbol{U}_{3}\,\boldsymbol{L} - a_{\mathrm{s}}^{2}a_{0}\,\boldsymbol{U}_{2}\,\boldsymbol{L}\,\boldsymbol{U}_{1} + a_{\mathrm{s}}a_{0}^{2}\,\boldsymbol{U}_{1}\,\boldsymbol{L}\left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2}\right) \\ &- a_{0}^{3}\,\boldsymbol{L}\left(\boldsymbol{U}_{1}^{3} - \boldsymbol{U}_{1}\,\boldsymbol{U}_{2} - \boldsymbol{U}_{1}\,\boldsymbol{U}_{2} + \boldsymbol{U}_{3}\right)\right]\boldsymbol{q}(a_{0}) \end{split}$$

- It solves the equation exactly only up to terms of order n > m

TRUNCATED AND ITERATED Solution

ITERATED: Keep the all the m-terms generated from $eta_{
m N^mLO}$ and $m P_{
m N^mLO}$

$$\begin{aligned} \boldsymbol{q}_{\mathrm{N}^{3}\mathrm{LO}}(a_{\mathrm{s}}) &= \begin{bmatrix} \boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{3} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \boldsymbol{U}_{3} \right) \right] \boldsymbol{q}(a_{0}) \end{aligned}$$

- It corresponds to the solution done in x-Space
- It introduces more higher order scheme-dependent terms

TRUNCATED AND ITERATED Solution

TOWARS A GLOBAL NNLO FIT

ITERATED-TRUNCATED = theoretical uncertainty of order $O(\alpha_s^{m+1})$

Existing NNLO Evolution CODES:

- X-SPACE APFEL(time-like version C/C++, Fortran77, Python) Bertone I, Carrazza, Rojo (CERN-PH-TH/2013-209)
- Mellin SPACE MELA(Fortran77) Bertone I, Carrazza, Nocera (CERN-PH-TH-2014-265)

Newly born:

CONCLUSIONS & OUTLOOK

"PEGASUS_FF": HEAVY FLAVOURS

Parametrization of light patrons FF @ μ_0

$$D_{i}^{h}(z,Q_{0}) = \frac{N_{i}z^{\alpha_{i}}(1-z)^{\beta_{i}}[1+\gamma_{i}(1-z)^{\delta_{i}}]}{B[2+\alpha_{i},\beta_{i}+1]+\gamma_{i}B[2+\alpha_{i},\beta_{i}+\delta_{i}+1]}$$

So that $N_{i} = \int_{0}^{1} z D_{i}^{h} dz$

"Pegasus_FF" OPTIONS

FIXED FLAVOUR SCHEME: the evolution is done for a fixed number of flavours for which the initial-scale functional form corresponds to the above one

NON PERTURBATIVE INPUT: at $\mu > m_q$ the evolution is set to evolve with $n_f + 1$ for flavours and for the q-heavy quark FF the same functional form as for the light quark is set at $\mu = m_q$

VARIABLE FLAVOUR SCHEME: at $\mu > m_q$ the evolution is set for $n_f + 1$ flavours and the q-heavy quark FF is fixed by matching-conditions at $\mu = m_q$

UNIVERSITÄT

"PEGASUS_FF": HEAVY FLAVOURS

MATCHING CONDITION: computed by imposing the equality between the massive calculation and the massless (MS-bar) calculated cross section @ $\mu_f=m_q$

COMPUTED ONLY up to NLO: Cacciari, Nason, Oleari (JHEP 0510:034,2005)

$$D_{h/\bar{h}}^{(n)}(x,\mu) = \int_{x}^{1} \frac{dy}{y} D_{g}(x/y,\mu) \times \frac{\alpha_{\rm s}}{2\pi} C_{\rm F} \frac{1+(1-y)^{2}}{y} \left[\log \frac{\mu^{2}}{m^{2}} - 1 - 2\log y \right]$$
$$D_{g}^{(n)}(x,\mu) = D_{g}^{(n_{\rm L})}(x,\mu) \left(1 - \frac{T_{\rm F}\alpha_{\rm s}}{3\pi} \log \frac{\mu^{2}}{m^{2}} \right)$$
$$D_{i/\bar{i}}^{(n)}(x,\mu) = D_{i/\bar{i}}^{(n_{\rm L})}(x,\mu) \qquad \text{for } i = q_{1}, \dots, q_{n_{\rm L}}$$
$$n_{L} = n_{f} + 1$$

51

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SI-e⁺e⁻

Mellin-Space

Towars A Global NNLO FIT

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

SIDIS \longrightarrow NOT COMPUTED YET but work in progress $\gamma q' \rightarrow q \bar{q} q'$ $\gamma q' \rightarrow q \bar{q} q'$ Anderle, de Florian, Rotstein, Vogelsang

SI- p(anti-)p ->> NOT COMPUTED YET

Eberhard Karls Univers Tübingen

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SI-e⁺e⁻

Mellin-Space

Towars A Global NNLO FIT

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

② NNLO Harmonic PolyLogs(HPL) appear in the coefficient functions

Calculation of Mellin moments non trivial

@NLO the moments of the coefficient functions contain at worst SINGLE HARMONIC SUMS, which can be consistently continued in the complex plane

TOWARS A GLOBAL NNLO FIT

$$S_k(N) = (-1)^{k-1} \frac{1}{(k-1)!} \psi^{(k-1)}(N+1) + c_k^+$$

$$S_{-k}(N) = (-1)^{k-1+N} \frac{1}{(k-1)!} \beta^{(k-1)}(N+1) - c_k^-$$

 $\psi(z)$ first derivative of Euler Gamma Function

$$\begin{aligned} \beta(z) &= \frac{1}{2} \left[\psi \left(\frac{z+1}{2} \right) - \psi \left(\frac{z}{2} \right) \right] \\ c_1^+ &= \gamma_E \\ c_k^+ &= \zeta(k), \quad k \ge 2 \\ c_1^- &= \log(2) \\ c_k^+ &= \left(1 - \frac{1}{2^{k-1}} \right) \zeta(k), \quad k \ge 2 \end{aligned}$$

serhard Karls Universität Tübingen

ONDERSONALO MULTIPLE HARMONIC SUMS from MT-HPLs

$$S_{k_1,\dots,k_m}(N) = \sum_{n_1=1}^{N} \frac{\left[\operatorname{sign}(k_1)\right]^{n_1}}{n_1^{|k_1|}} \sum_{n_2=1}^{n_1} \frac{\left[\operatorname{sign}(k_2)\right]^{n_2}}{n_2^{|k_2|}} \dots \sum_{n_m=1}^{n_{m-1}} \frac{\left[\operatorname{sign}(k_m)\right]^{n_m}}{n_m^{|k_m|}}$$

ANALITICAL CONTINUATIONS: provided by Blümlein, Kurth (Phys. Rev. D60 (1999) 014018) also as FORTRAN77 routines Blümlein (Comput. Phys. Commun. 133 (2000) 76))

We have checked the Mellin moments calculation and the consistency between Mitov, Moch and Blümlein, Ravindran notation

NUMERICALLY and ANALITICALLY: making use of

- "HPL"-Mathematica package, D. Maître (Comput. Phys. Commun. 174 (2006) 222-240)
- "MT"-Mathematica package, Hoeschele, Hoff, Pak, Steinhauser, Ueda (arXiv:1307.6925)

Universität

Tübingen

NNLO E+E- WITH "PEGASUS_FF"

TOWARS A GLOBAL NNLO FIT

e+ e- μ scale dependance

JEFFERSON LAB

Universität

Tübingen

NNLO E+E- WITH "PEGASUS_FF"

TOWARS A GLOBAL NNLO FIT

e+ e- μ scale dependance

JEFFERSON LAB

NNLO E+E- WITH "PEGASUS_FF"

JEFFERSON LAB

59

berhard Karls Universität Tübingen

CONCLUSIONS & OUTLOOK

- MAC + THRESHOLD RESUMMATION
- TOWARDS A GLOBAL NNLO FF FIT
- ${\mbox{'}}$ New Channels in SIDIS NNLO F_L
- CONCLUSIONS & OUTLOOK

SEMI-INCLUSIVE DIS

TOWARS A GLOBAL NNLO FIT

Important for JLABI2 and EIC

 $\ell(k) p(P) \to \ell(k') h(P_h) X$

Define the usual variables:

 $Q^{2} \equiv -q^{2} = -(k - k')^{2}$ $y \equiv \frac{P \cdot q}{P \cdot k}$ $x \equiv \frac{Q^{2}}{2P \cdot q}$ $z \equiv \frac{P \cdot P_{h}}{P \cdot q}$

Eberhard Karls Universität Tübingen

JEFFERSON LAB

SIDIS
$$\frac{d^3 \sigma^h}{dx dy dz} = \frac{4\pi \alpha^2}{Q^2} \left[\frac{1 + (1 - y)^2}{2y} \mathcal{F}_T^h(x, z, Q^2) + \frac{1 - y}{y} \mathcal{F}_L^h(x, z, Q^2) \right]$$

$$\mathcal{F}_{i}^{h}(x,z,Q^{2}) = \sum_{f,f'} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \int_{z}^{1} \frac{d\hat{z}}{\hat{z}} f\left(\frac{x}{\hat{x}},\mu^{2}\right) D_{f'}^{h}\left(\frac{z}{\hat{z}},\mu^{2}\right) \mathcal{C}_{f'f}^{i}\left(\hat{x},\hat{z},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right)$$

62

hard-scattering coefficient function:

$$\mathcal{C}_{f'f}^{i} = C_{f'f}^{i,(0)} + \frac{\alpha_s(\mu^2)}{2\pi} C_{f'f}^{i,(1)} + \mathcal{O}(\alpha_s^2)$$

JEFFERSON LAB

^{berhard Karls} Universität Tübingen

TOWARDS NNLO FL

For the Longitudinal Structure Function at NLO, the quark scattering and the gluonfusion are Tree-Level diagrams

The New Channels of NNLO FL

Tree Level diagrams at NNLO:

QUARK INITIATED $\gamma q \rightarrow q' \bar{q}' q \qquad q \neq q'$

TOWARS A GLOBAL NNLO FIT

JEFFERSON LAB

überhard Karls Universität Tübingen

CONCLUSIONS & OUTLOOK

THE NEW CHANNELS OF NNLO FL

Tree Level diagrams at NNLO:

GLUON INITIATED

 $\gamma g \to q \bar{q} g \qquad q \neq q'$

TOWARS A GLOBAL NNLO FIT

Universität Tübingen

JEFFERSON LAB

UNIVERSITAT

The Calculation

TOWARS A GLOBAL NNLO FIT

It is a **BRUTE-FORCE** calculation:

PHASE SPACE 2 to 3

$$\int dPS_3^{DI} = \frac{1}{(4\pi)^n} \frac{(s-Q^2)^{n-3}}{\Gamma(n-3)} (1-x)^{n-3} \int_0^{\pi} d\theta \int_0^{\pi} d\phi (\sin\theta)^{n-3} (\sin\phi)^{n-4}$$
$$\times \int_0^1 dy \int_0^1 dz y^{(n/2)-2} (1-y)^{n-3} \{z(1-z)\}^{(n/2)-2}$$

- Angular part solvable using know integrals of type: Beenakker,Kuijf,van Neerven, Smith (Phys.Rev. D40 (1989) 54-82)

$$\int_0^{\pi} \mathrm{d}\theta \int_0^{\pi} \mathrm{d}\phi \, \frac{(\sin\theta)^{n-3}(\sin\phi)^{n-4}}{(a+b\cos\theta)^i (A+B\cos\theta+C\cos\phi\sin\theta)^j}$$

- z-Integration remaining can be solved analytically with many tricks

$ \frac{1}{eg = -a as^2 CF EI^2} \left(-6 \left(-2 + z + z^2\right) + x \left(\pi^2 \left(1 + 2 z\right) + 21 \left(-1 + z^2\right)\right)\right) + 8 a as^2 CF EI^2 x \left(-2 + z + z^2\right) \log[x] + 8 a as^2 CF EI^2 x \left(-2 + z + z^2\right) \log[1 - z] + 8 a as^2 CF EI^2 \left(-1 - 2 z + x \left(-1 + 4 z + z^2\right)\right) \log[z] - 8 a as^2 CF EI^2 x (1 + 2 z) \log[1 - x] \log[z] + 8 a as^2 CF EI^2 x (1 + 2 z) \log[z] + 8 a as^2 CF EI^2 x (1 + 2$
$\frac{3}{16 \text{ a as}^2 \text{ CF EI}^2 \text{ x } (1+2 \text{ z}) \log[\text{x}] - 8 \text{ a as}^2 \text{ CF EI}^2 \text{ x } (1+2 \text{ z}) \log[\text{z}]^2 + 8 \text{ a as}^2 \text{ CF EI}^2 \text{ x } (1+2 \text{ z}) \operatorname{PolyLog}[2, \text{ z}];$
$8 \text{ a } \text{a } \text{s}^2 \text{ CP EII}^2 \left(4 + 32 \text{x}^3 - 3 \text{x}^2 \left(-7 + \pi^2 + 30 \text{z}\right) + \text{x} \left(-57 + 90 \text{z}\right)\right) \\ = \frac{16 \text{ a } \text{a } \text{a }^2 \text{ CP EII}^2 \left(1 - 3 \text{x} + 2 \text{x}^3\right) \text{ log}[1 - \text{x}]}{4 \text{a } \text{a } \text{a } \text{a } \text{cP EII}^2 \left(4 \text{x}^4 + \text{x}^3 (15 - 22 \text{z}) - 4 \text{z} + 2 \text{x}^2 \left(9 - 20 \text{z} + 10 \text{z}^2\right) + \text{x} \left(7 - 18 \text{z} + 20 \text{z}^2\right)\right) \text{ log}[\text{x}]} \\ = \frac{16 \text{a } \text{a } \text{cP EII}^2 \left(1 - 3 \text{x} + 2 \text{x}^3\right) \text{ log}[1 - \text{x}]}{4 \text{a } \text{a } \text{a } \text{cP EII}^2 \left(4 \text{x}^4 + \text{x}^3 (15 - 22 \text{z}) - 4 \text{z} + 2 \text{x}^2 \left(9 - 20 \text{z} + 10 \text{z}^2\right) + \text{x} \left(7 - 18 \text{z} + 20 \text{z}^2\right)\right) \text{ log}[\text{x}]} \\ = \frac{16 \text{a } \text{a } \text{cP EII}^2 \left(1 - 3 \text{cP EII}^2 \left(4 \text{x}^4 + \text{x}^3 (15 - 22 \text{z}) - 4 \text{z} + 2 \text{x}^2 \left(9 - 20 \text{z} + 10 \text{z}^2\right) + \text{x} \left(7 - 18 \text{z} + 20 \text{z}^2\right)\right) \text{ log}[\text{x}]} \\ = \frac{16 \text{a } \text{cP EII}^2 \left(1 - 3 \text{cP EII}^2 \left(4 \text{cP EII}^2 \left(4 \text{cP EII}^2 + 2 \text{cP EII}^2\right) + \text{x} \left(7 - 18 \text{cP EII}^2\right) + \text{x}$
$9 x$ $3 x$ $1 + x^2 + x (2 - 4 z)$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{2/2}} \frac{16 \text{ a as}^2 \text{ CF EII}^2 x \left(-1-3x^2\left(1-2z\right)^2+6z-6z^2+x^3\left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \log[2] \log[x] + 1}{\left(1+x^2+x\left(2-4z\right)\right)^{2/2}} \log[x] + 1 \log[x] \log[x] \log[x] \log[x] \log[x] \log[x] \log[x] \log[x]$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 a a s^2 CF EII^2 x \left(-1+6z-6z^2+x^3 (-1+2z)+2\sqrt{1+2x+x^2-4xz}+x(-1+2z)\left(3-10z+10z^2-4\sqrt{1+2x+x^2-4xz}\right)+x^2\left(-3+12z-12z^2+2\sqrt{1+2x+x^2-4xz}\right)\right) \log[x]^2 + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[1-z] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[1-z] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[1-z] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[1-z] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[1-z] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[1-z] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[1-z]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] + \frac{16 a a s^2 CF EII^2 \left(1-3x+2x^3\right) \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x]}{3x} - 16 a a s^2 CF EII^2 x \log[x] - 16 a a s^2 CF EII^2 x \log[x]$
$\frac{8 \text{ a as}^2 \text{ CF EII}^2 (-1+x) \left(-2+4 x^4+x^3 (15-34 z)+x (3-4 z)+2 x^2 \left(8-29 z+30 z^2\right)\right) \log [z]}{(1-2 z)^2 (1-2 z)^2 ($
$\frac{3 \times (1 + x^{-} + x (2 - 4 z))}{(1 + x^{-} + x (2 - 4 z))^{1/2}} = \frac{1}{2 + x^{-} + x (2 - 4 z)} = \frac{1}{2 + x^{-} + x (2 - $
$\frac{1}{\left(1+x^{2}+x\left(2-4z\right)\right)^{3/2}} = 8 \text{ a as } CP EII^{*} x \left(2+x^{*} \left(2-4z\right)-12z+12z^{*}+\sqrt{1+2x+x^{*}-4xz}-2x\left(-1+2z\right)\right) \left(3-10z+10z^{*}+\sqrt{1+2x+x^{*}-4xz}\right) + x^{*} \left(6-24z+24z^{*}+\sqrt{1+2x+x^{*}-4xz}\right) \right) Log[x] Log[z] + 2x^{2} Log[z]$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ a } \text{ a } \text{ a } \text{ c } \text{ C } \text{ E } \text{ E } \text{ I } 2 \text{ x } \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \log\left[1-z\right] \log\left[$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}}$ 16 a as ² CF EII ² x $\left(-1-3x^2\left(1-2z\right)^2+6z-6z^2+x^3\left(-1+2z\right)+x\left(-3+16z-30z^2+20z^3\right)\right)$ Log [x] Log [1 + x + $\sqrt{(1+x)^2-4xz}$] + 16 a as ² CF EII ² x PolyLog[2, x] - $\left(1+x^2+x\left(2-4z\right)\right)^{3/2}$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ a ss}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1}{2} \left(1+x-\sqrt{\left(1+x\right)^2-4xz}\right)\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1+x-\sqrt{\left(1+x\right)^2-4xz}}{2x}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ a ss}^2 \text{ CP EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog} \left[2, \frac{1}{2} \left(-1+2z\right)^2+6z-6z^2+x^3-20z^2+20z^3\right)\right] \text{ PolyLog} \left[2, \frac{1}$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 8 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{1+x-\sqrt{(1+x)^2-4xz}}{2z}\right] - \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 16 \text{ as}^2 \text{ CF EII}^2 x \left(-1-3z^2 \left(1-2z\right)^2+20z^3\right) + \frac{1}{\left(1+x^2+x}\right)^2 \text{ PolyLog}\left[2, \frac{2}{1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x+\sqrt{(1+x)^2-4xz}}\right] + \frac{1}{\left(1+x+\sqrt{(1+x)^2-4xz}}\right) + \frac$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} Baas^2 CF EII^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) PolyLog[2, \frac{2z}{1+x+\sqrt{(1+x)^2-4xz}}] + \frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} Baas^2 CF EII^2 x \left(-1-3x^2 \left(1-2z\right)^2+6z-6z^2+x^3 \left(-1+2z\right)+x \left(-3+16z-30z^2+20z^3\right)\right) PolyLog[2, \frac{2z}{1+x+\sqrt{(1+x)^2-4xz}}];$
$8 a as^{2} CF EI EII x 8 a as^{2} CF EI EII x^{2} 8 a as^{2} CF EI EII x x 8 a as^{2} CF EI EII x^{2} x 8 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} x^{2} = 16 a as^{2} CF EI EII x^{2} x^{2} = 16 a a as^{2} CF EI EII x^{2} x^{2} = 16 a a a a a a a a a a a a a a a a a a $
1 + x 1 + x 1 + x 3 (1 + x) 1 + x 3 (1 + x) 3 (1 + x) 3 (1 + x)
$\frac{a a s^2 CF EI EII \left[16 x \sqrt{x z} \sqrt{1 + (-2 + 4 x) z + z^2} + \pi \left(x - z + 3 x^2 z - 23 x z^2\right)\right] \log[x]}{\sqrt{x z}} - \frac{\sqrt{x z}}{\sqrt{x z}}$
$\frac{1}{\left(1+x^{2}+x\left(2-4z\right)\right)^{3/2}} 16 a as^{2} CF EI EII x \left(1+x^{3} (1-2z)+2z \left(-1+\sqrt{1+2x+x^{2}-4xz}\right)+z^{2} \left(2+4\sqrt{1+2x+x^{2}-4xz}\right)+x^{2} \left(3+2z \left(-6+\sqrt{1+2x+x^{2}-4xz}\right)\right) - x (-1+2z) \left(3+z \left(-6+4\sqrt{1+2x+x^{2}-4xz}\right)+z^{2} \left(6+8\sqrt{1+2x+x^{2}-4xz}\right)\right)\right) Log[2] Log[x] - x \left(-1+2z \left(-6+4\sqrt{1+2x+x^{2}-4xz}\right)+z^{2} \left(-6+4\sqrt{1+2x+x^{2}-4xz}\right)\right) + z^{2} \left(-6+4\sqrt{1+2x+x^{2}-4xz}\right) + z^{$
$16 \text{ a as}^2 \text{ CF EI EII x } \left(-1+3 \text{ z }+2 \text{ z}^2\right) \log [1-x] \log [x] + 8 \text{ a as}^2 \text{ CF EI EII x } \left(1-2 \text{ z}\right)^2 + \frac{-1-3 \text{ x}^2 (1-2 \text{ z})^2 + 2 \text{ z}-2 \text{ z}^2 + x^3 (-1+4 \text{ z}-6 \text{ z}^2 + 4 \text{ z}^3)}{\left(1+x^2+x (2-4 \text{ z})\right)^{3/2}}\right) \log [x]^2 + 16 \text{ a as}^2 \text{ CF EI EII x } \left(-1+z+2 \text{ z}^2\right) \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} - 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} + 23 \sqrt{x} \text{ z}^{3/2} - \sqrt{\frac{z}{x}}\right) \log [x] \log [x] \log [1+x] + 2 \text{ i a as}^2 \text{ CF EI EII x } \left(\frac{1}{x} + 3 \text{ x}^{3/2} \sqrt{z} + 23 \sqrt{x} \text{ z}^{3/2} + 23 \sqrt{x} \text{ z}^{3$
$2 i a as^{2} CF EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{z}} \right) log[x] log[\sqrt{x} + i \sqrt{z}] + \left(4 a as^{2} CF EI EII \left(3 x^{4} (-1+z) + (-1+z) z + x^{3} (-5+16 z - 11 z^{2}) + x \left(1 + 4 z - 9 z^{2} + 4 z^{3} \right) + x^{2} \left(-1 + 18 z - 37 z^{2} + 20 z^{3} \right) \right) log[\frac{x}{z}] \right) / \left(\left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) z \right) z + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + x^{2} + x (2 - 4 z) \right) \left(1 - \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z \right) z + \frac{1}{z} \left(1 + \frac{x}{z} \right) z + \frac{1}{z} \left(1 + \frac{x}{z}$
$\left(a \ as^2 \ CF \ EI \ EII \left(\pi \left(-z + 3 \ x^4 \ z + x^3 \ (1 + 6 \ z - 35 \ z^2\right) + x \left(1 - 2 \ z - 19 \ z^2\right) + x^2 \left(2 - 2 \ z - 46 \ z^2 + 92 \ z^3\right)\right) - 8 \ \sqrt{x \ z} \right) - x \left(-z + 4 \ x \ z + z^2\right) + x \left(-3 + 6 \ z - 4 \ z^2 + 2 \ \sqrt{1 - 2 \ z + 4 \ x \ z + z^2}\right) + x^2 \left(-6 + 11 \ z + 4 \ \sqrt{1 - 2 \ z + 4 \ x \ z + z^2}\right)\right) \left(1 + x^2 + x \ (2 - 4 \ z)\right) \sqrt{x \ z} \right) - x \left(-2 \ x \ x \ z + z^2\right) + x^2 \left(-6 + 11 \ z + 4 \ \sqrt{1 - 2 \ z + 4 \ x \ z + z^2}\right) + x^2 \left(-6 + 11 \ z + 4 \ x \ z + z^2\right)\right) \left(1 + x^2 + x \ (2 - 4 \ z)\right) \sqrt{x \ z} \right) - x^2 \left(-6 + 11 \ z + 4 \ x \ z + z^2\right) + x^2 \left(-6 + 11 \ z +$
$\frac{1}{\left(1+x^{2}+x\left(2-4z\right)\right)^{3/2}} \ 32 \ a \ as^{2} \ CF \ EI \ EII \ x \left(1+x^{3} \ (1-2z)+2z \left(-1+\sqrt{1+2x+x^{2}-4xz}\right)+z^{2} \left(2+4\sqrt{1+2x+x^{2}-4xz}\right)+x^{2} \left(3+2z \left(-6+\sqrt{1+2x+x^{2}-4xz}\right)\right) -x \ (-1+2z) \left(3+z \left(-6+4\sqrt{1+2x+x^{2}-4xz}\right)+z^{2} \left(6+8\sqrt{1+2x+x^{2}-4xz}\right)\right)\right) \ Log [2] \ Log [2] + 2z \left(-6+\sqrt{1+2x+x^{2}-4xz}\right) + 2z \left(-6+4\sqrt{1+2x+x^{2}-4xz}\right) + 2z \left(-6+41+2x+x$
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} \ 16 \ a \ as^2 \ CF \ EI \ EII \ x \left(-1-3x^2\left(1-2z\right)^2+2z-2z^2+x^3\left(-1+2z\right)+3x\left(-1+4z-6z^2+4z^3\right)\right) \ Log\left[z\right] \ -2 \ i \ a \ as^2 \ CF \ EI \ EII \left(\sqrt{\frac{x}{z}}+3x^{3/2}\sqrt{z}\right) \ -\sqrt{\frac{x}{z}} \ Log\left[z\right] \ +2 \ i \ a \ as^2 \ CF \ EI \ EII \left(\sqrt{\frac{x}{z}}+3x^{3/2}\sqrt{z}\right) \ -\sqrt{\frac{x}{z}} \ Log\left[x\right] \ +2 \ i \ a \ as^2 \ CF \ EI \ EII \left(\sqrt{\frac{x}{z}}+3x^{3/2}\sqrt{z}\right) \ -\sqrt{\frac{x}{z}} \ Log\left[x\right] \ +2 \ i \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ CF \ EI \ EII \ a \ as^2 \ a \ a \ as^2 \ a \ a \ a \ a \ a \ a \ a \ a \ a \ $
$\frac{1}{\left(1+x^2+x(2-4z)\right)^{3/2}} 16 a as^2 CF EI EII x \left(-1-2z^2+x^3(-1+2z)-\sqrt{1+2x+x^2-4xz}+2z\left(1+\sqrt{1+2x+x^2-4xz}\right)+x^2(-1+2z)\left(3-6z+\sqrt{1+2x+x^2-4xz}\right)+x(-1+2z)\left(3+6z^2+2\sqrt{1+2x+x^2-4xz}-2z\left(3+2\sqrt{1+2x+x^2-4xz}\right)\right)\right) \log[1-z] \log[z] + \frac{1}{2} \log[z] \log[1-z] \log[1$
$8 \text{ a as}^2 \text{ CP EI EII x } (1 - 2 z) \log[z]^2 + 32 \text{ a as}^2 \text{ CP EI EII x z} \log[x] \log[x + z] - 32 \text{ a as}^2 \text{ CP EI EII x z} \log[z] \log[x + z] - 64 \text{ a as}^2 \text{ CP EI EII x z}^2 \log[x] \log[1 + x z] - 2 \text{ i a as}^2 \text{ CP EI EII x z} \log[x] \sqrt{\frac{x}{z}} - \sqrt{\frac{x}{x}} \int_{-\frac{x}{z}}^{-\frac{x}{z}} \log[x] \log[x + z] - 32 \text{ a as}^2 \text{ CP EI EII x z} \log[z] \log[1 + x z] - 64 \text{ a as}^2 \text{ CP EI EII x z}^2 \log[x] \log[1 + x z] - 2 \text{ i a as}^2 \text{ CP EI EII x z} \log[x] \log[x + z] - \frac{x}{x} \log[x] \log[x] \log[x + z] - \frac{x}{x} \log[x] \log[x] \log[x] \log[x] \log$
$2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{z}{x}} \right) log[z] log[-i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{z}{x}} \right) log[z] log[i + \sqrt{xz}] - \sqrt{\frac{z}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{z}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{z}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{z}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{z}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[z] log[i + \sqrt{xz}] + 2 i a as^{2} CP EI EII \left(\sqrt{\frac{x}{z}} + 3 x^{3/2} \sqrt{z} - 23 \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[z] log[i + \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right) log[i + \sqrt{x} z^{3/2} - \sqrt{\frac{x}{x}} \right] log[i + \sqrt{x} z^{3/2} $
$\frac{1}{\left(1+x^2+x\left(2-4z\right)\right)^{3/2}} 32 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+2z)+3 x \left(-1+4z-6z^2+4z^3\right)\right) \log[z] \log[1-x+\sqrt{(1+x)^2-4xz}] - \frac{1}{\left(1+x^2+x (2-4z)\right)^{3/2}} 16 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+4z-6z^2+4z^3)\right) \log[x] \log[1+x+\sqrt{(1+x)^2-4xz}] + \frac{1}{\left(1+x^2+x (2-4z)\right)^{3/2}} 16 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+4z-6z^2+4z^3)\right) \log[x] \log[1+x+\sqrt{(1+x)^2-4xz}] + \frac{1}{\left(1+x^2+x (2-4z)\right)^{3/2}} 16 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+4z-6z^2+4z^3)\right) \log[x] \log[x] \log[1+x+\sqrt{(1+x)^2-4xz}] + \frac{1}{\left(1+x^2+x (2-4z)\right)^{3/2}} 16 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+4z-6z^2+4z^3)\right) \log[x] \log[x] \log[1+x+\sqrt{(1+x)^2-4xz}] + \frac{1}{\left(1+x^2+x (2-4z)\right)^{3/2}} 16 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+4z-6z^2+4z^3)\right) \log[x] \log[x] \log[1+x+\sqrt{(1+x)^2-4xz}] + \frac{1}{\left(1+x^2+x (2-4z)\right)^{3/2}} 16 a a s^2 CF EI EII x \left(-1-3 x^2 (1-2z)^2+2z-2z^2+x^3 (-1+4z-6z^2+4z^3)\right) \log[x] \log[x] \log[x] \log[x] \log[x] \log[x] \log[x] \log[x]$
$32 \text{ a as}^2 \text{ CP EI EII x } \sqrt{1 + (-2 + 4 \text{ x}) \text{z} + z^2} \log \left[1 - \text{z} + \sqrt{(1 - z)^2 + 4 \text{x}}\right] + 64 $
$64 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log [2] \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log [x] \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] - 64 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] - 64 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ CP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ cP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ cP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ cP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ cP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 \text{ cP EI EII x z } (1+2z) \log \left[1+z+\sqrt{(1-z)^2+4xz}\right] + 32 \text{ a as}^2 cP EI$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

67

JEFFERSON LAB

32 a as ² CA El ² x (1 + x) Log [x] Log [1 + x] +
$\frac{1}{32 x^3 z^5} a a a^2 CA E I^2 \left(\pi x^{3/2} \left(15 z^{9/2} + 15 x^4 z^{9/2} + 128 x^{7/2} z^2 \sqrt{x z^5} + 16 \sqrt{x} z \sqrt{x z^5} (5 - 15 z + 7 z^2) - 30 x z^{7/2} (11 - 24 z + 11 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) - 5 x^2 z^{5/2} (125 - 368 z + 468 z^2 - 368 z^3 + 125 z^4) \right) + \frac{16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) - 5 x^2 z^{5/2} (125 - 368 z + 468 z^2 - 368 z^3 + 125 z^4)}{2 x^3 z^5}$
$4 (-1 + x) x^{2} \left(-15 z^{4} - 15 z^{5} + 240 \sqrt{x z} \sqrt{x z^{5}} - 800 z \sqrt{x z} \sqrt{x z^{5}} + 256 z^{2} \sqrt{x z} \sqrt{x z^{5}} + 1168 z^{3} \sqrt{x z} \sqrt{x z^{5}} - 128 x^{3} z^{4} (1 + z) + x z (1 + z) \left(735 z^{2} + 1020 z^{3} - 225 z^{4} + 64 \sqrt{x z} \sqrt{x z^{5}} \right) + x^{2} z \left(49 z^{3} + 305 z^{4} + 128 \sqrt{x z} \sqrt{x z^{5}} + 128 z \sqrt{x z} \sqrt{x z^{5}} \right) \right) \log [z] - 100 z^{3} - 225 z^{4} + 64 \sqrt{x z} \sqrt{x z^{5}} + 128 z \sqrt{x z} \sqrt{x z} \sqrt{x z^{5}} + 128 z \sqrt{x z} \sqrt{x z} \sqrt{x z^{5}} + 128 z \sqrt{x z} \sqrt{x z} \sqrt{x z} \sqrt{x z^{5}} + 128 z \sqrt{x z} x$
$\frac{8 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[1-x] \log[2] - 24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{\frac{8 \text{ a s}^2 \text{ CA EI}^2 (-1+z) \left(10 (-1+z)^2 + 3 x^2 z + x \left(10 - 17 z + 4 z^2\right)\right) \log[x+z]}{z^2}}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ a s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ c s}^2 \text{ CA EI}^2 (-1+x) \text{ x } \log[z]^2}{z^2} - \frac{24 \text{ c s}^2 \text{ CA EI}^2 (-1+x) \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2 \text{ CA EI}^2 (-1+x) \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2 \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2 \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2 \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2 \text{ c s}^2}{z^2} - \frac{24 \text{ c s}^2}{z^2} - 24 \text{ c s$
$32 \text{ a as}^2 \text{ CA EI}^2 \text{ x } \log[x] \log[1 + xz] - 32 \text{ a as}^2 \text{ CA EI}^2 \text{ x } \log[z] \log[1 + xz] + \frac{1}{1792 x^{3/2} z^{5/2}} \text{ a as}^2 \text{ CA EI}^2 \left(-2161 z^2 - 2161 x^4 z^2 + 2 x z \left(5883 - 16088 z + 5883 z^2\right) + 2 x^3 z \left(5883 - 16088 z + 5883 z^2\right) + x^2 \left(30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4\right)\right) \log\left[1 + xz - 2 \sqrt{xz}\right] + \frac{1}{1792 x^{3/2} z^{5/2}} \log\left[1 + xz\right] + \frac{1}{1792 x^{5/2} z$
$\frac{1}{1792 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(2161 z^2 + 2161 x^4 z^2 - 2 x z \left(5883 - 16 088 z + 5883 z^2\right) - 2 x^3 z \left(5883 - 16 088 z + 5883 z^2\right) + x^2 \left(-30415 + 98128 z - 122460 z^2 + 98128 z^3 - 30415 z^4\right)\right) \log \left[1 - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right] + \frac{1}{16 x^{3/2} z^{5/2}} = as^2 CA ET^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) \log \left[\frac{1}{2} x - \sqrt{x z}\right]$
$\frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[x] Log[x] Log[x - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[2] Log[z - \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 z^2 + 143 z^2 + 12 z^2 + $
$\frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] - \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] + \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] + \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] + \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] + \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] + \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 + 124 z^{2} - 17 z^{4})) Log[z] Log[z - \sqrt{x z}] + \frac{1}{16 x^{2/2} z^{5/2}} i a as^{2} CA EI^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 z^{2} + 143 x^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 z^{2} + 143 z^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{2} (15 z^{2} + 143 z^{4} z^{2} + 2 x z (-5 + 11 z^{2}) + x^{3} (118 z - 362 z^{3}) + x^{3} (118 z - 362 z^{3}$
$\frac{1}{16 x^{3/2} z^{5/2}} \frac{1}{16 x^2 z^2} (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) \log[2] \log[1 + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + 2 x^3 z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) \log[1 + \sqrt{x z}] - \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4))$
$\frac{1}{16 x^{3/2} z^{5/2}} \frac{1}{16 x^2} \frac{1}{2} x^{2} + \frac{1}{13} x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right) \right) \log \left[2\right] \log \left[\frac{1}{2} x + \sqrt{x z}\right] - \frac{1}{16 x^{3/2} z^{5/2}} \frac{1}{2} \frac{1}{16 x^{3/2} z^{5/2}} \frac{1}{16 x^{3/2} z^{5$
$\frac{1}{16 \ x^{1/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 11 \ z^2) + x^3 \ (118 \ z - 362 \ z^3) + x^2 \ (15 + 124 \ z^2 - 17 \ z^4)) \ Log [2] \ Log [i \ z + \sqrt{x \ z}] - \frac{1}{16 \ x^{3/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 11 \ z^2) + x^3 \ (15 + 124 \ z^2 - 17 \ z^4)) \ Log [z] \ Log [i \ z + \sqrt{x \ z}] + \frac{1}{16 \ x^{3/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 11 \ z^2) + x^3 \ (15 + 124 \ z^2 - 17 \ z^4)) \ Log [z] \ Log [i \ z + \sqrt{x \ z}] + \frac{1}{16 \ x^{3/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 11 \ z^2) + x^3 \ (15 + 124 \ z^2 - 17 \ z^4)) \ Log [z] \ Log [i \ z + \sqrt{x \ z}] + \frac{1}{16 \ x^{3/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 11 \ z^2) + x^3 \ (15 \ + 124 \ z^2 - 17 \ z^4)) \ Log [z] \ Log [i \ z + \sqrt{x \ z}] + \frac{1}{16 \ x^{3/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 11 \ z^2) + x^3 \ (15 \ + 124 \ z^2 - 17 \ z^4)) \ Log [z] \ Log [i \ z + \sqrt{x \ z}] + \frac{1}{16 \ x^{3/2} \ z^{5/2}} \ i \ a \ as^2 \ Ch \ EI^2 \ (15 \ z^2 + 143 \ x^4 \ z^2 + 2 \ x \ z \ (-5 + 111 \ z^2) + x^3 \ (15 \ + 124 \ z^2 - 17 \ z^4)) \ Log [z] \ Log [i \ z + \sqrt{x \ z}] \ Log [z] \ Log [z]$
$\frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 \left(2161 z^2 + 2161 x^4 z^2 - 2 x z \left(5883 - 16088 z + 5883 z^2\right) - 2 x^3 z \left(5883 - 16088 z + 5883 z^2\right) + x^2 \left(-30415 + 98128 z - 122460 x^2 + 98128 z^3 - 30415 z^4\right)\right) Log \left[-x z + \sqrt{x z}\right] - \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) Log \left[2 Log \left[-i x z + \sqrt{x z}\right] - \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) Log \left[2 Log \left[-i x z + \sqrt{x z}\right] - \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) Log \left[2 Log \left[-i x z + \sqrt{x z}\right] - \frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 \left(15 z^2 + 143 x^4 z^2 + 2 x z \left(-5 + 11 z^2\right) + x^3 \left(118 z - 362 z^3\right) + x^2 \left(15 + 124 z^2 - 17 z^4\right)\right) Log \left[2 Log \left[-i x z + \sqrt{x z}\right] - \frac{1}{16 x^{3/2} z^{5/2}} i z^{5/2} i$
$\frac{1}{16 x^{3/2} z^{5/2}} \frac{i a as^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[x] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a as^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a as^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a as^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} \frac{i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[-i x z + \sqrt{x z}] + \frac{1}{16 x^{3/2} z^{5/2}} i a a a^2 Ch EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 -$
$\frac{1}{16 x^{3/2} z^{5/2}} \frac{1}{z^{5/2}} 1$
$\frac{1}{16 x^{3/2} z^{5/2}} i a as^2 CA EI^2 (15 z^2 + 143 x^4 z^2 + 2 x z (-5 + 11 z^2) + x^3 (118 z - 362 z^3) + x^2 (15 + 124 z^2 - 17 z^4)) Log[z] Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + 2 x^3 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 - 98128 z + 122460 z^2 - 98128 z^3 + 30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 x^4 z^2 + 2 x z (5883 - 16088 z + 5883 z^2) + x^2 (30415 z^4)) Log[x z + \sqrt{x z}] + \frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 (-2161 z^2 - 2161 z^2) + \frac{1}{1792 x^{3/2} z$
$\frac{1}{1792 x^{3/2} z^{5/2}} a as^2 CA EI^2 \left(2161 z^2 + 2161 x^4 z^2 - 2 x z \left(5883 - 16 088 z + 5883 z^2\right) - 2 x^3 z \left(5883 - 16 088 z + 5883 z^2\right) + x^2 \left(-30 415 + 98 128 z - 122460 z^2 + 98 128 z^3 - 30 415 z^4\right)\right) Log \left[1 + x z + 2 \sqrt{x z}\right] - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2} Log \left[1 - 2 x - z + \sqrt{1 - 2 z + 4 x z + z^2}\right]}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - \frac{16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z + z^2}}{z} - 16 a as^2 CA EI^2 (-1 + x) x \sqrt{1 + (-2 + 4 x) z +$
$16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \log \left[1+z-\sqrt{1-2z+4xz+z^{2}}\right] \log \left[1-2x-z+\sqrt{1-2z+4xz+z^{2}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \log \left[1-2x-z+\sqrt{1-2z+4xz+z^{2}}\right] + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[-1+2x+z+\sqrt{1-2z+4xz+z^{2}}\right]}{z} + 16 \text{ a a a a a a a a a a a a a a a a a a $
$16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \log \left[1 + z - \sqrt{1 - 2 z + 4 x z + z^2}\right] \log \left[-1 + 2 x + z + \sqrt{1 - 2 z + 4 x z + z^2}\right] - 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \log \left[1 + z + \sqrt{1 - 2 z + 4 x z + z^2}\right] + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}}{z} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a as}^2 \text{ cA EI}^2 (-1 + x) \text{ x } \sqrt{1 + (-2 + 4 x z + z^2)}} + \frac{16 \text{ a a as}^2 \text{ cA EI}^2 (-$
$16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \log \left[1+z-\sqrt{1-2z+4xz+z^{2}}\right] \log \left[-1+z-2xz+\sqrt{1-2z+4xz+z^{2}}\right] - 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \log \left[1+z+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} \text{ CA EI}^{2} (-1+x) \text{ x } \sqrt{1+(-2+4x)z+z^{2}} \log \left[1-z+2xz+\sqrt{1-2z+4xz+z^{2}}\right] - \frac{16 \text{ a as}^{2} c a a a a a a a a a a a a a a a a a a $
$16 \text{ a as}^2 \text{ CA EI}^2 (-1+x) \times \log\left[1+z-\sqrt{1-2z+4xz+z^2}\right] \log\left[1-z+2xz+\sqrt{1-2z+4xz+z^2}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1+x) \times \log\left[1+z+\sqrt{1-2z+4xz+z^2}\right] \log\left[1-z+2xz+\sqrt{1-2z+4xz+z^2}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 \text{ CA EI}^2 \times (1+x) \text{ PolyLog}\left[2, \frac{1-z}{1+x}\right] + 16 \text{ a as}^2 $
$16 \text{ a as}^{2} \text{ CA EI}^{2} \text{ x } (1 + \text{x}) \text{ PolyLog} \left[2, \frac{\text{x } (-1 + z)}{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, -\frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} (-1 + z)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} (-1 + z)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} (-1 + z)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a as}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a a a}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a a a}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 x^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a a}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(3 z + 3 z^{2} z + x \left(5 - 4 z + 5 z^{2}\right)\right) \text{ PolyLog} \left[2, \frac{i}{\sqrt{xz}}\right]}{-} + \frac{5 \text{ i a a}^{2} \text{ CA EI}^{2} \left(-1 + z\right)^{2} \left(-1 $
$\sqrt{x z^5} \qquad \sqrt{x z^5}$
$\frac{1}{16 x^{3/2} z^5} \text{ is as}^2 \text{ CA EI}^2 \left(15 z^{5/2} + 15 x^4 z^{9/2} + 128 x^{7/2} z^2 \sqrt{x z^5} - 30 x z^{7/2} (3 - 8 z + 3 z^2) - 30 x^3 z^{7/2} (3 - 8 z + 3 z^2) + 16 \sqrt{x} z \sqrt{x z^5} (5 - 15 z + 7 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) - 45 x^2 z^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) \right) \text{PolyLog}[2, -\frac{i x}{\sqrt{x z}}] + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 64 z^2 - 45 z^2 + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 64 z^2 - 45 z^2 + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 15 z^4)}{\sqrt{x z^5}} + \frac{16 x^{3/2} x^{5/2} (15 - 45 z + 15 z^4)}{$
$\frac{1}{16 x^{3/2} z^5} \text{ is as}^2 \text{ CA EI}^2 \left(15 z^{9/2} + 15 x^4 z^{9/2} + 128 x^{7/2} z^2 \sqrt{x z^5} - 30 x z^{7/2} (3 - 8 z + 3 z^2) - 30 x^3 z^{7/2} (3 - 8 z + 3 z^2) + 16 \sqrt{x z^5} (5 - 15 z + 7 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) - 45 x^2 z^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) \right) \text{PolyLog}[2, \frac{4x}{\sqrt{x z^5}}]$
$\frac{1}{16 x^{3/2} z^5} i a as^2 CA EI^2 \left(15 z^{9/2} + 15 x^4 z^{9/2} + 128 x^{7/2} z^2 \sqrt{x z^5} - 30 x z^{7/2} (3 - 8 z + 3 z^2) - 30 x^3 z^{7/2} (3 - 8 z + 3 z^2) + 16 \sqrt{x} z \sqrt{x z^5} (5 - 15 z + 7 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) - 45 x^2 z^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) \right) PolyLog[2, -\frac{i z}{\sqrt{x z}}]$
$\frac{1}{16 x^{3/2} z^5} i a as^2 CA EI^2 \left(15 z^{5/2} + 15 x^4 z^{9/2} + 128 x^{7/2} z^2 \sqrt{x z^5} - 30 x z^{7/2} (3 - 8 z + 3 z^2) - 30 x^3 z^{7/2} (3 - 8 z + 3 z^2) + 16 \sqrt{x} z \sqrt{x z^5} (5 - 15 z + 7 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) - 45 x^2 z^{5/2} (5 - 16 z + 20 z^2 - 16 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) \right) PolyLog[2, \frac{i z}{\sqrt{x z}}]$
$\frac{1}{8 x^{3/2} z^5} \pm a as^2 Ch ET^2 \left(15 z^{5/2} + 15 x^4 z^{5/2} + 128 x^{7/2} z^2 \sqrt{x z^5} + 30 x z^{7/2} (1 + z^2) + 30 x^3 z^{7/2} (1 + z^2) + 16 \sqrt{x z^5} (5 - 15 z + 7 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) - 5 x^2 z^{5/2} (5 - 32 z + 36 z^2 - 32 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) \right) PolyLog[2, -i \sqrt{x z}]$
$\frac{1}{8 x^{3/2} z^5} i a as^2 CA EI^2 \left(15 z^{9/2} + 15 x^4 z^{9/2} + 128 x^{7/2} z^2 \sqrt{x z^5} + 30 x z^{7/2} (1 + z^2) + 30 x^3 z^{7/2} (1 + z^2) + 16 \sqrt{x} z \sqrt{x z^5} (5 - 15 z + 7 z^2) - 16 x^{5/2} z \sqrt{x z^5} (-13 + 15 z + 17 z^2) - 5 x^2 z^{5/2} (5 - 32 z + 36 z^2 - 32 z^3 + 5 z^4) + 16 x^{3/2} \sqrt{x z^5} (15 - 45 z + 64 z^2 - 45 z^3 + 13 z^4) \right) PolyLog[2, i \sqrt{x z}]$
$16 \text{ a as}^2 \text{ CA EI}^2 \text{ x } (1 + \text{x}) \text{ PolyLog} \left[2, \frac{x - xz}{1 + x}\right] - 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + \text{x}) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z - \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + \text{x}) \text{ x PolyLog} \left[2, \frac{-1 + z - \sqrt{1 + z(-2 + 4x + z)}}{2z}\right] - 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + \text{x}) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + \text{x}) \text{ x PolyLog} \left[2, \frac{-1 + z - \sqrt{1 + z(-2 + 4x + z)}}{2z}\right] - 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + \text{x}) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - \sqrt{1 + z(-2 + 4x + z)}}{2z}\right] - 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{2} \left(1 - z + \sqrt{1 + z(-2 + 4x + z)}\right)\right] + 16 \text{ a as}^2 \text{ CA EI}^2 (-1 + x) \text{ x PolyLog} \left[2, \frac{1}{$
$16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z + \sqrt{1 + z (-2 + 4 x + z)}}{2 z}\right] - 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{1 - 2 x - z + \sqrt{1 + z (-2 + 4 x + z)}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] - 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + 2 x + z + \sqrt{1 + z (-2 + 4 x + z)}}{1 - z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - 2 x z + \sqrt{1 + z (-2 + 4 x + z)}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - 2 x z + \sqrt{1 + z (-2 + 4 x + z)}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - 2 x z + \sqrt{1 + z (-2 + 4 x + z)}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - 2 x z + \sqrt{1 + z (-2 + 4 x + z)}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - 2 x z + \sqrt{1 + z (-2 + 4 x + z)}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z - 2 x z + \sqrt{1 + z (-2 + 4 x + z)}}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z + \sqrt{1 + z (-2 + 4 x + z)}}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z + \sqrt{1 + z (-2 + 4 x + z)}}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z + \sqrt{1 + z (-2 + 4 x + z)}}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} \text{ CA EI}^{2} (-1 + x) \text{ x PolyLog} \left[2, \frac{-1 + z + \sqrt{1 + z (-2 + 4 x + z)}}}{1 + z + \sqrt{1 + z (-2 + 4 x + z)}}\right] + 16 \text{ a as}^{2} c a a a a a a a a a a a a a a a a a a $
50% ►

Preliminary Plot

SIDIS F_L

JEFFERSON LAB

serhard Karls Universität Tübingen

CONCLUSIONS & OUTLOOK

- We have presented a framework for combined HMC with Resummation. Future extension to SIDIS
- Work in progress for e+e- only FF NNLO fit and extension to a global fit
- Future resummed FF fit including Log(N)/N
- Work in progress for NNLO SIDIS

THANKS FOR YOUR ATTENTION ANY QUESTIONS?

