RARE HIGGS DECAYS

JURE ZUPAN U. OF CINCINNATI

OUTLINE

- general introduction
- new physics searches and Higgs couplings
 - flavor violating Higgs decays
 - CP violating Higgs decays
 - Higgs couplings to light quarks

THE DISCOVERY

- July 4th 2012 a discovery announced at CERN
 - a new particle with mass ~125 GeV
 - a year after: to *O*(1) behaves as the SM Higgs boson

THE DISCOVERY

- July 4th 2012 a discovery announced at CERN
 - a new particle with mass ~125 GeV
 - a year after: to *O*(1) behaves as the SM Higgs boson

THE DUAL ROLE OF THE HIGGS

- dual role of the Higgs in the SM
 - breaks electroweak symmetry
 - gives a mass to elementary particles
- a disclaimer: most of "our" mass comes from QCD energy
 - Higgs thus has more to do with chemistry/nucl. structure than with the mass of the ordinary matter

SM HIGGS?

- how closely does it resemble the SM Higgs?
 - EWSB: does it couple to W,Z?
 - fermion mass generation: does it couple to fermions?

MEASUREMENTS

6

• $J^{P}=0^{+}$ preferred (at 97.8% C.L. ATLAS-CONF-2013-013; $Over 0^{-}$) J. Zupan Rare Higgs Decays

J. Zupan Rare Higgs Decays

TO RECAPITULATE

- the 125GeV state resembles the SM Higgs at the ~O(few10%) level
- for many problems can now think of the SM as a good low energy approximation

• i.e. can use EFT

- among the SM fields *H* stands out
 - it forms one of only two dim2 gauge invariant operators: $H^{\dagger}H$ and $B_{\mu\nu}$

SENSITIVITY TO NEW PHYSICS

- is a blessing and a curse
 - naturally $\Lambda^2 H^{\dagger}H$, where Λ is a scale of physics that couples to the SM (e.g. M_{Pl})
 - if $\Lambda \gg v_{EW} \Rightarrow$ hierarchy problem
 - one of the reasons for new physics at TeV
- the flip side: $H^{\dagger}H$ can couple to NP
 - if NP contains scalars the interact. are dim-4 (unsuppressed in NDA), $H^{\dagger}H\phi^{\dagger}\phi$
 - in general the lowest suppression
- next best thing to producing these states on-shell in colliders

HIGGS - A WINDOW TO NEW PHYSICS

- the 125GeV scalar resembles the SM Higgs at the ~O(few10%) level for measured couplings
- Higgs decay width small
 - in the SM Γ_H =4.1 MeV
- this enhances sensitivity to NP in decays

- exotic decays, i.e., not present in the SM
- modified *Br* for the SM channels

EXOTIC DECAYS

- the Higgs could decay to completely new sector Falkowski, Ruderman, Volansky, JZ, 1002.2952
 - many signatures, model dependent
 - *h*→*inv.*, 4*b*, 2*b* 2*τ*, …
- an example: dark photon from kinetic mixing

see also Falkowski, Vega-Morales, 1405.1095

Curtin et al, 1312.4992

+many refs.

- the final state is $h \rightarrow 4l$
- could use pseudo-observables for general searches Gonzalez-Alonso, Greljo, Isidori, Marzocca, 1412.6038

J. Zupan Rare Higgs Decays

10

- the final state is $h \rightarrow 4l$
- could use pseudo-observables for general searches Gonzalez-Alonso, Greljo, Isidori, Marzocca, 1412.6038

J. Zupan Rare Higgs Decays

- the final state is $h \rightarrow 4l$
- could use pseudo-observables for general searches Gonzalez-Alonso, Greljo, Isidori, Marzocca, 1412.6038

J. Zupan Rare Higgs Decays

FOCUS OF THIS TALK

- focus on two-body rare decays of the Higgs to SM particles
- many couplings very small or zero in the SM
 - no flavor violating couplings to quarks
 - couplings to the first two generation quarks
 - no CP violating couplings
- can be used to search for the NP

J. Zupan Rare Higgs Decays

CPV AND FV HIGGS COUPLINGS TO SM FERMIONS

• if SM an EFT, the Yukawas get corrected by higher dim. ops

$$\mathcal{L}_{SM} = -\left[\lambda_{ij}(\bar{f}_L^i f_R^j)H + h.c.\right]$$

$$\Delta \mathcal{L}_Y = -\frac{\lambda'_{ij}}{\Lambda^2} (\bar{f}^i_L f^j_R) H(H^{\dagger} H) + h.c. + \cdots$$

decouples mass terms from yukawas

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots,$$

- can lead to flavor violating Higgs decays
- can lead to CPV Higgs decays
- different models lead to different patterns of flavor diagonal and flavor violating Yukawas

J. Zupan Rare Higgs Decays

SUMMARY OF MODELS

an example: higgs couplings to 2nd&3rd gen. charged leptons

adapted from Dery, Efrati, Hochberg, Nir, 1302.3229 and extended

Model	$\hat{\mu}_{ au au}$	$(\hat{\mu}_{\mu\mu}/\hat{\mu}_{ au au})/(m_{\mu}^2/m_{ au}^2)$	$\hat{\mu}_{\mu au}/\hat{\mu}_{ au au}$
SM	1	1	0
NFC	$(V_{h\ell}^* v / v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
${ m MFV}$	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
\mathbf{FN}	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$
GL	9	25/9	${\cal O}(\hat{\mu}_{\mu\mu}/\hat{\mu}_{ au au})$
RS(i)	$1 + O(\bar{Y}^2 v^2 / m_{KK}^2)$	$1 + O(\bar{Y}^2 v^2 / m_{KK}^2)$	$\mathcal{O}(\bar{Y}^2 v^2/m_{KK}^2)\sqrt{m_{ au}/m_{\mu}}$
RS(ii)	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$\mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$
PGB (1 rep.)	$1 - v^2/f^2$	1	0

FLAVOR VIOLATING HIGGS COUPLINGS

A GENERAL BENCHMARK

- what is a reasonable aim for precision on Y_{ij} ?
 - if off-diagonals are large ⇒ spectrum in general not hierarchical
 - no tuning, if

$$|Y_{\tau\mu}Y_{\mu\tau}| \lesssim \frac{m_{\mu}m_{\tau}}{v^2}$$

Cheng, Sher, 1987

 in concrete models it will be typically further suppressed parametrically

see e.g, Dery, Efrati, Nir, Soreq, Susic, 1408.1371; Dery, Efrati, Hochberg, Nir, 1302.3229; Arhrib, Cheng, Kong, 1208.4669 Jefferson Lab, Mar 2 2015

J. Zupan Rare Higgs Decays

$$h \rightarrow \tau \mu$$

Harnik, Kopp, JZ, 1209.1397

 $h \rightarrow \tau e \text{ and } h \rightarrow \mu e$

 $h \rightarrow \tau \mu$ from CMS

CMS-HIG-14-005

• hint of a signal in $h \rightarrow \tau \mu$?

J. Zupan Rare Higgs Decays

NEW PHYSICS INTERPRETATION

Dorsner et al, 1502.07784

- if real, what type of NP?
- if $h \rightarrow \tau \mu$ due to 1-loop correction
 - extra charged particles necessary
 - $\tau \rightarrow \mu \gamma$ typically too large

- 2HDM of type III
- slightly above Cheng-Sher naturalness criterion

QUARK COUPLINGS

- *D*, *B*, *B_s*, *K* oscillations
- bounds on Y_{uc} , Y_{uc} , Y_{db} , Y_{bd} , Y_{sb} , Y_{bs} , Y_{sd} , Y_{ds}
- strong constraints

 improvements on these couplings will come from exp&theory improvements in meson mixing

QUARK C

- constraints from
 - *D*, *B*, *B_s*, *K* oscillations
 - bounds on Y_{uc} , Y_{uc} , Y_{db} , Y_{bd} , Y_{sb} , Y_{bs} , Y_{sd} , Y_{ds}
 - strong constraints
 - O(0.1)-O(0.01) of Cheng

Technique	Coupling	Constraint
D0 and 11 at and [48]	$ Y_{uc} ^2, Y_{cu} ^2$	$< 5.0 \times 10^{-9}$
D° oscillations [48]	$ Y_{uc}Y_{cu} $	$<7.5\times10^{-10}$
P ⁰ and llations [49]	$ Y_{db} ^2, Y_{bd} ^2$	$<2.3\times10^{-8}$
B_d oscillations [48]	$\left Y_{db}Y_{bd} ight $	$< 3.3 \times 10^{-9}$
P ⁰ agaillations [49]	$ Y_{sb} ^2, Y_{bs} ^2$	$< 1.8 \times 10^{-6}$
B_{s} oscillations [48]	$\left Y_{sb}Y_{bs} ight $	$<2.5\times10^{-7}$
	${\rm Re}(Y^2_{ds}),{\rm Re}(Y^2_{sd})$	$[-5.9 \dots 5.6] \times 10^{-10}$
K ⁰ accillations [49]	$\mathrm{Im}(Y^2_{ds}),\mathrm{Im}(Y^2_{sd})$	$[-2.9 \dots 1.6] imes 10^{-12}$
K oscillations [46]	$\operatorname{Re}(Y_{ds}^*Y_{sd})$	$[-5.6 \dots 5.6] \times 10^{-11}$
	$\operatorname{Im}(Y_{ds}^*Y_{sd})$	$[-1.4 \dots 2.8] \times 10^{-13}$
single top production [40]	$\sqrt{ Y_{tc}^2 + Y_{ct} ^2}$	< 3.7
single-top production [49]	$\sqrt{ Y_{tu}^2 + Y_{ut} ^2}$	< 1.6
$t \rightarrow bi [50]$	$\sqrt{ Y_{tc}^2 + Y_{ct} ^2}$	<0.10
$\iota \rightarrow h j [50]$	$\sqrt{ Y_{tu}^2 + Y_{ut} ^2}$	<0.10
	$ Y_{ut}Y_{ct} , Y_{tu}Y_{tc} $	$<7.6\times10^{-3}$
D^0 oscillations [48]	$ Y_{tu}Y_{ct} , Y_{ut}Y_{tc} $	$<2.2\times10^{-3}$
	$ Y_{ut}Y_{tu}Y_{ct}Y_{tc} ^{1/2}$	$< 0.9 \times 10^{-3}$
neutron EDM [37]	$\operatorname{Im}(Y_{ut}Y_{tu})$	$<4.4\times10^{-8}$

 improvements on these couplings will come from exp&theory improvements in meson mixing

CPV IN HIGGS COUPLINGS

CPV HIGGS COUPLINGS

- couplings of Higgs to other SM fields can be CPV
- CPV for Higgs couplings to gauge bosons from on shell production
 F. Bishara, Y. Grossman, R. Harnik, D. Robinson, J. Shu, JZ, 1312.2955
 - e.g., $h \rightarrow \gamma \gamma$ potentially from Bethe-Heitler photon conversion, or from $h \rightarrow \gamma \gamma \rightarrow 4l$ (this also CPV in $h \rightarrow ZZ$) Chen, Roni Harnik, Roberto Vega-Morales, 1404.1336
 - CPV in $h \rightarrow gg$ from h+2j production Delaunay, Perez, de Sandes, Skiba, 1308.4930
 - CPV in $h \rightarrow WW$ from hW associated production
- focus on CP violating Higgs couplings to fermions Brod, Haisch, JZ, 1310.1385

the notation
$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f}f + i\tilde{\kappa}_f \bar{f}\gamma_5 f\right) h$$

• can probe CPV couplings to 3^{rd} generation, so $f=t,b,\tau$

J. Zupan Rare Higgs Decays

HIGGS-TOP CPV COUPLING

- if it only couples to the 3rd gen. still a constraint from neutron EDM
 - relevant in the future (at a permit level), now ~O(1) allowed

NEUTRON AND MERCURY EDM Brod, Haisch, JZ, 1310.1385

 neutron and Hg EDM also dominated by
 Barr-Zee type diagrams (SM-like couplngs. of the Higgs to light quarks)

$$\mathcal{L}_{\text{eff}} = -d_q \, \frac{i}{2} \, \bar{q} \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu} - \tilde{d}_q \, \frac{ig_s}{2} \, \bar{q} \sigma^{\mu\nu} T^a \gamma_5 q \, G^a_{\mu\nu} - w \, \frac{1}{3} f^{abc} \, G^a_{\mu\sigma} G^{b,\sigma}_{\nu} \widetilde{G}^{c,\mu\nu}$$

- an important difference: at 2-loop also Weinberg operator is generated
 - is nonzero even, if CPV <u>is only</u> in the Higgs couplings to the 3rd gen. quarks!

CPV COUPLING TO TOP

Brod, Haisch, JZ, 1310.1385

- comparing with the LHC reach
 - assuming that no CPV measurements at the LHC
- for 1st gen. Yukawas equal to the SM

CPV COUPLING TO TOP

Brod, Haisch, JZ, 1310.1385

- comparing with the LHC reach
 - assuming that no CPV measurements at the LHC
- 1st gen. Yukawas set to zero

ON SHELL SEARCHES

Ellis, Hwang, Sakurai, Takeuchi, 1312.5736 Harnik, Martin, Okui, Primulando, 1308.1094

CPV couplings *h̄t* and *h̄τ* can be searched for on-shell

Galanti, Giammanco, Grossman, Kats, Stamou, JZ, to appear

- CPV *hbb* very hard to probe on shell
 - in principles possible through Λ_b polarization in the jet
 - however requires large statistics
 - off-shell thus probably the only probe

CPV COUPLING TO b QUARK

Brod, Haisch, JZ, 1310.1385

- now have an extra scale $m_b \ll m_h$
 - need to re-sum $\alpha_s log(x_{b/h})$ (here $x_{b/h} = m_b^2/m_h^2$)

RESUMMATION

Brod, Haisch, JZ, 1310.1385

CPV COUPLING TO b QUARK

- the EDM constraints on CPV Higgs coupling to *b* quark are weaker than the LHC data Brod, Haisch, JZ, 1310.1385
 - this can change in the future
 - EDMs scale linearly with $\tilde{\kappa}_b$

CPV COUPLING TO b QUARK

- the EDM constraints on CPV Higgs coupling to *b* quark are weaker than the LHC data
 Brod, Haisch, JZ, 1310.1385
 - this can change in the future
 - EDMs scale linearly with $\tilde{\kappa}_b$

HIGGS COUPLINGS TO LIGHT FERMIONS

BOUNDS ON LIGHT QUARK YUKAWAS

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

- the higgs couplings to light quarks assumed to be negligible in the global fits (as in the SM)
- varying $\kappa_{u_i} \kappa_{d_i} \kappa_s$
 - total width modified
 - sublead.: $gg \rightarrow h$, $h \rightarrow \gamma \gamma$ modified, $u\bar{u} \rightarrow h$, $d\bar{d} \rightarrow h$, $s\bar{s} \rightarrow h$ prod.
- varying only one at the time (95%CL, and normalized to $y_{b,SM}$)

 $|\bar{\kappa}_u| < 0.98, \quad |\bar{\kappa}_d| < 0.93, \quad |\bar{\kappa}_s| < 0.70$

• varying all of the higgs couplings

$$|\bar{\kappa}_u| < 1.3, \quad |\bar{\kappa}_d| < 1.4, \quad |\bar{\kappa}_s| < 1.4|$$

• for FV Yukawas (varying only one at the time)

 $|\bar{\kappa}_{qq'}| < 0.6(1)$ for $q, q' \in u, d, s, c, b$ and $q \neq q'$

• from FCNCs stronger (model dep.) constr, e.g., $|\bar{\kappa}_{bs}| < 8 \cdot 10^{-2}$

Harnik, Kopp, JZ, 1209.1397; see also Blankenburg, Ellis, Isidori, 1202.5704; Goertz, 1406.0102

J. Zupan Rare Higgs Decays

PROBING LIGHT YUKAWAS?

- the problem with light quark Yukawas is that they are very small
- in low energy processes this means that the Higgs exchange is a subdominant contribution
- if no FV then Higgs decays are the only way
 - statistics will always be a problem to reach the SM
 - a nontrivial challenge is even to find a channel where measurement at least in principle is possible

HIGGS COUPLINGS TO LIGHT QUARKS

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

- can one directly measure (bound) *h*-*dd*, *h*-*uu*, *h*-*ss* couplings?
- the topic of this talk:
 - potentially possible through exclusive higgs decays $h \rightarrow MV (V=\gamma, Z, W)$
 - direct and indirect amplitude

Bodwin, Petriello, Stoynev, Velasco, 1306.5770

MODIFIED EFFECTIVE LAGRANGIAN

- in principle sensitive to diagonal and off-diagonal couplings
- a (slight) change of notation: Yukawa coupl. normalized to y_b

$$\mathcal{L}_{\text{eff}} = -\sum_{q=u,d,s} \bar{\kappa}_q \frac{m_b}{v} h \bar{q}_L q_R - \sum_{q \neq q'} \bar{\kappa}_{qq'} \frac{m_b}{v} h \bar{q}_L q'_R + h.c.$$

$$+ \kappa_Z m_Z^2 \frac{h}{v} Z_\mu Z^\mu + 2\kappa_W m_W^2 \frac{h}{v} W_\mu W^\mu$$

$$+ \kappa_\gamma A_\gamma \frac{\alpha}{\pi} \frac{h}{v} F^{\mu\nu} F_{\mu\nu} , \qquad (1)$$

• assume CP conserv.
$$\bar{\kappa}_{qq'} = \bar{\kappa}_{q'q}^*$$

• SM limit: $\kappa_{\gamma} = \kappa_V = 1$ $\bar{\kappa}_s = m_s/m_b \simeq 0.020$
 $\bar{\kappa}_d = m_d/m_b \simeq 1.0 \cdot 10^{-3}$
 $\bar{\kappa}_u = m_u/m_b \simeq 4.7 \cdot 10^{-4}$
Jefferson Lab, Mar 2 2015

THE MODES

- many exclusive modes
- for diagonal couplings
 - $h \rightarrow \phi \gamma, h \rightarrow \rho \gamma, h \rightarrow \omega \gamma, h \rightarrow \phi Z, h \rightarrow \rho^0 Z, h \rightarrow \omega Z, h \rightarrow \pi^0 Z, h \rightarrow \eta Z, h \rightarrow \eta' Z$
- for FV couplings
 - $h \rightarrow \overline{B}^{0*}\gamma, h \rightarrow \overline{B}^{0*}\gamma, h \rightarrow K^{0*}\gamma, h \rightarrow D^{0*}\gamma, h \rightarrow K^{*-}W^{+},$ $h \rightarrow \rho^{-}W^{+}, h \rightarrow K^{-}W^{+}, h \rightarrow \pi^{-}W^{+}, h \rightarrow B^{*-}W^{+}, h \rightarrow B_{c}^{*-}W^{+},$ $h \rightarrow D^{*+}W^{-}, h \rightarrow D_{s}^{*+}W^{-}, h \rightarrow \overline{B}^{-}W^{+}, h \rightarrow B_{c}^{-}W^{+},$ $h \rightarrow D^{+}W^{-}, h \rightarrow D_{s}^{+}W^{-}, h \rightarrow \overline{B}^{*0}Z, h \rightarrow \overline{B}_{s}^{*0}Z, h \rightarrow D^{*0}Z,$ $h \rightarrow \overline{B}^{0}Z, h \rightarrow \overline{B}_{s}^{0}Z, h \rightarrow D^{*0}Z, h \rightarrow \overline{K}^{0}Z$

THE MODES

- many exclusive modes
- for diagonal couplings

$$(h \to \phi \gamma, h \to \rho \gamma, h \to \omega \gamma, h \to \phi Z, h \to \rho^0 Z, h \to \omega Z, h \to \pi^0 Z, h \to \eta Z, h \to \eta Z$$

• for FV couplings

•
$$h \rightarrow \overline{B}^{0*}\gamma, h \rightarrow \overline{B}^{0*}\gamma, h \rightarrow K^{0*}\gamma, h \rightarrow D^{0*}\gamma, h \rightarrow K^{*-}W^{+},$$

 $h \rightarrow \rho^{-}W^{+}, h \rightarrow K^{-}W^{+}, h \rightarrow \pi^{-}W^{+}, h \rightarrow B^{*-}W^{+}, h \rightarrow B_{c}^{*-}W^{+},$
 $h \rightarrow D^{*+}W^{-}, h \rightarrow D_{s}^{*+}W^{-}, h \rightarrow \overline{B}^{-}W^{+}, h \rightarrow B_{c}^{-}W^{+},$
 $h \rightarrow D^{+}W^{-}, h \rightarrow D_{s}^{+}W^{-}, h \rightarrow \overline{B}^{*0}Z, h \rightarrow \overline{B}_{s}^{*0}Z, h \rightarrow D^{*0}Z,$
 $h \rightarrow \overline{B}^{0}Z, h \rightarrow \overline{B}_{s}^{0}Z, h \rightarrow D^{*0}Z, h \rightarrow \overline{K}^{0}Z$

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

$$h \rightarrow \phi \gamma$$
• for s Yukawa $h \rightarrow \phi \gamma$ (where $\phi \sim \bar{s}s; \int^{PC} = 1^{-r}; m_{\phi} = 1.02 \text{GeV}$)
$$M_{ss}^{\phi} = \frac{Q_s e_0}{2} \epsilon^{\phi} \cdot \epsilon^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} \cdot e^{\gamma} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + \frac{4\alpha}{\pi v} \kappa_{\gamma} A_{\gamma} \frac{f_{\phi} m_h^2}{m_{\phi}} \right) \qquad Y_{ss} = \bar{\kappa}_s m_b / v$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} - e^{\phi} \cdot e^{\phi} \cdot e^{\phi} \left(Y_{ss} f_{\perp}^{\phi} (1/u\bar{u})_{\phi,\perp} + e^{\phi} \cdot e^{\phi} \right)$$

$$(1/u\bar{u})_{\mu}^{\phi} + e^{\phi} - e^{\phi} \cdot e^{\phi} \cdot e^{\phi} + e^{\phi} \cdot e^{\phi} \cdot e^{\phi} + e^{\phi} \cdot e^{\phi} \cdot e^{\phi} + e^{\phi} \cdot e^{\phi} + e^{\phi} \cdot e^{\phi} \cdot e^{\phi} \cdot e^{\phi} + e^{\phi} \cdot e^{\phi} \cdot e^{\phi} + e^{\phi} + e^{\phi}$$

from

NONPERTURBATIVE PARAMETERS

• in numerical predictions

Dimou, Lyon, Zwicky, 1212.2242

LCDA Gegenbauer polynomial expansion truncated at second order

$$\phi_{\perp}(u) = 6u(1-u)\sum_{n=0}^{\infty} a_n^{\perp} C_n^{3/2}(2u-1)$$
$$a_0^{\perp,\phi} = 1 \quad a_1^{\perp,\phi} = 0 \quad a_2^{\perp,\phi} = 0.14(7)$$

RBC-UKQCD LC sum rules

decay constants

$$f_{\phi} = 0.235(5) \,\text{GeV}$$

from experiment, $\phi \rightarrow e^+e^-$ RBC-UKQC

$$F_{\perp}^{\phi} = 0.191(28) \text{ GeV}$$

$$RBC-UKQCD \qquad \text{varying } \mu \in [0.5, 10] \text{ GeV}$$

- improvable precision: lattice QCD, measurements
- higher Fock states negligible

J. Zupan Rare Higgs Decays

COUPLINGS TO LIGHT QUARKS

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

• similar analysis for $h \rightarrow \rho \gamma$, $h \rightarrow \omega \gamma$

$$\begin{split} &\frac{Br_{h\to\phi\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[\left(3.0 \pm 0.13 \right) \kappa_{\gamma} - 0.78 \bar{\kappa}_{s} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}}, \\ &\frac{Br_{h\to\rho\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right] \cdot 10^{-5}}{0.57 \bar{\kappa}_{b}^{2}}, \\ &\frac{Br_{h\to\omega\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.6 \pm 0.17) \kappa_{\gamma} - 0.59 \bar{\kappa}_{u} - 0.29 \bar{\kappa}_{d} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}}, \end{split}$$

- interference with the indirect term essential
- direct (SM) amplitude only $\Rightarrow Br \sim O(10^{-11})$
- indirect bound (varying all $\bar{\kappa}_{i'}\kappa_{i}$)

 $|\bar{\kappa}_u| < 1.29$, $|\bar{\kappa}_d| < 1.42$, $|\bar{\kappa}_s| < 1.39$

• similar idea also for $h-c\bar{c}$ from $h\rightarrow J/\Psi\gamma$ J. Zupan Rare Higgs Decays 39 Bodwin, Petriello, Stoynev, Velasco, 1306.5770

COUPLINGS TO LIGHT QUARKS

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

• similar analysis for $h \rightarrow \rho \gamma$

$$\frac{Br_{h\to\phi\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(3.0 \pm 0.13) \kappa_{\gamma} - 0.57 \bar{\kappa}_{b}^{2} \right]}{0.57 \bar{\kappa}_{b}^{2}}$$
$$\frac{Br_{h\to\rho\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.57 \bar{\kappa}_{b}^{2} - 0.57 \bar{\kappa}_{b}^{2} \right]}{0.57 \bar{\kappa}_{b}^{2}}$$

- interference with the ind
- direct (SM) amplitude c
- indirect bound (varying all

 $|\bar{\kappa}_u| < 1.29$, $|\bar{\kappa}_d| < 1.42$, $|\bar{\kappa}_s| < 1.39$

• similar idea also for $h-c\bar{c}$ from $h\rightarrow J/\Psi\gamma$ J. Zupan Rare Higgs Decays 39 Bodwin, Petriello, Stoynev, Velasco, 1306.5770

FUTURE EXPERIMENTAL PROSPECTS

- focus on $h \rightarrow \phi \gamma$, use **Pythia 8.1** Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722
 - main decay modes: $\phi \to K^+ K^- (49\%), K_L K_S (34\%), \pi^+ \pi^- \pi^{\circ} (15\%)$
 - for $pp \rightarrow h \rightarrow \phi \gamma$ at 14TeV LHC in 70 to 75% cases the kaons/pions and the prompt photon have $|\eta| < 2.4$
 - within the minimal fiducial volume of the ATLAS and CMS experiments
 - adopt the geometrical acceptance factor Ag = 0.75
 - do not include other efficiency or trigger factors
- no theory error assume $\kappa_{\gamma} = 1$, negligible background, 3σ reach $\bar{\kappa}_s^{\text{stat.}} > (<)$ $\mathcal{L} dt \, [\mathrm{fb}^{-1}]$ $\sqrt{s} \, [\text{TeV}]$ # of events (SM) $\bar{\kappa}_s > (<)$ 14 0.39(-0.97)0.27(-0.81)3000 7700.36(-0.94)0.22(-0.75)333000 13800.34(-0.90)0.13(-0.63)1003000 59206x SM strange Yukawa J. Zupan Rare Higgs Decays 40

detector

one

 $\tau \rightarrow \mu \pi \pi$

- hadronic tau decays $\tau \rightarrow \mu \pi + \pi , \tau \rightarrow \mu \pi 0 \pi 0$
 - sensitive to both $Y_{\tau\mu'\mu\tau}$ and light quark yukawas $Y_{u,d,s}$
 - $Y_{u,d,s}$ poorly bounded ~ $O(Y_b)$
- for $Y_{u,d,s}$ at their SM values then

 $Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12}$ $Br(\tau \to e\pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e\pi^0 \pi^0) < 6.9 \times 10^{-11}$

• for $Y_{u.d.s}$ at their present upper bounds

 $\begin{aligned} Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8} \\ Br(\tau \to e \pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e \pi^0 \pi^0) < 2.1 \times 10^{-7} \end{aligned}$

- $Br(\tau \rightarrow \mu \pi + \pi -)$ below present exp. limit, if discovered would (among other things) imply upper limit on $Y_{u,d}$
- similarly pseudoscalar Higgses can be bounded from $\tau \rightarrow \mu \pi(\eta, \eta'), \tau \rightarrow e \pi(\eta, \eta')$

41

• can saturate present experimental limits

J. Zupan Rare Higgs Decays

reinterpreting Celis, Cirigliano, Passemar, 1309.3564; see also Petrov, Zhuridov, 1308.6561

CONCLUSIONS

- Higgs is a unique probe of new physics
- have discussed modified Higgs couplings
 - $h \rightarrow \tau \mu$, $h \rightarrow \tau e$ being probed at the LHC
 - strong constraints on CPV couplings from EDMs
 - some potential to probe light quark Yukawas

BACKUP SLIDES