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Introduction Meson spectroscopy

QCD and QED

color-binding,

q q

s L s12

Radial excitation (n),
Orbital excitation (L),

γ-emission tell us about energy
levels,
many strong transitions are
possible, i.g. → 3π

[Amsler et al., Phys. Rept. 389, 61 (2004)]
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Introduction Meson spectroscopy

Meson spectrum
All mesons

Radial, orbital excitations + non-qq̄-states ..
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Meson spectrum
All light mesons accessible by 3π system
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Introduction Meson spectroscopy

Motivation

Scattering phases 3π → 3π, resonant poles positions,

Extensive analysis of exotic states (1−+, a′1, XYZ, Pc)

Long road, complifying three-body analysis:
1 Isobar analysis of Dalitz plot

decay physics BES, LHCb, . . .

2 Breit-Wigner resonances in Isobar model
peripheral production VES, COMPASS, ...

3 Quasi-two-body unitarity and pole extraction
JPAC analysis on COMPASS data

4 Rescattering effects, KT-approach
B. Kubis group, JPAC group

5 Elastic three-body unitarity
6 Unitarity constraints for coupled-channels three-hadron system
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Introduction Peripheral reaction

Data from scattering experiments

Study meson spectrum through peripheral
resonance production

High-energy beam,
Pomeron/Reggeon t-channel exchange
dominates,
Recoil particle is kinematically decoupled

Analysis at COMPASS
Large data sample with high purity
JPAC&COMPASS collaboration to perform
theoretically advanced analysis on the
complete data set

Opportunities at GlueX

ptarget precoil

π/γ

P/R

π−

π−

π−

π+

P

ρ/f2
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Introduction Data distributions

3π at COMPASS
Kinematical distributions

The largest data set (50 × 106 events) on diffractively produced 3π systems.

High-energy beam guaranties peripheral reaction
√

s ≈ 19GeV.

Many resonances are seen in the raw spectrum.

[Animation credit Boris Grube]
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Isobar model Partial-wave decomposition

Isobar model
Isobar is just intermediate resonance

Sequential decay R3π → ξ π → 3π, e.g.
a−2 → ρπ → 3π.
“Shape of isobar” does not depend on invariant mass
of the system

π

π

πR3π

ξ

Partial-wave decomposition
JPCMε quantum numbers of system
in case of three-body final state ξ is isobar
state with spin S

A = 〈final | T̂ |initial〉 =
∑

JMLSε
FJMε

LS PWJMε
LS (τ)
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Isobar model
Isobar is just intermediate resonance

Sequential decay R3π → ξ π → 3π, e.g.
a−2 → ρπ → 3π.
“Shape of isobar” does not depend on invariant mass
of the system

π

π

πR3π

ξ

S

L

JPCξ

Partial-wave decomposition
JPCMε quantum numbers of system
in case of three-body final state ξ is isobar
state with spin S

A = 〈final | T̂ |initial〉 =
∑

JMLSε
FJMε

LS PWJMε
LS (τ)

PW JMε
LS (Ω, Ω′) =

( 2L + 1
2J + 1

)1/2 ∑
λ

〈L0Sλ |Jλ〉
( 2J + 1

4π

)1/2
DJ∗

Mλ (Ω)
( 2J + 1

4π

)1/2
DS∗
λ0 (Ω′)
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Isobar model Quasi-two-body unitarity

Unitarity condition

Ŝ = Î + iT̂, ŜŜ† = Î ⇒ T̂ − T̂† = iT̂ T̂†,

Constraints on the full amplitude: ∆A = i
∫

T† dΦA

A = 〈3π | T̂ |πP〉 =
∑

JMLSε

FJMε
LS PWJMε

LS (τ)

= 2i∆s3π

Elastic 3π unitarity: ∆T = i
∫

T† dΦ T

T = 〈3π | T̂ |3π〉 =
∑

JMLSL′S′
TJε

LSL′S′ PW
JMε
LS (τ) PWJMε

L′S′ (τ
′)

∆s3π = 2i
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Ŝ = Î + iT̂, ŜŜ† = Î ⇒ T̂ − T̂† = iT̂ T̂†,

Constraints on the full amplitude: ∆A = i
∫

T† dΦA

A = 〈3π | T̂ |πP〉 =
∑

JMLSε

FJMε
LS PWJMε

LS (τ)

= 2i∆s3π

Elastic 3π unitarity: ∆T = i
∫

T† dΦ T

T = 〈3π | T̂ |3π〉 =
∑

JMLSL′S′
TJε

LSL′S′ PW
JMε
LS (τ) PWJMε

L′S′ (τ
′)

∆s3π = 2i

M.Mikhasenko (HISKP, Bonn) three-pion system October 24, 2016 9 / 32



Isobar model Parametrization

Parametrization of the scattering matrix

Find parametrization of T which satisfies unitarity by construction.

T =
K

1 − i ρ̃K
= K + K [i ρ̃] K + K [i ρ̃] K [i ρ̃] K [i ρ̃] K + . . .

T = + + + · · ·
?
=

Fit T -parameters to data and extract resonance information

K-matrix approach

Kij (s) =
∑

r

gr
i g

r
j

m2
r − s

+
∑

n
γn

ij s
n

CDD-poles approach

K−1
ij (s) = Mij (s) = c0 + c1s +

∑
r

gr
i g

r
j

cr − s
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Isobar model Full amplitude

Production process

π− π−
π+

π−

P

(ππ)

→ π− π−
π+

π−P

(ππ)

Long-range(only LHC) and Short-range production amplitudes.

Consider π + P→ (ππ) π scattering via t-exchanges.
Interaction range is determined by the mass of the exchange particle
Pion is lightest exchange particle with range ∼ 1 fm.
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Isobar model Full amplitude

Unitarized model [Basdevant, Berger, 1967]
Everything which is produced is supposed to scatter

= + +

Production process via an exchange alone does not satisfy probability
conservation.
Rescattering (unitarisation) term has to be added.
In the limit of short range the production amplitude is approximated by a
constant cLS.
Amplitude has correct threshold behavior

FLS (s) = bLS (s) + TLSL′S′ (s)cL′S′ +
TLSL′S′ (s)

π

∫
ρQ (s′)bL′S′ (s′)

s′ − s
ds′
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Isobar model Second sheet

Analytic structure
General note

We consider the amplitude as complex
function of invariant mass squared w2 and
explore the structure.
The physical region is A(s + iε )

Imaginary part of Breit-Wigner amplitude on the complex plane

Sheet I Sheet II
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COMPASS PWA Mass-independent analysis

3π at COMPASS
Step 1: mass-independent analysis

A(m3π,m2π,Ω,Ω
′) =

88∑
JPCMε ξ L−wave

cJM
LS (m3π )


L-wave π

π

πJPCMε

ξ


[ C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]

COMPASS 3π PWA:

π−π+π− final state,
m3π < 2.5GeV, 0.1 < t ′ < 1GeV2,

Independent PWA in m3π × t ′ bins
(100 × 11 bins),

π+π−-resonances:
f0(500), ρ, f0(980), f2, ρ3(1670).

PWA model consists of 88 waves
JPC = 0−+, 1++, 1−+, 2++, 2−+, . . .
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COMPASS PWA Mass-independent analysis

Partial waves in the 2−+ sector

Partial wave
2−+0+
f2π S
f2π D
ρπ P
ρπ F

(ππ)S D
f0π D
ρ3π P
f2π G
2−+1+
ρπ P
f2π S
ρπ F

(ππ)S D
ρ3π P
f2π D
2−+2+
ρπ P
f2π S
f2π D

intensity peak for f2π S-
and f2π D-waves appear
at different places

ρπ F-wave shows two
separated peaks

[ C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]
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Fit with the unitarized model Fit results

Fit of all t′ slices

Simultaneous fit of

- 5 intensities & 4 phases in 11 t ′-bins
ptarget precoil

t ′ = |t − tmin |

Model
1 Scattering matrix has 5 channels. It does not depend on t ′.
2 K-matrix with 4 poles is used for the parametrization.
3 Production includes short- and long-range processes.

A new set of the coupling parameters is used for every t ′-bin.

Fit
1 145 independent parameters.
2 12 steps fit. MC sampling of starting

values.
Res

60000 65000 70000 75000 80000 85000

#f
its

0

2

4

6

8

10

12

14

16

18

Residual for convergent fits
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Fit with the unitarized model Fit results

Fit over all t′ slices
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Fit with the unitarized model Resonant poles

2−+ resonances
poles on the second sheet

Mon Aug 22 06:40:49 2016

2Re@w
1.5 2 2.5 3 3.5 4 4.5

2
Im

@
w

1.5−

1−

0.5−

0

0.5

1

1.5
 K] )) is plotted

I,II

-1search for zeros, log(abs( det[T

Sheet I
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2Re@w
1.5 2 2.5 3 3.5 4 4.5

2
Im

@
w

1.5−

1−

0.5−

0

0.5

1

1.5
 K] )) is plotted

I,II

-1search for zeros, log(abs( det[T

Sheet I

Sheet II

f2-cut(
mπ +mf2 − i

Γf2
2

)2

second σ-cut(
mπ +

√
sσpole

)2
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Fit with the unitarized model Resonant poles

2−+ resonances
poles on the second sheet

Mon Aug 22 06:40:49 2016

2Re@w
1.5 2 2.5 3 3.5 4 4.5

2
Im

@
w

1.5−

1−

0.5−

0

0.5

1

1.5
 K] )) is plotted

I,II

-1search for zeros, log(abs( det[T

Sheet I

Sheet II

2−+ Poles
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Fit with the unitarized model Resonant poles

2−+ resonances
poles on the second sheet

Mon Aug 22 06:40:49 2016

2Re@w
1.5 2 2.5 3 3.5 4 4.5

2
Im

@
w

1.5−

1−

0.5−

0

0.5

1

1.5
 K] )) is plotted

I,II

-1search for zeros, log(abs( det[T

Second sheet is under investigation
How the picture depends on parametrization?
How many poles are there?
What are the poles positions (m − iΓ/2)2?
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Fit with the unitarized model Resonant poles

Future developments for COMPASS Analysis

Many ideas to continue:
Extend 5-waves-fit to available data for 2−+
sector, extract pole positions
Apply the formalism to other JPCMε sectors
of 3π data. Several interesting cases along the
way:

2++ sector: a2 resonances
0−+ sector: π resonances
1−+ sector: exotics.

make 3π scattering amplitudes available for
use in other experiments, MC generators
3π scattering matrices to be compared to
lattice calculation

[COMPASS Collaboration],
Phys. Rev. Lett. 115, 082001 (2015)

[COMPASS Collaboration],
AIP Conf. Proc. 1735, 020007 (2016)
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Beyond the isobar model Importance of rescattering

Beyond the isobar model
Cross-channel rescattering effects
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Beyond the isobar model Importance of rescattering

Complex structure

Amplitude t(s)
of scattering
procces is
complex function
of s.

Every resonance
is a pole in the
amplitude

Every one
channel for decay
produces cut
along the real
axis

t−1 (s) is shown in s-plane,

color code is Im[t−1 (s)],
equipotential lines are
Abs[t−1 (s)].

Two-body resonance
ρ

π

ρ

π

a1

0.0 0.5 1.0 1.5 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Re(z)

Im
(z
)

sheet Is

Unitarity cut

0.0 0.5 1.0 1.5 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Re(z)

Im
(z
)

sheet IIs

Unitarity cut

Quasi-two-body
resonance

ππ

π

π

π

π

a1

0.5 1.0 1.5 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Re(z)

Im
(z
)

sheet Is

Unitarity cut

0.5 1.0 1.5 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Re(z)

Im
(z
)

sheet IIs

Unitarity cut

Cross-channel exchange
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Beyond the isobar model Importance of rescattering

Triangle diagram

→ →

p0, s0

k1, m2
1

k2,m2
2

k3,m2
3

p1, s1

p2, s2

= g3
∫

d4k1

(2π)4 i
1

∆1∆2∆3
=

g3

16π2

∫ 1

0

dx dy dz
D

δ(1 − x − y − z),

D = x m2
1 + y m2

2 + z m2
3 − x y s0 − z x s1 − y z s2.

∆i = m2
i − k2

i is propagators of the particles in the
loop,

Positions of singularities are given by Landau
equations. [Landau, Nucl. Phys. 13, 181 (1959)]

Landau surface is represented in normalized
invariants (y0, y1, y2), yi =

si−m2
i1−m2

i2
2mi1mi2

Anomalous threshold:
formfactors

Decay kinematics:
tetroquarks,pentaquarks
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Beyond the isobar model Importance of rescattering

Examples
hypotheses for an explanation of exotics

LHCb: pentaquark Pc (4450)

p
K−

J/Ψ

Λb

DsJΣcD

DsJΛcD

Λχc1p

Pc(4450)

4.2 4.4 4.6 4.8 5.0
s23 (GeV)

0.2

0.4

0.6

0.8

1.0

1.2

dΓ/ds23(a.u.)

?

K−

p
J/Ψ

Λ0
b

Λ, D̄?sJ

D̄

[MM, arXiv: 1507.06552]

COMPASS: exotic a1(1420)

π+

π−

π−

a1 (1420)

f0

π−

π+

π−
a1 (1260)

K?

KMass-dependent fit
Triangle-diagram
Non-resonance term

[MM et al., Phys. Rev. D91, 094015 (2015)]
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Beyond the isobar model Importance of rescattering

Calculation of the rescattering: a1(1260) → K?K̄ → f0π

For the realistic decay, the amplitude is similar to the scalar case.

M
(vpp)
a1→π f0

=



p0

p1

p2
a1 (1260)

K? (892)

K̄

K

π

f0 (980)



Spin-Parity of particles.
Width of K?

If one fixes mass of f0, i.e. p2
f0 = m2

f0 ,
then only p2

0 = s is variable.

+ finite width of K?
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Beyond the isobar model Importance of rescattering

Calculation of the rescattering: a1(1260) → K?K̄ → f0π

For the realistic decay, the amplitude is similar to the scalar case.

M
(vpp)
a1→π f0

=


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p1

p2
a1 (1260)
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K

π
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Beyond the isobar model Final state interaction

Rescattering series
How a further rescattering changes an amplitude?

Isobar model is common tool of the data analysis
(PWA at VES,COMPASS,BES,CLEO,LHCb,. . . ).
1th order rescattering is triangle diagram. One loop, four integrals can be
reduced to one.
2th is two-loop diagram. Very complecated to evaluate!

Isobar model︷        ︸︸        ︷
+

1th-rescattering︷              ︸︸              ︷
+

2th-rescattering︷                   ︸︸                   ︷
+ etc . . .

There is alternative method.
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Rescattering equations Unitarity

Two body unitarity

Unitarity = propability conservation. Ŝ · Ŝ† = I.

Ŝ = Î + iT̂ ⇒ T̂ − T̂† = iT̂ T̂†, ⇒ ∆t = it ρ t?.

Two-body unitarity and resonance

= + + + . . .

t =
g2

m2 − s − imΓ
=

1
K−1 − iρ

= K + K iρ K + K iρ K iρ K + . . . , K =
g2

m2 − s
.

s

t

Subchannel resonances

= + + . . .

Complete only if interaction with particle 3 is negligible
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Rescattering equations Khuri-Threiman formalism

Formalism
Khuri-Treiman equation

s

t
= A(s) + A(t) + A(u), A(j) =

∑
l

(2l + 1)al
(j) (sj )Pl (cos θ (j))

Due to unitarity: al
(s) = tl (s)c(s)

l︸  ︷︷  ︸
Isobar model

+
tl (s)

2π

∫ b(s)
l ρ

s′ − s
ds′︸                ︷︷                ︸

rescattering corrections

.

a(s)
l is a corrected two-body amplitude,

b(s)
l is a projetion of cross channel waves.

We get a system of integral equations.

= +
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Rescattering equations Khuri-Threiman formalism

Model ingredients and result

Model is given by
Set of waves up to Lj for every channel s, t, u.
Example π−π+π−: s,t-channel isobars are σ, f0 (l = 0), ρ(l = 1)

Parameterizations of elastic amplitudes t (j)
l

Example π−π+π−: (ππ)S-wave, (ππ)P-wave from K-function/phase shift

Result of calculation:
Every isobar rescatters to all others. A solution of the equations tells a
shape and a strength of the “induced” waves.
Example π−π+π−: Even if f0 is not coupled to R3π , it appears due to rescattering

The solution is linear on production constants, thus we can rescatter
every wave independently [F. Niecknig, B. Kubis, JHEP 1510, 142 (2015)].
Example π−π+π−: final shape and strength of ρ-siobar is

A(s)
ρ = (cρadirectρ + cσainducesρ )Pl (cos θs)
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Rescattering equations Khuri-Threiman formalism

Numerical example
Rescattered and induced “isobar shape“

anzatz is measurements of ππ phase shift from other experiments
rescattered and induced shapes are solutions of KT-equation.

[PoS BORMIO2016, MM et al.]
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Chance of narrow resonances is small
Wide resonances induces high sigmal in cross channels
Modification depends on the invariant mass of the system (here √s = 1.3GeV)
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Summary and Outlook

Summary

Three-body unitarity is a challenging problem

We have develop an approach which satisfies quasy-two-body unitarity to
study peripheral production and scattering dynamics has been developed.

the model is based on theoretical achievement of last 40 years.
e.g. Ascoli et al., Basdevant-Berger and many other.

Model has been applied to JPCMε = 2−+0+ COMPASS 3π data
Main features of the data are reproduced by the fit.
Continuation to the pole region is done, studies on stability and
systematics are in progress.

There is an extension beyond the isobar approximation
Khuri-Treiman equation gives a framework to satisfy all subchannels
unitarity

Three-body unitarity approach is in progress.
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Summary and Outlook

Thank you for the attention
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