Challenges of the three-pion system

Mikhail Mikhasenko JPAC&COMPASS Collaborations

Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany

JLab seminar

October 24, 2016

• Bernhard Ketzer, Adam Szczepaniak, Andrey Sarantsev;

• Andrew Jackura, JPAC Collaborators;

• Dima Riabchkov, Boris Grube, Fabian Krinner, Stefan Wallner, COMPASS Collaborators.

QCD and QED

• color-binding,

- Radial excitation (*n*),
- Orbital excitation (L),
- γ-emission tell us about energy levels,
- many strong transitions are possible, i.g. $\rightarrow 3\pi$

[Amsler et al., Phys. Rept. 389, 61 (2004)]

Meson spectrum

All mesons

{ [π0], π-), π+), K+), K+), K0, K L, K S), K0-bar, η, ρ+(770), ρ(770), ρ(770), ρ(770), (0(782), f 0(600), K 0**(800), K 0**(800), K 0**(800), K 0**(800), K*(892), K η^ν(9558), [_0(980)], [a_0⁰-(980)], [a_0⁰-(980)], [a_0⁰+(980)], [A(1020)], [X(1070)], [X(1110)], [b_1¹(1170)], [b_1¹-(1235)], [b_1¹-(1235)], [b_1¹-(1235)], [a_1¹-(1260)], [a_1 K 1^+(1270), K 1^-(1270), K 1^-(1270), K 1^-(1400), T 1^+(1400), K 1^+ h 1(1380), K 1*0(1400), K 1*-(1400), K 1*-(1400), K 1*0-bar(1400), (x(1405), K 0**-(1430), K*-(1410), K*-(1410), K 0**-(1430), K*-(1410), K*-(1410), (x(1420), (x(1420 [ω(1420)], [K_2^*+(1430)], [K_2^*+(1430)], [K_2^*+(1430)], [K_2^*+(1450)], [K_2^*+(1450)], [ρ-(1450)], [ρ-(1450)], [ρ-(1450)], [K-(1460)], [K-(1460)], [K-(1460)], [K-(1450)], [a_0^*-(1450)], [a_0^*-(1450)] a 0*+(1450), f(1475), f(0(1600), f(1(1510)), f(2''(1525)), f(2(1565)), K(2''(1580)), K(2''+(1580)), K(2''-(1580)), K(2''-(1580)), K(1(1595)), K(1(1595 K-(1630), K0-bar(1630), I 2(1640), a 1^-(1640), a 1^-(1640), a 1^-(1640), K 1^0(1650), K 1^-(1650), K 1^-(1650), K 1^-(1650), K 1^-(1600), \pi 1^-(1600), \pi 1^-(1600), \pi 1^-(1600), m 1^-(160 [ω(1650)], [π.2*-(1670)], [π.2*-(1670)], [π.2*-(1670)], [ρ.3*-(1690)], [ρ.3*-(1690)], [ρ.3*-(1690)], [κ*-(1680)], [κ*-(16 a 2*+(1700), a 2*-(1700), a 2*0(1700), K(1750), K(1750), K(1750), K 2*0(1770), K 2*+(1770), K 2*-(1770), K 2*-(1770), K 3**+(1780), K 3**+(17 π0(1800), π+(1800), [f_2(1810), K_2^*(1820), K_2^*(1820), K_2^*(1820), K_2^*(1820), K0(1830), K+(1830), K(1830), K(1830), (X(1835), η_2(1870), φ_3(1850), (X(1855)), ρ_(1900), ρ0(1900), ρ+(1900), D0, D0-bar, D-, D-, A 3(1875), K(1870), π 2(1880), f 2(1910), A 1(1930), K(1935), ρ 2(1940), f 2(1950), K 0**0(1950), K 0**+(1950), b 1(1960), b 1(1965), w(1965), Q (1965), D s. D s-bar, X(1970), I 1(1970), K 2^{**}(1980), K 2^{**}(1980), K 2^{**}(1980), K 2^{**}(1980), K 2^{**}(1980), W 2(1975), W 2(1975), Q 3^{*}(1990), Q 3^{*}(1990), Q 3^{*}(1990), W 3^{**}(1980), W 3^{***}(1980), W 3^{**}(1980), W 3^{***}(1980), W 3^{***}(198 [ρ.3*+(1990)], [t.0(2007)], [D*(bar(2010)], [a,4*-(2040)], [a,4*+(2040)], [t.2(2001)], [a,2(1990)], [π,2(2005)], [D*(bar(2007)], [D*-bar(2017)], [D*(bar(2017)], [D*(bar(2017 π 1(2015), X(2020), b 3(2025), 1 4(2050), b 3(2025), a 0(2020), b 2(2030), K 4**0(2045), K 4**+(2045), K 4**-(2045), K 4**-(2045), c 3(2020), a 2(2080), b 3(2020), a 3(2070), a 3(2070), a 3(2070), b 3(2020), b 3(2020) X(2075), X0(2080), T_2^*(2100), T_2^*(2100), T_2^*(2100), (x(2140), X(2100), (x(2100), X(2100), D_5^*, D_5^*, bar, (-2(2140), (-2(2150), (-2(2150), (-2(2140)), (-2(2150), (-2(2140)), (-2(2140)), (-2(2140)), (-2(2140), (-2(2140)), (-2(f 2(2150), a 2(2175), f 0(2200), π(2190), ω 2(2195), ω(2205), X0(2210), π(2225), h 1(2215), f J(2220), b 1(2240), π 2(2245), ρ 2(2240), β 4(2240), K 2*(2250), K K 2°0-ba(2250), ρ 2(2250), ω 3(2255), ω 4(2250), ρ 3°-(2250), ρ 3°-(2250), ρ 3°-(2250), ρ (2265), χ (2260), α 2(2270), α 1(2270), α 3(2285), ρ (2280), ρ (2280), Λ [1,2(2300)], [1,3(2300)], [1,3(2300)], [1,3(2300)], [1,1(2310)], [D_s0**(2317)], [D_s0**-bar(2317)], [K_3*0(2320)], [K_3*-(2320)], [K_3*-(232 [ρ 5*0(2350)], [ρ 5*+(2350)], [f 4(2300)], [f 4(2340)], [K (2340)], [K (2340) [D_0^*+(2400)], [D_1^*(2420)], [D_1^*(2420)], [D_1^*(2420)], [D_1^*+(2420)], [D_1^*(2420)], [D_1(2430)], [D_1+bar(2430)], [X(2440)], [a_6^*(2450)], [a_6^*(2 D 2**+(2460), D 2**-(2460), D 2**-(2460), D 2**-(0-bar(2460)), K 4*+(2500), K 4*+(2500), K 4*-(2500), K 4*-(2500), D s1(2536), D s1-bar(2536), D s2(2573), D s2-bar(2573), X (2632), D*(2640), (X(2680), (X(2710), (X(2770), (q_c(1S), (X(3770), J/\psi(1S), (G(3100), (X(3250), (X(2012), (Q_c(1P), (Q_c(1P), (Q_c(2S), (W(2S), (W(2S), (X(3770), (X(3872), (X(2612), (Y(3940), @(4040), @(4160), X(4260), @(4415), B-1, B+1, B0, B0-bar, B-1, B+1, B*0, B*0-bar, B_9, B_9-bar, B_9*-bar, B_9*-bar, B_9*-bar, B_9*-t5732), B_9*-t5732), B_9*-t5732), B_9*-t5732), [8_sJ**5680), [8_sJ**-bar(5650), [8_c, [8_c-bar], [7_b(15)], [Y(15)], [x_b0(1P)], [x_b1(1P)], [Y(25)], [Y(10)], [x_b0(2P)], [x_b1(2P)], [x_b2(2P)], [Y(35)], [Y(45)], [Y(10060)], [Y(11020)]]

Radial, orbital excitations + non- $q\bar{q}$ -states ...

M.Mikhasenko (HISKP, Bonn)

Meson spectrum

All light mesons accessible by 3π system

Radial, orbital excitations + non- $q\bar{q}$ -states ...

• Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Meson spectroscopy

Motivation

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

decay physics BES, LHCb, ...

Breit-Wigner resonances in Isobar model peripheral production VES, COMPASS, ...

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

- Breit-Wigner resonances in Isobar model peripheral production VES, COMPASS, ...
- Quasi-two-body unitarity and pole extraction JPAC analysis on COMPASS data

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

- Breit-Wigner resonances in Isobar model peripheral production VES, COMPASS, ...
- Quasi-two-body unitarity and pole extraction JPAC analysis on COMPASS data
- Rescattering effects, KT-approach
 - B. Kubis group, JPAC group

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

- Breit-Wigner resonances in Isobar model peripheral production VES, COMPASS,
- Quasi-two-body unitarity and pole extraction JPAC analysis on COMPASS data
- Rescattering effects, KT-approach
 - B. Kubis group, JPAC group
- S Elastic three-body unitarity

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

- Breit-Wigner resonances in Isobar model peripheral production VES, COMPASS, ...
- Quasi-two-body unitarity and pole extraction JPAC analysis on COMPASS data
- Rescattering effects, KT-approach
 - B. Kubis group, JPAC group
- S Elastic three-body unitarity
- Unitarity constraints for coupled-channels three-hadron system

- Scattering phases $3\pi \rightarrow 3\pi$, resonant poles positions,
- Extensive analysis of exotic states $(1^{-+}, a'_1, XYZ, P_c)$

Long road, complifying three-body analysis:

Isobar analysis of Dalitz plot

- Breit-Wigner resonances in Isobar model peripheral production VES, COMPASS, ...
- Quasi-two-body unitarity and pole extraction JPAC analysis on COMPASS data
- Rescattering effects, KT-approach
 - B. Kubis group, JPAC group
- S Elastic three-body unitarity
- Unitarity constraints for coupled-channels three-hadron system

Data from scattering experiments

Study meson spectrum through peripheral resonance production

- High-energy beam,
- Pomeron/Reggeon *t*-channel exchange dominates,
- Recoil particle is kinematically decoupled
- Analysis at COMPASS
 - Large data sample with high purity
 - JPAC&COMPASS collaboration to perform theoretically advanced analysis on the complete data set
- Opportunities at GlueX

3π at COMPASS

Kinematical distributions

- The largest data set (50 × 10⁶ events) on diffractively produced 3π systems.
- High-energy beam guaranties peripheral reaction $\sqrt{s} \approx 19$ GeV.
- Many resonances are seen in the raw spectrum.

[Animation credit Boris Grube]

Isobar model

Isobar is just intermediate resonance

- Sequential decay $R_{3\pi} \to \xi \pi \to 3\pi$, e.g. $a_2^- \to \rho \pi \to 3\pi$.
- "Shape of isobar" does not depend on invariant mass of the system

Isobar model

Isobar is just intermediate resonance

- Sequential decay $R_{3\pi} \to \xi \pi \to 3\pi$, e.g. $a_2^- \to \rho \pi \to 3\pi$.
- "Shape of isobar" does not depend on invariant mass of the system

Partial-wave decomposition

- $J^{PC}M^{\epsilon}$ quantum numbers of system
- in case of three-body final state ξ is isobar state with spin S

$$A = \langle \text{final} | \hat{T} | \text{initial} \rangle = \sum_{JMLS\epsilon} F_{LS}^{JM\epsilon} PW_{LS}^{JM\epsilon}(\tau)$$

Isobar model

Isobar is just intermediate resonance

- Sequential decay $R_{3\pi} \to \xi \pi \to 3\pi$, e.g. $a_2^- \to \rho \pi \to 3\pi$.
- "Shape of isobar" does not depend on invariant mass of the system

Partial-wave decomposition

- $J^{PC}M^{\epsilon}$ quantum numbers of system
- in case of three-body final state ξ is isobar state with spin S

$$A = \langle \text{final} | \hat{T} | \text{initial} \rangle = \sum_{JMLS\epsilon} F_{LS}^{JM\epsilon} \text{PW}_{LS}^{M\epsilon}(\tau)$$

$$PW_{LS}^{JM\epsilon}(\Omega, \Omega') = \left(\frac{2L+1}{2J+1}\right)^{1/2} \sum_{\lambda} \langle LOS\lambda | J\lambda \rangle \left(\frac{2J+1}{4\pi}\right)^{1/2} D_{M\lambda}^{J*}(\Omega) \left(\frac{2J+1}{4\pi}\right)^{1/2} D_{\lambda 0}^{S*}(\Omega')$$

M.Mikhasenko (HISKP, Bonn)

Quasi-two-body unitarity

Unitarity condition

$$\hat{S} = \hat{\mathbb{I}} + i\hat{T}, \quad \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} \quad \Rightarrow \quad \hat{T} - \hat{T}^{\dagger} = i\hat{T}\hat{T}^{\dagger},$$

Unitarity condition

$$\hat{S} = \hat{\mathbb{I}} + i\hat{T}, \quad \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} \quad \Rightarrow \quad \hat{T} - \hat{T}^{\dagger} = i\hat{T}\hat{T}^{\dagger},$$

Constraints on the full amplitude: $\Delta A = i \int T^{\dagger} d\Phi A$

$$A = \langle 3\pi | \, \hat{T} \, | \pi \mathbb{P} \rangle = \sum_{JMLS\epsilon} F_{LS}^{JM\epsilon} \, \mathrm{PW}_{LS}^{JM\epsilon}(\tau)$$

Unitarity condition

$$\hat{S} = \hat{\mathbb{I}} + i\hat{T}, \quad \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} \quad \Rightarrow \quad \hat{T} - \hat{T}^{\dagger} = i\hat{T}\hat{T}^{\dagger},$$

Constraints on the full amplitude: $\Delta A = i \int T^{\dagger} d\Phi A$

$$A = \langle 3\pi | \hat{T} | \pi \mathbb{P} \rangle = \sum_{JMLS\epsilon} F_{LS}^{JM\epsilon} \operatorname{PW}_{LS}^{JM\epsilon}(\tau)$$

Elastic 3π unitarity: $\Delta T = i \int T^{\dagger} d\Phi T$

$$T = \langle 3\pi | \hat{T} | 3\pi \rangle = \sum_{JMLSL'S'} T_{LSL'S'}^{J\epsilon} \operatorname{PW}_{LS}^{M\epsilon}(\tau) \operatorname{PW}_{L'S'}^{JM\epsilon}(\tau')$$

M.Mikhasenko (HISKP, Bonn)

Parametrization of the scattering matrix

Find parametrization of T which satisfies unitarity by construction.

Fit T-parameters to data and extract resonance information

Parametrization of the scattering matrix

Find parametrization of T which satisfies unitarity by construction.

$$T = \frac{K}{1 - i\tilde{\rho}K} = K + K[i\tilde{\rho}]K + K[i\tilde{\rho}]K[i\tilde{\rho}]K[i\tilde{\rho}]K + \dots$$

Fit *T*-parameters to data and extract resonance information K-matrix approach

$$\mathcal{K}_{ij}(s) = \sum_{r} \frac{g_i^r g_j^r}{m_r^2 - s} + \sum_{n} \gamma_{ij}^n s^n$$

CDD-poles approach

$$K_{ij}^{-1}(s) = M_{ij}(s) = c_0 + c_1 s + \sum_r \frac{g_i^r g_j^r}{c_r - s}$$

Production process

Long-range(only LHC) and Short-range production amplitudes.

- Consider $\pi + \mathbb{P} \to (\pi \pi) \pi$ scattering via *t*-exchanges.
- Interaction range is determined by the mass of the exchange particle
- Pion is lightest exchange particle with range ~ 1 fm.

Unitarized model [Basdevant, Berger, 1967]

Everything which is produced is supposed to scatter

- Production process via an exchange alone does not satisfy probability conservation.
- Rescattering (unitarisation) term has to be added.
- In the limit of short range the production amplitude is approximated by a constant c_{LS} .
- Amplitude has correct threshold behavior

$$F_{LS}(s) = b_{LS}(s) + T_{LSL'S'}(s)c_{L'S'} + \frac{T_{LSL'S'}(s)}{\pi} \int \frac{\rho_Q(s')b_{L'S'}(s')}{s'-s} ds'$$

Second sheet

Analytic structure

General note

- We consider the amplitude as complex function of invariant mass squared *w*² and explore the structure.
- The physical region is $A(s + i\epsilon)$

Mass-independent analysis

3π at COMPASS

Step 1: mass-independent analysis

three-pion system

3π at COMPASS

Step 1: mass-independent analysis

COMPASS 3π PWA:

• $\pi^- \pi^+ \pi^-$ final state, $m_{3\pi} < 2.5 \text{ GeV}, 0.1 < t' < 1 \text{ GeV}^2,$

M.Mikhasenko (HISKP, Bonn)

3π at COMPASS

Step 1: mass-independent analysis

COMPASS 3π PWA:

- $\pi^{-}\pi^{+}\pi^{-}$ final state, $m_{3\pi} < 2.5 \text{ GeV}, 0.1 < t' < 1 \text{ GeV}^2,$
- Independent PWA in $m_{3\pi} \times t'$ bins (100 × 11 bins),
- $\pi^+\pi^-$ -resonances: $f_0(500), \rho, f_0(980), f_2, \rho_3(1670).$
- PWA model consists of 88 waves $J^{PC} = 0^{-+}, 1^{++}, 1^{-+}, 2^{++}, 2^{-+}, \dots$

Partial waves in the 2^{-+} sector

Partial wave	
2 ⁻⁺ 0 ⁺	
$f_2 \pi S$	
$f_2 \pi D$	
$ ho\pi$ P	
$ ho\pi$ F	
$(\pi\pi)_{S}$ D	
$f_0 \pi$ D	
$ ho_3 \pi$ P	
$f_2 \pi G$	
2-+1+	
$\rho \pi P$	
$f_2 \pi S$	
$ ho\pi$ F	
$(\pi\pi)_{S}$ D	
$ ho_3 \pi P$	
$f_2 \pi D$	
2-+2+	
$\rho \pi P$	
$f_2 \pi S$	
$f_2 \pi D$	

Partial waves in the 2^{-+} sector

Partial wave	$\times 10^6$ $2^{-+0+} f_2(1270) \pi S$		$\times 10^3$	$2^{-+}0^{+}f_{2}(1270) \pi D$
	6.7% 0.100 < t' < 1.000 (GeV/c) ²	11c2)	0.9%	$0.100 < t' < 1.000 (\text{GeV}/c)^2$
2-+0+	Me	MeV	40	<u>^</u>
$f_2 \pi S$	8 0.3	(20	-	
$f_2 \pi D$	ity /	ity /	-	
$ ho\pi$ P	§ 0.2	tens	-	
$ ho\pi$ F		Ц	20-	$\sim 10^{-1}$
$(\pi\pi)_S$ D	0.1		-	1 N.
$f_0 \pi D$			[
$ ho_3 \pi P$			وليسم	<u>-</u>
$f_2 \pi G$	$m_{3\pi} [\text{GeV}/c^2]$		0.5	$m_{3\pi}$ [GeV/ c^2]
2-+1+			$\times 10^3$	$2^{-+}0^+ \rho(770) \pi F$
$\rho \pi P$		V/c²)	80 2.2%	$0.100 < t' < 1.000 (\text{GeV}/c)^2$
$f_2 \pi S$	• intensity peak for $f_{\alpha} = S$	Me		4
$\rho\pi$ F	• Intensity peak for 12π 3-	/ (20	60	
$(\pi\pi)_{\rm S}$ D	and $f_2 \pi D$ -waves appear	sity	-	, My
$\rho_3 \pi P$	at different places	Inter	40-	
$f_2 \pi D$	-		-	and the second second
<u></u>	• $\rho \pi F$ -wave shows two		20	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
<u>_</u>	separated peaks		ŀ	/
p_{n1}	1 1		8.5	1 1.5 2 2.5
12/13				$m_{3\pi}$ [GeV/ c^2]
$I_2 \pi D$				3 37: 1500.0000031

[C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]

M.Mikhasenko (HISKP, Bonn)

three-pion system

Fit of all *t*' slices

Simultaneous fit of

- 5 intensities & 4 phases in 11 t'-bins

Model

- Scattering matrix has 5 channels. It does not depend on t'.
- In the second second
- Production includes short- and long-range processes.
 A new set of the coupling parameters is used for every t'-bin.

October 24, 2016 16 / 32

Fit over all t' slices

2^{-+} resonances

poles on the second sheet

October 24, 2016 18 / 32

2^{-+} resonances

poles on the second sheet

M.Mikhasenko (HISKP, Bonn)
2^{-+} resonances

poles on the second sheet

2^{-+} resonances

poles on the second sheet

Future developments for COMPASS Analysis

Many ideas to continue:

- Extend 5-waves-fit to available data for 2⁻⁺ sector, extract pole positions
- Apply the formalism to other J^{PC}M^ε sectors of 3π data. Several interesting cases along the way:
 - 2⁺⁺ sector: *a*₂ resonances
 - 0^{-+} sector: π resonances
 - 1⁻⁺ sector: exotics.
- make 3π scattering amplitudes available for use in other experiments, MC generators
- 3π scattering matrices to be compared to lattice calculation

Beyond the isobar model

Cross-channel rescattering effects

Complex structure

Complex structure

- Amplitude *t*(*s*) of scattering proces is complex function of *s*.
- Every resonance is a pole in the amplitude
- Every one channel for decay produces cut along the real axis

 $t^{-1}(s)$ is shown in *s*-plane, color code is $IM[t^{-1}(s)]$, equipotential lines are $ABS[t^{-1}(s)]$.

Complex structure

- ۲ Amplitude *t*(*s*) of scattering procces is complex function of s
- Every resonance ۰ is a pole in the amplitude
- Every one ۰ channel for decay produces cut along the real axis

 $t^{-1}(s)$ is shown in s-plane. color code is $I_M[t^{-1}(s)]$, equipotential lines are Abs $[t^{-1}(s)]$.

sheet I Unitarity cu • sheet II

Re(z)

1.0 Re(z)

Unitarity cut

Cross-channel exchange

- Additional structure appears on the second sheet.
- log branching point can be close to the physical region.

Triangle diagram

Triangle diagram

Triangle diagram

- $\Delta_i = m_i^2 k_i^2$ is propagators of the particles in the loop,
- Positions of singularities are given by Landau equations. [Landau, Nucl. Phys. **13**, 181 (1959)]
- Landau surface is represented in normalized invariants $(y_0, y_1, y_2), y_i = \frac{s_i m_{i1}^2 m_{i2}^2}{2m_{i1}m_{i2}}$

Examples

hypotheses for an explanation of exotics

LHCb: pentaquark $P_c(4450)$

[MM, arXiv: 1507.06552]

Examples

hypotheses for an explanation of exotics

LHCb: pentaquark $P_c(4450)$

M.Mikhasenko (HISKP, Bonn)

three-pion system

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

Rescattering series

How a further rescattering changes an amplitude?

- Isobar model is common tool of the data analysis (PWA at VES,COMPASS,BES,CLEO,LHCB,...).
- 1th order rescattering is triangle diagram. One loop, four integrals can be reduced to one.
- 2th is two-loop diagram. Very complecated to evaluate!

There is alternative method.

Unitarity

Two body unitarity

Unitarity = propability conservation. $\hat{S} \cdot \hat{S}^{\dagger} = \mathbb{I}$.

$$\hat{S} = \hat{\mathbb{I}} + i\hat{T} \quad \Rightarrow \quad \hat{T} - \hat{T}^{\dagger} = i\hat{T}\hat{T}^{\dagger}, \quad \Rightarrow \quad \Delta t = it \,\rho \,t^{\star}.$$

Two-body unitarity and resonance

Formalism

Khuri-Treiman equation

١

$$= A^{(s)} + A^{(t)} + A^{(u)}, \quad A^{(j)} = \sum_{l} (2l+1) a_{l}^{(j)}(s_{j}) P_{l}(\cos \theta^{(j)})$$

Due to unitarity:
$$a_{l}^{(s)} = \underbrace{t_{l}^{(s)}c_{l}^{(s)}}_{\text{Isobar model}}$$

rescattering corrections

- $a_l^{(s)}$ is a corrected two-body amplitude,
- $b_1^{(s)}$ is a projetion of cross channel waves.
- We get a system of integral equations.

Model ingredients and result

Model is given by

• Set of waves up to L_j for every channel s, t, u.

Example $\pi^-\pi^+\pi^-$: s,t-channel isobars are σ , $f_0(l = 0)$, $\rho(l = 1)$

• Parameterizations of elastic amplitudes $t_l^{(j)}$

Example $\pi^-\pi^+\pi^-$: $(\pi\pi)_S$ -wave, $(\pi\pi)_P$ -wave from K-function/phase shift

Model ingredients and result

Model is given by

• Set of waves up to L_j for every channel s, t, u.

Example $\pi^-\pi^+\pi^-$: s,t-channel isobars are σ , $f_0(l = 0)$, $\rho(l = 1)$

• Parameterizations of elastic amplitudes $t_l^{(j)}$

Example $\pi^{-}\pi^{+}\pi^{-}$: $(\pi\pi)_{S}$ -wave, $(\pi\pi)_{P}$ -wave from K-function/phase shift

Result of calculation:

• Every isobar rescatters to all others. A solution of the equations tells **a** shape and a strength of the "induced" waves.

Example $\pi^{-}\pi^{+}\pi^{-}$: Even if f_0 is not coupled to $R_{3\pi}$, it appears due to rescattering

Model ingredients and result

Model is given by

• Set of waves up to L_j for every channel s, t, u.

Example $\pi^-\pi^+\pi^-$: s,t-channel isobars are σ , $f_0(l = 0)$, $\rho(l = 1)$

• Parameterizations of elastic amplitudes $t_l^{(j)}$

Example $\pi^{-}\pi^{+}\pi^{-}$: $(\pi\pi)_{S}$ -wave, $(\pi\pi)_{P}$ -wave from K-function/phase shift

Result of calculation:

• Every isobar rescatters to all others. A solution of the equations tells **a shape and a strength** of the "induced" waves.

Example $\pi^{-}\pi^{+}\pi^{-}$: Even if f_0 is not coupled to $R_{3\pi}$, it appears due to rescattering

• The solution is linear on production constants, thus we can rescatter every wave **independently** [F. Niecknig, B. Kubis, JHEP 1510, 142 (2015)].

Example $\pi^-\pi^+\pi^-$: final shape and strength of ρ -siobar is

$$A_{\rho}^{(s)} = (c_{\rho}a_{\rho}^{\text{direct}} + c_{\sigma}a_{\rho}^{\text{induces}})P_{l}(\cos\theta_{s})$$
Numerical example

Rescattered and induced "isobar shape"

- anzatz is measurements of $\pi\pi$ phase shift from other experiments
- rescattered and induced shapes are solutions of KT-equation.

[PoS BORMIO2016, MM et al.]

- Chance of narrow resonances is small
- Wide resonances induces high sigmal in cross channels
- Modification depends on the invariant mass of the system (here $\sqrt{s} = 1.3 \text{ GeV}$)

• Three-body unitarity is a challenging problem

- Three-body unitarity is a challenging problem
- We have develop an approach which satisfies quasy-two-body unitarity to study peripheral production and scattering dynamics has been developed.
 - the model is based on theoretical achievement of last 40 years.
 - e.g. Ascoli et al., Basdevant-Berger and many other.

- Three-body unitarity is a challenging problem
- We have develop an approach which satisfies quasy-two-body unitarity to study peripheral production and scattering dynamics has been developed.
 - the model is based on theoretical achievement of last 40 years. e.g. Ascoli et al., Basdevant-Berger and many other.
- Model has been applied to $J^{PC}M^{\epsilon} = 2^{-+}0^+$ COMPASS 3π data
 - Main features of the data are reproduced by the fit.
 - Continuation to the pole region is done, studies on stability and systematics are in progress.

- Three-body unitarity is a challenging problem
- We have develop an approach which satisfies quasy-two-body unitarity to study peripheral production and scattering dynamics has been developed.
 - the model is based on theoretical achievement of last 40 years. e.g. Ascoli et al., Basdevant-Berger and many other.
- Model has been applied to $J^{PC}M^{\epsilon} = 2^{-+}0^+$ COMPASS 3π data
 - Main features of the data are reproduced by the fit.
 - Continuation to the pole region is done, studies on stability and systematics are in progress.
- There is an extension beyond the isobar approximation
 - Khuri-Treiman equation gives a framework to satisfy all subchannels unitarity

- Three-body unitarity is a challenging problem
- We have develop an approach which satisfies quasy-two-body unitarity to study peripheral production and scattering dynamics has been developed.
 - the model is based on theoretical achievement of last 40 years.
 - e.g. Ascoli et al., Basdevant-Berger and many other.
- Model has been applied to $J^{PC}M^{\epsilon} = 2^{-+}0^+$ COMPASS 3π data
 - Main features of the data are reproduced by the fit.
 - Continuation to the pole region is done, studies on stability and systematics are in progress.
- There is an extension beyond the isobar approximation
 - Khuri-Treiman equation gives a framework to satisfy all subchannels unitarity
- Three-body unitarity approach is in progress.

Thank you for the attention